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Preface
he pervasive presence of electronic devices and instrumentation in all
aspects of engineering design and analysis is one of the
manifestations of the electronic revolution that has characterized the
last sixty years. Every aspect of engineering practice, and of

everyday life, has been affected in some way or another by electrical and
electronic devices and instruments. Laptop and tablet computers along with
so-called “smart” phones, and touchscreen interfaces are perhaps the most
obvious manifestations. These devices, and their underlying technology,
have brought about a revolution in computing, communication, and
entertainment. They allow us to store, process, and share professional and
personal data and to access audio (most notably, music) and video of every
variety. These advances in electrical engineering technology have had
enormous impacts on all other fields of engineering, including mechanical,
industrial, computer, civil, aeronautical, aerospace, chemical, nuclear,
materials, and biological engineering. This rapidly expanding electrical and
electronic technology has been adopted, leveraged, and incorporated in
engineering designs across all fields. As a result, engineers work on projects
requiring effective communication across multiple disciplines, one of which
is nearly always electrical engineering.

0.1 OBJECTIVES
Engineering education and professional practice continue to undergo
profound changes in an attempt to best utilize relevant advances in
electronic technology. The need for textbooks and other learning resources
that relate these advances to engineering disciplines beyond electrical and
computer engineering continues to grow. This fact is evident in the ever-
expanding application and integration of electronics and computer
technologies in commercial products and processes. This textbook and its
associated learning resources represent one effort to make the principles of



electrical and computer engineering accessible to students in various
engineering disciplines.

The principal objective of the book is to present the fundamentals of
electrical, electronic, and electromechanical engineering to an audience of
engineering majors enrolled in introductory and more advanced or
specialized electrical engineering courses.

A second objective is to present these fundamentals with a focus on
important results and common yet effective analytical and computational
tools to solve practical problems.

Finally, a third objective of the book is to illustrate, by way of concrete,
fully worked examples, a number of relevant applications of electrical
engineering. These examples are drawn from the authors’ industrial
research experience and from ideas contributed by practicing engineers and
industrial partners.

These three objectives are met through the use of various pedagogical
features and methods.

0.2 ORGANIZATION
The second edition contains several significant organizational changes.
However, the substance of the book, while updated, is essentially
unchanged. The most obvious organizational change is the location of
example problems within each chapter. In the previous edition, examples
were mixed in with the text so that students would encounter examples
immediately after each key concept. While this type of Page
xviorganization works well for a first read, it has the disadvantage of
making example problems difficult to locate for review. Since it is critical
that students be able to easily and efficiently locate example problems when
preparing for exams, in this edition of the book, with few exceptions, all
example problems have been placed at the end of each section within a
chapter.

A continued and enhanced emphasis on problem solving can be found
in this edition. All the highlighted Focus on Methodology boxes found in
the first edition were renamed Focus on Problem Solving, and many of



I.
II.
III.

them were rewritten to clarify and add additional detail to the steps needed
by students to successfully complete end-of-chapter homework problems.

An effort was also made to reduce the aesthetic complexity of the book,
without sacrificing technical content or overall aesthetic appeal. We believe
that effective reading is promoted by less clutter and visual “noise,” if you
will. For example, a careful comparison of the first and second editions will
reveal our effort to produce cleaner and sharper figures that retain only that
information relevant to the issue or problem being discussed.

In addition, a thorough, exhaustive, page-by-page search was made to
locate errors in the text, equations, figures, references to equations and
figures, examples, and homework problems. Speaking of homework
problems, the second edition contains 861 homework problems, of which
over 300 are new to this edition, and, where necessary and appropriate,
example problems were updated.

The book remains divided into three major parts:
Circuits
Electronics
Electromechanics

The pedagogical enhancements made within each part are discussed
below.

0.3 PEDAGOGY AND CONTENT



Part I: Circuits
The first part of the book has undergone major revision from the first
edition.

Chapter 1 begins with an emphasis on developing a student’s ability to
recognize structure within a circuit diagram. It is the authors’ experience
that this ability is key to student success. Yet, many books contain little
content on developing this ability; the result is that many students wander
into more difficult topics still viewing a circuit as simply an unruly
collection of wires and elements.

The approach taken in this book is to encourage students to initially
focus on nodes, rather than elements, in a circuit. For example, some of the
earliest exercises in this book simply ask students to count the number of
nodes in a circuit diagram. One immediate advantage of this patient
approach is that it teaches students to disregard the particular aesthetic
structure shown in a circuit diagram and instead to recognize and focus on
the technical structure and content.

Methods of Problem Solving were enhanced and clarified. Throughout
these chapters students are encouraged to think of problem solving in two
steps: first simplify; then solve. In addition to being an effective problem-
solving method, this method provides context for the power and importance
of equivalent circuits, in general, and Thévenin’s theorem, in particular. In
the chapters on transient analysis Page xviiand frequency response,
foundational first- and second-order circuit archetypes are identified.
Students are encouraged to simplify, when possible, transient circuit
problems to these archetypes. In effect, they become clear targets for
students when problem solving. Thévenin’s and Norton’s theorems and the
principle of superposition are used throughout these chapters to simplify
complicated circuits to the archetypes.

Finally, a greater emphasis was placed on visualizing phasors in the
complex plane and understanding the key role of the unit phasor and Euler’s
theorem. Throughout the chapters on AC circuits and power students are
encouraged to focus on the concepts of impedance and power triangles, and
their similarity.



Part II: Electronics
While much of the content on electronics in Part II is unchanged from the
first edition, the problem-solving strategies and techniques for transistor
circuits were enhanced and clarified. The focus on simple but useful circuit
examples was not changed.

Similar to the approach taken in Part I, Chapter 7 on operational
amplifiers emphasizes three amplifier archetypes (the unity-gain buffer, the
inverting amplifier, and the non-inverting amplifier) before introducing
variations and applications.

The emphasis in Chapters 9 and 10 on large-signal models of BJTs and
FETs and their applications was retained; however, an appropriate, but
limited, presentation of small-signal models was included to support the
discussion of AC amplifiers. These two chapters present an uncomplicated
and practical treatment of the analysis and design of simple amplifiers and
switching circuits using large-signal models.

Chapter 11 presents an overview of combinational and sequential logic
modules, providing a comprehensive overview of digital logic circuits.



Part III: Electromechanics
Part III on electromechanics has been revised for accuracy and pedagogy,
but its contents are largely unchanged. This part has been used by the first
author for many years as a supplement in a junior-year System Dynamics
course for mechanical engineers.

0.4 NOTATION
The notation used in this book for various symbols (variables, parameters,
and units) has been updated but still follows generally accepted
conventions. Distinctions in notation can be subtle. Luckily, very often the
context in which a symbol appears makes its meaning clear. When the
meaning of a symbol is not clear from its context a correct reading of the
notation is important. A reasonably complete listing of the symbols used in
this book and their notation is presented below.

For example, an uppercase roman font is used for units such as volts (V)
and amperes (A). An uppercase italics math font is used for real parameters
and variables such as resistance (R) and DC voltage (V). Notice the
difference between the variable V and the unit V. Further, an uppercase bold
math font is used for complex quantities such as voltage and current
phasors (V and I) as well as impedance (Z), conductance (Y), and
frequency response functions (H and G). Lowercase italic Page
xviisymbols are, in general, time dependent variables, such as voltage (υ or
υ(t)) and current (i or i(t)), where (t) is an explicit indication of time
dependence. Lowercase italic variables may represent constants in specific
cases. Uppercase italic variables are reserved for constant (time-invariant)
values exclusively.

Various subscripts are also used to denote particular instances or
multiple occurrences of parameters and variables. Exponents are italicized
superscripts.

Finally, in electrical engineering the imaginary unit  is always
represented by j rather than i, which is used by mathematicians. The reason
for the use of j instead of i should be obvious!



0.5 SYSTEM OF UNITS
This book employs the International System of Units (also called SI, from
the French  Système International des Unitès). SI units are adhered to by
virtually all professional engineering societies and are based upon the seven
fundamental quantities listed in Table 0.1. All other units are derived from
these base units. An example of a derived unit is the radian, which is a
measure of plane angles. In this book, angles are in units of radians unless
explicitly given otherwise as degrees.

Since quantities often need to be described in large multiples or small
fractions of a unit, the standard prefixes listed in Table 0.2 are used to
denote SI units in powers of 10. In general, engineering units are expressed
in powers of 10 that are multiples of 3. For example, 10−4 s would be
expressed as 100 × 10−6 s, or 100 μs.

Page xix



Tables 0.1 and 0.2 are useful references when reading this book.

Table 0.1 SI units
Quantity Unit Symbol
Length Meter m
Mass Kilogramkg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Substance Mole mol
Luminous intensityCandela cd

Table 0.2 Standard prefixes
PrefixSymbol Power
atto a 10−18

femto f 10−15

pico p 10−12

nano n 10−9

micro μ 10−6

milli m 10−3

centi c 10−2

deci d 10−1

deka da 10
kilo k 103

mega M 106

giga G 109

tera T 1012

0.6 FEATURES OF THE SECOND EDITION

Pedagogy
The second edition continues to offer all the time-tested pedagogical
features available in the earlier editions.
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Learning Objectives offer an overview of key chapter ideas. Each
chapter opens with a list of major objectives, and throughout the
chapter the learning objective icon indicates targeted references to
each objective.
Focus on Problem Solving sections summarize important methods
and procedures for the solution of common problems and assist the
student in developing a methodical approach to problem solving.
Clearly Illustrated Examples illustrate relevant applications of
electrical engineering principles. The examples are fully integrated
with the Focus on Problem Solving material, and each one is
organized according to a prescribed set of logical steps.
Check Your Understanding exercises follow each set of examples
and allow students to confirm their mastery of concepts.
Make the Connection sidebars present analogies that illuminate
electrical engineering concepts using other concepts from engineering
disciplines.
Focus on Measurements boxes emphasize the great relevance of
electrical engineering to the science and practice of measurement.

Instructor Resources on Connect:
Instructors have access to these files, which are housed in Connect.

PowerPoint presentation slides of important figures from the text
Instructor’s Solutions Manual with complete solutions

Page xx

Writing Assignment

Available within McGraw Hill Connect®, the Writing Assignment tool
delivers a learning experience to help students improve their written
communication skills and conceptual understanding. As an instructor you
can assign, monitor, grade, and provide feedback on writing more
efficiently and effectively.



Remote Proctoring & Browser-Locking
Capabilities

New remote proctoring and browser-locking capabilities, hosted by
Proctorio within Connect, provide control of the assessment environment
by enabling security options and verifying the identity of the student.

Seamlessly integrated within Connect, these services allow instructors
to control students’ assessment experience by restricting browser activity,
recording students’ activity, and verifying students are doing their own
work.

Instant and detailed reporting gives instructors an at-a-glance view of
potential academic integrity concerns, thereby avoiding personal bias and
supporting evidence-based claims.
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My association with this remarkable book continues to be a great privilege
and honor. Its contents continue to reflect the enormous effort and expertise
of the principal author, and my dear friend, Dr. Giorgio Rizzoni. His
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Guided Tour

Learning Objectives offer an overview of key chapter ideas. Each chapter opens with a list
of major objectives, and throughout the chapter the learning objective icon indicates
targeted references to each objective.

Focus on Problem Solving sections summarize important methods and procedures for the
solution of common problems and assist the student in developing a methodical approach to



problem solving.

Clearly illustrated examples present relevant applications of electrical engineering
principles. The examples are fully integrated with the Focus on “Problem” Solving
material, and each one is organized according to a prescribed set of logical steps.



Check Your Understanding exercises follow each set of examples and allow students to
confirm their mastery of concepts.

Make the Connection sidebars present analogies that illuminate electrical engineering
concepts using concepts form other engineering disciplines.

Focus on Measurements boxes emphasize the great relevance of electrical engineering to
the science and practice of measurement.
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C H A P T E R
1

FUNDAMENTALS OF ELECTRIC
CIRCUITS

hapter 1 is the foundation for the entire book and presents the fundamental
laws that govern the behavior of electric circuits. Basic features and
terminology of electric circuits, such as nodes, branches, meshes, and loops,
are defined, and the three fundamental laws of circuit analysis. Kirchhoff’s

current and voltage laws and Ohm’s law, are introduced. The concept of electric
power and the passive sign convention are introduced along with basic circuit
elements—sources and resistors. Basic analytic techniques—voltage and current
division—are introduced along with some engineering applications. Examples
include a description of strain gauges, circuits related to the measurement of force
and other mechanical variables, and a study of an automotive throttle position sensor.
A brief discussion of measurement instruments is also included. Finally, the chapter
closes with a discussion of the source-load perspective and an application of it to find
the same voltage and current division results obtained earlier in the chapter.Page 4
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 Learning Objectives
Students will learn to...

Identify the principal features of electric circuits or networks: nodes, loops,
meshes, and branches. Sections 1.1.
Apply Kirchhoff’s laws to simple electric circuits. Sections 1.2–1.3.
Apply the passive sign convention to compute the power consumed or supplied
by circuit elements. Sections 1.4.
Identify sources and resistors and their i-υ characteristics. Sections 1.5–1.6.
Apply Ohm’s law and voltage and current division to calculate unknown-
voltages and currents in simple series, parallel, and series-parallel circuits
Sections 1.6–1.8.
Understand the impact of internal resistance in practical models of voltage
and current sources as well as of voltmeters, ammeters, and wattmeters
Sections 1.9–1.10.

1.1 FEATURES OF NETWORKS AND CIRCUITS
A network can be defined as a collection of interconnected objects. In an electric
network, elements, such as resistors, are connected by wires. An electric circuit can
be defined as an electric network within which at least one closed path exists and
around which electric charge may flow. All electric circuits are networks, but not all
electric networks contain a circuit. In this book, a circuit is any network that contains
at least one complete and closed path.

There are two principal quantities within a circuit: current and voltage. The
primary objective of circuit analysis is to determine one or more unknown currents
and voltages. Once these currents and voltages are determined, any other aspect of
the circuit, such as its power requirements, efficiency, and speed of response, can be
computed.

Two useful concepts for circuit analysis are those of a source and of a load. In
general, the load is the circuit element or segment of interest to the designer or user
of the circuit. By default, the source is everything else not included in the load.
Typically, the source provides energy and the load consumes it for some purpose. For
example, consider the simple physical circuit of a headlight attached to a car battery
as shown in Figure 1.1(a). For the driver of the car, the headlight may be the circuit
element of interest since it enables the driver to see the road at night. From this
perspective, the headlight is the load and the battery is the source as shown in Figure



1.1(b), which is intuitively appealing because power flows from the source (the
battery) to the load (the headlight). However, in general, it is not required nor
necessarily true that power flows in this manner. Electric power is discussed later in
this chapter.

Figure 1.1 (a) Physical, and (b) conceptual representations of an electrical
system

The use of the term source can be confusing at times because, as will be
discussed later in this chapter, there are circuit elements known as ideal voltage and
current sources, which have well-defined attributes and circuit symbols. These ideal
sources, along with other circuit elements, are often the constituents of the source
portion of a circuit, as well as the load portion. In this book, ideal sources are
referred to as either voltage or current sources, explicitly, to avoid confusion.Page 5

Other key conceptual features of electric circuits are the ideal wire, node, branch,
loop, and mesh. The concept of a node is particularly useful for correctly interpreting
circuit diagrams. Many students struggle with circuit analysis simply because they
lack an organizing perspective with which to interpret circuit diagrams. One
particularly helpful perspective is to see electric circuits as comprised of elements
situated between nodes. Once the concept of a node is well understood this
perspective simplifies and clarifies many circuits that otherwise appear complicated.

Ideal Wire
Electric circuit and network diagrams are used to represent (approximately) actual
electric circuits and networks. These diagrams contain elements connected by ideal
wires. An ideal wire is able to conduct electric charge without any loss of electric
potential. In other words, no work is required to move an electric charge along an
ideal wire. Luckily, in many applications, actual wires are well approximated by ideal
wires. However, there are applications where wiring accounts for significant losses of
potential (e.g., long-distance transmission lines and microscopic integrated circuits).
In these applications, the ideal wire approximation must be augmented and/or used



with care. In this book, all wires in circuit and network diagrams are ideal, unless
indicated otherwise.

Node
A node consists of one or more ideal wires connected together such that an electric
charge can travel between any two points on the node without traversing a circuit
element, such as a resistor. It is important to recognize that since a node consists of
ideal wires only, every point on a node has the same electric potential, which is
known as the node voltage and its value is relative to the other nodes in the network.

The junction of two or more ideal wires is often used to represent an entire node;
however, it is important to recognize that a wire junction is not the entire node and
that a node may contain multiple wire junctions. It is crucial to correctly identify and
count nodes in the analysis of electric circuits. Figure 1.2 illustrates a helpful way to
mark nodes. There are three nodes in Figure 1.2(a) and two nodes in Figure 1.2(b). It
is sometimes convenient to use the concept of a supernode, which is simply a closed
boundary enclosing two or more nodes, as shown in Figure 1.2(c). In the next
section, you will learn that one of the two fundamental laws of network analysis,
Kirchhoff’s current law (KCL), is valid for any closed boundary; that is, it is valid for
any node or supernode.Page 6

Figure 1.2 Illustrating nodes and supernodes in circuit diagrams

Elements that sit between the same two nodes are said to be in parallel and
have the same voltage across them.

It is also important to realize that since no work is required to move an electric
charge along an ideal wire, the length and shape of an ideal wire has no impact on the
behavior of a circuit. Likewise, since nodes are comprised of ideal wires, the extent
and shape of a node has no impact on the behavior of a circuit. As a result, a node
may be redrawn in any manner as long as the newly drawn node is attached to the



same elements as the original node. Circuit diagrams are typically drawn, by
convention, in a rectangular manner, with all wires drawn either side to side or up
and down. However, many students find it helpful to redraw circuits so as to clarify
the number and location of nodes in a circuit. Figure 1.3 shows two identical circuits
drawn in two different ways. Can you tell that these circuits have the same number of
nodes?

Figure 1.3 (a) A typical rectangular circuit diagram and (b) an equivalent
redrawn diagram. A circuit can be redrawn to have almost any appearance;
however, the nature of the circuit is unchanged if the number of nodes and
the elements between those nodes remain unchanged.

Keep in mind that all forms of potential, including voltage, are relative quantities.
For this reason, it is common to refer to the change in voltage across an element, or
simply the voltage across an element. In circuit diagrams, a change in voltage across
an element is indicated by the paired symbols + and −. Taken together as a single
symbol they indicate the assumed direction of the change in voltage. However, as
mentioned, it is also common to refer to a node voltage. To quantify a node voltage it
is first necessary to select a reference node. Then, one can refer to the voltage of a
node with the understanding that the value of that voltage is relative to the chosen
reference node.Page 7

Any one node in a network can serve as the reference. The reference node and its
value can be chosen freely, although a value of zero is usually chosen, for simplicity.
It is often true that a smart choice of reference node will simplify the analysis that
follows. A good rule of thumb is to select a node that is connected to a large number
of elements.

A reference node is designated by the symbol shown in Figure 1.4(a). This
symbol is also used to designate earth ground in applications. It is common for this
symbol to appear multiple times in complicated circuits. Still, there is only one
reference node per circuit. To reduce the apparent complexity of such circuits,
multiple reference symbols are used to minimize the amount of displayed reference
node wiring. It is simply understood that all nodes to which these symbols are
attached are, in fact, connected by ideal wires and therefore part of one large



reference node. Figure 1.4(b) and (c) illustrate this practice. The concepts of
reference node, earth ground, and chassis ground are discussed later in this chapter.

Figure 1.4 There can be one and only one reference node in a network
although the reference node symbol may appear more than once in order to
reduce the amount of displayed reference node wiring.

Branch
A branch is a single electrical pathway, consisting of wires and elements. A branch
may contain one or more circuit elements as shown in Figure 1.5. By Page
8definition, the current through any one element in a branch is the same as the
current through any other element in that branch; that is, there is one current in a
branch, the branch current.

Figure 1.5 Examples of circuit branches

Elements that sit along the same branch are said to be in series and have the
same current through them.



    Loop
A loop is any closed pathway, physical or conceptual, as illustrated in Figure 1.6.
Figure 1.6(a) shows that two different loops in the same circuit may share common
elements and branches. It is interesting, and perhaps initially confusing, to note that a
loop does not necessarily have to correspond to a closed electrical pathway,
consisting of wires and elements. Figure 1.6(b) shows one example in which a loop
passes directly from node a to node c.

Figure 1.6 Examples of loops. How many nodes are in each of these
circuits? [Answers: (a) 4; (b) 7]

    Mesh
A mesh is a closed electrical pathway that does not contain other closed physical
pathways. In Figure 1.6(a), loops 1 and 2 are meshes, but loop 3 is not a mesh
because it encircles the other two loops. The circuit in Figure 1.6(b) has one mesh.
Figure 1.7 illustrates how simple it is to visualize meshes.

Figure 1.7 Circuit with four meshes. How many different closed electrical
pathways are in this circuit? [Answer: 14]
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EXAMPLE 1.1 Counting Nodes in a Network
Problem

Find the total number of nodes in each of the four networks of Figures 1.8–1.11.

Solution
Known Quantities: Wires and elements.
Find: The number of nodes in each network diagram in Figures 1.8 through 1.11
Schematics, Diagrams, Circuits, and Given Data: Figure 1.8 contains four elements:
two resistors and two ideal voltage sources, one independent and one dependent.
Figure 1.9 contains five elements: four resistors and one independent ideal current
source. Figure 1.10 contains five elements: four resistors and one operational
amplifier. Figure 1.11 contains three elements: two headlamps and one 12-V battery.

Figure 1.8

Figure 1.9



Figure 1.10

Figure 1.11

Assumptions: All wires are ideal.
Analysis: In Figure 1.8, all four elements are in a single electrical loop. There is one
node between each pair of elements. Thus, there are four nodes in this network.

In Figure 1.9, all elements are connected between two nodes, one at the top, the
other at the bottom of the circuit. In addition, there is a third node between the two 3-
kΩ resistors. Thus, there are three nodes in this network.

In Figure 1.10, the nodes are expressly indicated by the black and white circles
(note that the two circles on the far right denote the same node). In addition, the
ground symbol repeated twice at the bottom of the circuit is also a node—the same
node. Thus, there are five nodes in this network.

In Figure 1.11, there is one node between the positive + battery terminal and the
two headlamps and one node between the negative − battery terminal and the two
headlamps. Thus, there are two nodes in this network.
Comments: Notice that no knowledge of the elements is required to identify and
count the nodes in a network.
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1.2 CHARGE CURRENT, AND KIRCHHOFF’S
CURRENT LAW
The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that static charge on a piece of amber was capable of attracting very light
objects, such as feathers. The word electricity originated about 600 b.c.; it comes
from elektron, which was the ancient Greek word for amber. The true nature of
electricity was not understood until much later, however. Following the work of
Alessandro Volta and his invention of the copper-zinc battery, it was determined that
static electricity and the current in metal wires connected to a battery are due to the



(1.1)

(1.2)

same fundamental mechanism: the atomic structure of matter, consisting of a nucleus
—neutrons and protons—surrounded by electrons.

Charles Coulomb (1736–1806) (INTERFOTO/Personalities/Alamy Stock Photo)

The fundamental electric quantity is charge. The electron carries the smallest
discrete unit of charge equal to:

The amount of charge associated with an electron may seem rather small. However,
the unit of charge, the coulomb (C), named after Charles Coulomb, is an appropriate
unit for the definition of electric current since typical currents involve the flow of
large numbers of charged particles. The charge of an electron is negative, by
convention, to contrast it to the positive charge carried by a proton, which is the other
charge-carrying particle in an atom. The charge of a proton is:

Electrons and protons are often referred to as elementary charges.

Electric current is defined as the rate at which charge passes through a
predetermined area, typically the cross-sectional area of a metal wire. Several other
cases in which the current-carrying conduit is not a wire are explored later. Figure
1.12 depicts a macroscopic view of current i in a wire. With Δq units of charge
flowing through the cross-sectional area A in Δt units of time, the resulting current i
is defined by:



(1.3)

(1.4)

Figure 1.12 Current in an electric conductor is defined as the net flow rate
of charge through the cross-sectional area A.

The arrow symbol associated with the current i is its assumed direction through the
wire segment. A negative value for i would indicate that the actual direction is
opposite the assumed direction. When large numbers of discrete charges cross A in a
very small period, this relationship can be written in differential form as:

The unit of current is the ampere, where 1 ampere (A) = 1 coulomb/second (C/s).
The name of the unit is a tribute to the French scientist André-Marie Ampère. The
electrical engineering convention is that the direction of positive current is the
direction of positive charge flow. This convention is sensible; however, it can
be confusing at first since the mobile charge carriers in metallic conductors are, in
fact, electrons from the conduction band of the metal. It may help to realize that
when an electron travels in one direction the effect on the distribution of net charge
Page 11is the same as if a proton had travelled in the opposite direction. In other
words, positive current is used to represent the relative flow of positive charges.

Current in a Closed Path
Earlier in this chapter, a circuit was defined as “a complete and closed path around
which a circulating electric current can flow.” In fact, conservation of electric charge
requires a closed path for any nonzero current.

To have a nonzero current, there must be a closed electrical path (i.e., a circuit).

   

For example, Figure 1.13 depicts a simple circuit, composed of a battery (e.g., a
dry-cell or alkaline 1.5-V battery) and a lightbulb. Conservation of charge requires
that the current i from the battery to the lightbulb is equal to the current from the
lightbulb to the battery. No current (nor charge) is “lost” around the closed circuit.
This  principle was observed by the German scientist G. R. Kirchhoff2 and is known
as Kirchhoff’s current law (KCL). This law states that the net sum of the currents



(1.5)

(1.6) 

crossing any closed boundary (a node or supernode) must equal zero. In
mathematical terms:

Figure 1.13 A simple electric circuit composed of a battery, a lightbulb,
and two nodes

    

where the sign of currents entering the region surrounded by the closed boundary
must be opposite to the sign of currents exiting the same region. In other words, the
sum of currents “in” must equal the sum of currents “out.” This statement leads to an
alternate expression for KCL as:

An application of Kirchhoff’s current law is illustrated in Figure 1.14, where the
simple circuit of Figure 1.13 has been augmented by the addition of two lightbulbs.
One can find a relationship between the currents in the circuit by applying either
version of KCL. To express the net sum of currents it is necessary to select a sign
convention for currents entering and exiting a node. One possibility is to consider all
currents entering a node as positive and all currents exiting a node as negative. (This
particular sign convention is completely arbitrary.) The result of using this sign
convention and applying the first version of KCL to node 1 is



Figure 1.14 KCL appliedat node 1 results ini − i1 − i2 − i3 = 0, or
equivalently i = i1 + i2 + i3.

Note that the latter expression is exactly what would have been found if the alternate
version of KCL had been applied. Also note that the result is the same if the opposite
sign convention (i.e., currents entering and exiting the node are negative and positive,
respectively) is used.
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EXAMPLE 1.2 Charge and Current in a Conductor
Problem

Find the total charge in a cylindrical conductor (solid wire) and compute the current
through the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Total charge of carriers Q; current in the wire I.
Schematics, Diagrams, Circuits, and Given Data:

Conductor length: L = 1 m.
Conductor diameter: .

Charge density: n = 1029 carriers/m3.
Charge of one electron: 



Charge carrier velocity: 
Assumptions: None.
Analysis: To compute the total charge in the conductor, we first determine the
volume of the conductor:

Next, we compute the number of carriers (electrons) in the conductor and the total
charge:

To compute the current, we consider the velocity of the charge carriers and the
charge density per unit length of the conductor:

Comments: Charge carrier density is a function of material properties. Carrier
velocity is a function of the applied electric field.
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EXAMPLE 1.3 Kirchhoff’s Current Law Applied to an
AutomotiveElectrical Harness
Problem



Figure 1.15 shows an automotive battery connected to a variety of elements in an
automobile. The elements include headlights, taillights, starter motor, fan, power
locks, and dashboard panel. The battery must supply enough current to satisfy each
of the “load” elements. Apply KCL to find a relationship between the currents in the
circuit.

Figure 1.15 (a) Automotive electrical harness; (b) equivalent electric
circuit diagram

Solution
Known Quantities: Components of electrical harness: headlights, taillights, starter
motor, fan, power locks, and dashboard panel.
Find: Expression relating battery current to load currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 1.15.
Assumptions: None.

Page 14



Analysis: Figure 1.15(b) depicts the equivalent electric circuit, illustrating that the
current supplied by the battery is divided among the various elements. The
application of KCL to the upper node yields

or

EXAMPLE 1.4 Application of KCL
Problem

Determine the unknown currents in the circuit of Figure 1.16.

Figure 1.16 KCL yieldsi0 + i1 + i2 = 0 at node a and i0 + i1 + i2 + iS = i3 + i4
atnode b.

Solution
Known Quantities:

Find: I0 and I4.



Analysis: Two nodes are clearly shown in Figure 1.16 as node a and node b; the third
node in the circuit is the reference node. Apply KCL at each of the three nodes.

At node a:

Note that the assumed direction of all three currents is away from the node. However,
I2 has a negative value, which means that its actual direction is toward the node. The
magnitude of I2 is 3 A. The sign simply indicates direction relative to the assumed
direction indicated in the diagram.

At node b:

At the reference node: If we use the convention that currents entering a node are
positive and currents exiting a node are negative, we obtain the following equations:

Comments: The result obtained at the reference node is exactly the same as that
calculated at node b. This fact suggests that some redundancy may result when we
apply KCL at all nodes in a circuit. In Chapter 2 we develop a method called node
analysis that ensures the derivation of the smallest possible set of independent
equations.
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EXAMPLE 1.5 Application of KCL
Problem

Apply KCL to the circuit of Figure 1.17, using the concept of a supernode to
determine the source current iS1.



Figure 1.17 KCL applied at the boundary of the supernode yields iS1 = i3 
+ i5.

Solution
Known Quantities:

Find: iS1.

Analysis: Apply KCL at the boundary of the supernode to obtain

Comments: Notice that the same result for iS1 is obtained by applying KCL at the
bottom node. This fact is another example of a redundant result that is sometimes
obtained by applying KCL at two different nodes, including supernodes. When
applied correctly, the node analysis method discussed in Chapter 2 prevents
redundant equations.

CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 1.4 when I0 = 0.5 A, I2 = 2 A, I3 = 7 A, and I4 = −1
A. Find I1 and IS.

Answer: I1 = −2.5 A and IS = 6 A



(1.7)

CHECK YOUR UNDERSTANDING
Use the result of Example 1.5 and the following data to compute the current iS2 in the
circuit of Figure 1.17.

1.3 VOLTAGE AND KIRCHHOFF’S VOLTAGE LAW
Typically, work is required to move charge between two nodes in a circuit. The total
work per unit charge is called voltage, and the unit of voltage is the volt in honor of
Alessandro Volta.
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The voltage, or potential difference, across two nodes in a circuit is the energy (in
joules) per unit charge (1 coulomb) needed to move charge from one node to the
other. The direction, or polarity, of the voltage is related to whether energy is being
gained or lost by the charge in the process.

Consider again the simple circuit of a battery and a lightbulb as shown in Figure
1.18. Experimental observations led Kirchhoff to formulate the second of his laws,
Kirchhoff’s voltage law (KVL), which states that that the net change in electric
potential around a closed loop is zero. In mathematical terms:

Answer: iS2 = 1 A



(1.8) 

Figure 1.18 KVL applied clockwise from node b around the single loop
circuit results in 1.5 V − υab = 0, or equivalently υab = 1.5 V.

Here, υn are the changes in voltage from one node to another around a closed loop.

Gustav Robert Kirchhoff (1824–1887) (bilwissedition Ltd. & Co. KG/Alamy Stock
Photo)

When summing these changes in voltage, it is necessary to account for the
polarity of the change. Changes in voltage from the minus sign − to the plus sign +
are considered positive (i.e., a rise in voltage), while those from plus to minus are
considered negative (i.e., a drop in voltage). These two symbols act together to
indicate the assumed direction of the change in voltage across an element, just as the
arrow symbol is used to indicate the assumed direction of the current through an
element or wire segment. A negative value indicates that the actual direction is
opposite to the assumed direction.



(1.9) 

An alternate but equivalent expression for KVL is that the sum of all voltage rises
around a loop must equal the sum of all voltage drops around the same loop.

In Figure 1.18, the voltage across the lightbulb is the change in voltage from
node a to node b. This change can also be expressed as the difference between two
node voltages, υa and υb. As stated earlier, the values of node voltages are relative to
some reference node. Any single node may be chosen as the reference with its value
set to zero, for simplicity, or any other convenient number. The circuit in Figure 1.18
has only two nodes, a and b, one of which can serve as the reference node. Select
node b as the reference and set its value as υb = 0. Then, observe that the battery’s
positive terminal is 1.5 V above the reference, so that  In general, the
battery guarantees that node a will always be 1.5 V above node b. Mathematically,
this fact is simply expressed as

The syntax used to express the change in voltage across the lightbulb, from node b to
node a, is υab, where

This syntax is in accord with the + and − polarity indicator in that if υab is positive,
then  and, in fact, node a is at a higher potential than node b, as suggested by
the + and − syntax. It may be helpful to think of υab as υa relative to node b.

Note that the work done in moving charge from node a to node b is directly
proportional to the voltage across the lightbulb. Likewise, the work done moving
Page 17charge back from b to a is directly proportional to the voltage across the
battery. Let Q be the total charge that moves around the circuit per unit time, giving
rise to current i. Then, the work W done by the battery on Q, from b to a (i.e., across
the battery) is

which is also equal to the work done by Q on the lightbulb, from a to b (i.e., across
the lightbulb). One could express this work in the negative as the work done by the
lightbulb on Q, from a to b.



Note that the word potential is quite appropriate as a synonym of voltage, in that
voltage is the potential energy per unit charge between two nodes in a circuit. If the
lightbulb is disconnected from the circuit, a voltage υab still exists across the battery
terminals, as illustrated in Figure 1.19. This voltage represents the ability of the
battery to supply energy to the circuit. Likewise, the voltage across the lightbulb is
associated with the work done by the lightbulb to consume or dissipate energy from
the circuit. The rate at which charge is moved once a closed circuit is established
depends upon the circuit element connected to the battery.

Figure 1.19 The voltage υab across the open terminals of the battery
represents the potential energy available to move charge from a to b once a
closed circuit is established.

The Reference Node and Ground
The concept of a reference node finds a practical use in the ground node of a circuit.
Ground represents a specific, and usually clearly marked, reference node and voltage
in a circuit. For example, the ground reference voltage can be identified with the
enclosure or case of an instrument, or with the earth itself. In residential electric
circuits, the ground reference is a large conductor, such as a copper spike or water
pipe, that is buried in the earth. As mentioned, it is convenient and typical to assign
the ground voltage reference a value of zero.

In practice, the term ground should not be applied to a node arbitrarily. However,
the voltage value that is assigned to ground, while typically zero, is not
consequential. A simple analogy with fluid flow illustrates this rule. Consider a tank
of water, as shown in Figure 1.20, located at a certain height above the ground. The
potential energy difference per unit mass due to gravity  will cause
water to flow out of the pipe at a certain flow rate. This quantity is completely
analogous to the potential energy difference per unit charge . Now assume that
the height h3 at ground level is chosen to be the zero potential energy Page



18reference. Is the flow of water in the pipe changed due to this choice? Of course
not. Is the flow of water in the pipe dependent upon the height  of the support
structure? Again, the answer is no. The truth of these statements is demonstrated by
rewriting the head of the water tank  and by noting that the
potential energy difference per unit mass can be written as the difference in potential
energy per unit mass relative to the ground. That is,

Figure 1.20 An analogy between water flow and electric current illustrates
the relation between potential differences and a ground reference potential.

Note that the values of u13 and u23 depend upon the value assigned to h3; however,
the value of u12 does not depend upon the value assigned to h3. If this result were not
true, our experience of the physical world would be very strange indeed, and not only
because the flow of water from a tank would depend significantly upon the height of
the tank itself. It is the relative difference in potential energy that matters in the water
tank problem. So it is with electric circuits. The current through an element depends
upon the potential difference (i.e., voltage) across the element and not on the
selection of a reference node nor the arbitrary value of the ground reference node.

Another familiar scenario is that of a skydiver leaping from an airplane and
parachuting to the surface below (see Figure 1.21). To quantify the potential energy
U of the skydiver it is first necessary to choose a reference height h0 such thatU =
mgΔh = mg(h − h 0), where h represents the position of the skydiver. One possible
reference is the height of the airplane such that the potential energy of the skydiver is
negative (U < 0). However, that reference is not particularly meaningful. The surface
of the earth is a more meaningful reference to the skydiver, who knows that a soft
landing depends upon dissipating most of the initial potential energy through
collisions with air molecules rather than through a collision with the surface. The
skydiver knows that her fate is unchanged by her choice of reference; however, some
choices are more meaningful than others. So it often is with electric circuits.



Figure 1.21 A skydiver understands all too well that her fate is unchanged
by the choice of reference potential.

EXAMPLE 1.6 Kirchhoff’s Voltage Law—Electric Vehicle Battery
Pack
Problem

Figure 1.22(a) depicts the battery pack in the Smokin’ Buckeye electric race car. In
this example we apply KVL to the series connection of thirty-one 12-V batteries that
make up the battery supply for the electric vehicle.Page 19

Figure 1.22 Electric vehicle battery pack illustrates KVL. (Courtesy:
David H. Koether Photography)

Solution
Known Quantities: Nominal characteristics of Optimatm lead-acid batteries.
Find: Expression relating battery and electric motor drive voltages.
Schematics, Diagrams, Circuits, and Given Data:  Figure 1.22(a), (b), and
(c).
Assumptions: None.



Analysis: Figure 1.22(b) depicts the equivalent electric circuit, illustrating how the
voltages supplied by the battery are applied across the electric drive that powers the
vehicle’s 150-kW three-phase induction motor. The application of KVL around the
closed circuit of Figure 1.22(c) requires that:

Thus, the electric drive is nominally supplied by a 31 × 12 = 372-V battery pack. In
practice, the voltage supplied by lead-acid batteries varies depending on the state of
charge of the battery. When fully charged, the battery pack of Figure 1.22(a) supplies
closer to 400 V (i.e., roughly 13 V per battery).

EXAMPLE 1.7 Application of Kvl
Problem

Determine the unknown voltage υ2 by applying KVL to the circuit of Figure 1.23.

Figure 1.23 A circuit with four generic elements and one ideal voltage
source

Solution
Known Quantities:

Find: υ2.

Analysis: Apply KVL starting at the reference node and proceeding clockwise
around the large outer loop (the outer perimeter) of the circuit to find



Comments: Note that υ2 is the voltage across elements 2 and 4. These two elements
are in parallel because they are located between the same two nodes. One can also
say that the two branches that contain these elements are in parallel.

EXAMPLE 1.8 Application of KVL
Problem

Use KVL to determine the unknown voltages υ1 and υ4 in the circuit of Figure
1.24.Page 20

Figure 1.24 Circuit for Example 1.7

Solution
Known Quantities:

Find: υ1, υ4.

Analysis: To determine the unknown voltages, apply KVL clockwise around the left
and upper-right meshes:

After substituting numerical values, the equations become:



It is possible to solve for υ1 and υ4 using other loops in the circuit. For instance,
apply KVL around the lower-right mesh to find υ4:

Or apply KVL around the outer most loop to find υ1:

Comments: Notice that there are seven closed wire loops in the circuit. KVL could
be applied around any of these loops to find an equation. The key is to find two
linearly independent equations that involve the two unknowns. In Chapter 2 a
systematic procedure called mesh analysis is developed that yields the minimum
number of linearly independent equations required to solve all unknown voltages and
currents in a well-defined circuit.

CHECK YOUR UNDERSTANDING
Apply KVL to each of the other three closed wire loops in Figure 1.24 that were not
explored in Example 1.8. Compare the results to those found in the example. Are the
results consistent?

1.4 POWER AND THE PASSIVE SIGN
CONVENTION
The definition of voltage as work per unit charge lends itself very conveniently to the
introduction of power. Recall that power is defined as the work done per unit time.
Thus, the power P either supplied or dissipated by a circuit element can be Page
21represented by the following relationship:



(1.10)

(1.11)

Thus,

Electric power, P, is the product of voltage, υ, across an element and current, i,

through it.   

The units of voltage (joules per coulomb) multiplied by those of current (coulombs
per second) equal the units of power (joules per second, or watts).

The power associated with a circuit element can be positive or negative,
depending (by convention) upon whether the element consumes or supplies energy,
respectively. Consider Figure 1.25(a), in which electric charge flows from low to
high potential. Clearly, work has been done by element A on the flowing charge as its
potential is raised. The rate at which this work is done by element A is its power. In
this case, the power is negative because energy is either supplied or released by the
element to the charge in the circuit. The other possibility is shown in Figure 1.25(b),
in which electric charge flows from high to low potential. Here, work has been done
on element B by the flowing charge as its potential is lowered. The rate at which this
work is done on element B is its power. In this case, the power is positive because
energy is either dissipated or released by the element from the charge in the circuit.



1.

2.

Figure 1.25 Assuming positive values for i and υ, (a) energy is supplied by
element A, while (b) energy is consumed by element B, which is labeled
with the passive sign convention.

In the passive sign convention, charge is assumed to flow from high to low
potential such that energy is consumed or stored by the element and power is

positive.   

Passive elements are defined as those that do not require an external source of
energy to enable them. Common passive elements are resistors, capacitors, inductors,
diodes, and electric motors. Passive elements can dissipate energy (e.g., resistors)
and/or store and release energy (e.g., capacitors and inductors). Active elements, on
the other hand, are defined as those that do require an external source of energy to be
enabled or function. Common active elements are transistors, amplifiers, and voltage
and current sources.

The electrical engineering community has uniformly adopted the passive sign
convention. All the constitutive laws (e.g., Ohm’s law) introduced in this book
assume and are based upon the convention. It is important to keep this fact in mind
when using these laws to solve problems. Specifically, it is often necessary to assume
directions for unknown currents and/or assume polarities for unknown voltages when
solving circuit problems. It is important that these assumptions be made in accord
with the passive sign convention. Violating the convention will often lead Page 22to
incorrect results. On the other hand, as long as the passive sign convention is
observed it is not necessary to foresee actual current directions nor actual voltage
polarities. Instead, when a current direction or voltage polarity is assumed
incorrectly, the solution will yield the negative of the true value for that current or
voltage to indicate that the assumed direction or polarity is opposite the actual.

 F O C U S  O N  P R O B L E M  S O LV I N G

THE PASSIVE SIGN CONVENTION
Assign a current through each passive element. The direction of each current
be assumed arbitrarily.
For each passive element, assign a voltage across the element such that
assigned current through the element is directed from high to low poten



3.

(a)

(b)

4.

(a)

(b)

Other valid descriptions are that current enters the + terminal or exits th
terminal of the element.
For each active element, assign a current through and/or a voltage across
element according to the following guidelines:

If the current through the element is given, assign a voltage across
element such that the current is directed from low to high potential.
If the voltage across the element is given, assign a current through
element such that the current is directed from low to high potential.

The power associated with each element is computed according to the follow
rules:

For passive elements, the power is positive and equal to υi. Positive po
indicates that the element is either dissipating or storing energy.
For active elements, the power is usually negative and equal to 
Negative power indicates that the element is either supplying or relea
energy. Occasionally, an active element may consume energy, as whe
battery is being charged, and its power would then be positive since cur
would be entering the positive terminal.

EXAMPLE 1.9 Use of the Passive Sign Convention
Problem

Apply the passive sign convention to solve for the voltages and mesh current in the
circuit of Figure 1.26.

Figure 1.26 Circuit for Example 1.9

Solution
Known Quantities: Voltage of the battery and the power dissipated by load 1 and
load 2.



1.
2.

3.

Find: Mesh current and the voltage across each load.
Schematics, Diagrams, Circuits, and Given Data: Figure 1.27. The voltage of the
battery is VB = 12 V. The power dissipated by load 1 is P1 = 0.8 W and by load 2 is
P2 = 0.4 W.

Figure 1.27 Solution steps for Example 1.9

Assumptions: None.Page 23
Analysis: This problem can be solved using the passive sign convention in two
different approaches. The first approach assumes a clockwise mesh current, while the
second approach assumes a counterclockwise current. For either approach, the
passive sign convention is used to label the change in voltage across each load.
Figure 1.27 shows the result of these two approaches. Notice that the change in
voltage across each load was chosen so that the assumed current through each load is
directed from high to low potential.

The polarity of the battery is indicated by the alternating sequence of long and
short bars. The positive and negative terminals of the battery are connected to a long
and short bar, respectively.

A four-step solution using the first approach, as depicted in Figure 1.27(a), is
given below.

Assume a clockwise direction for the current.
Label the change in voltage across each (passive) load so that the current
through each load is directed from high to low potential.
Express the power dissipated by each load using the relation P = υi, which is
valid when the passive sign convention is observed.



4.

1.
2.

3.

4.

The power associated with the battery is expressed as  which requires a
negative sign −υi because the current through the battery is directed from low to
high potential, opposite of the passive sign convention.
Conservation of energy requires that the total power associated with the circuit
be zero. Thus,

It is now possible to use the three υi equations to solve for the three unknown
variables i, υ1, and υ2. Since  the current i is:

As a result, the change in voltage across each load is:

A four-step solution using the second approach, as depicted in Figure 1.27(b), is
given below.

Assume a counterclockwise direction for the current.
Label the change in voltage across each (passive) load so that the current
through each load is directed from high to low potential.
Express the power dissipated by each load using the relation P = υi, which is
valid when the passive sign convention is observed.

The power associated with the battery is expressed here as  which now
requires a positive sign +υi because the current through the battery is directed
from high to low potential, in accord with the passive sign convention.Page 24
Conservation of energy requires that the total power associated with the circuit
be zero. Thus,

It is now possible to use the three υi equations to solve for the three unknown
variables i, υ1, and υ2. Since  the current i is:



As a result, the change in voltage across each load is:

Comments: Notice that the actual current present in the circuit and the actual change
in voltage across each load was found to be the same for each solution approach. For
instance, using the first approach the current was found to be 0.1 A clockwise, while
using the second approach the current was found to be −0.1 A counterclockwise. The
negative sign found for the current in the second approach indicates that the actual
current is directed clockwise, not counterclockwise. This example provides a good
demonstration of the fact that it is not necessary to foresee the actual direction of
unknown currents and voltages when solving a circuit problem. The important point
is to observe the passive sign convention.

Also note that conservation of energy is required for electric circuits, just as it is
for any other physical system. For electric circuits: Power supplied always equals
power consumed.

EXAMPLE 1.10 Power Calculations
Problem

For the circuit shown in Figure 1.28, determine which components are consuming
power and which are supplying power. Is conservation of power satisfied. Explain
your answer.

Figure 1.28 Circuit for Example 1.10



•

•

•

•

•

•

•

•

Solution
Known Quantities: Current through elements D and E; voltage across elements B, C,
D, E.
Find: Which components are consuming power, and which are supplying power?
Verify the conservation of power.
Analysis: Apply KCL to the node connecting elements B, D, and E to find the
current through element B.

Apply KVL counterclockwise around the outer perimeter loop to find the voltage
across element A.

Page 25

The power associated with each element can now be computed using P = υi when the
passive sign convention is observed or P = −υi when it is not observed.

Notice that the total power sums to zero. The same results can be expressed more
literally as:

A supplies 60 W

B supplies 15 W

C dissipates (consumes) 25 W

D dissipates (consumes) 30 W

E dissipates (consumes) 20 W

Total power supplied equals 75 W

Total power dissipated (consumed) equals 75 W

Total power supplied = total power dissipated



Comments: Notice that whether power is calculated using P = υi or P = −υi depends
entirely upon whether the passive sign convention is observed for any particular
element.

CHECK YOUR UNDERSTANDING
Solve for the currents and voltages shown in Figure 1.27(a) and (b) using KVL
around each mesh instead of using conservation of energy for the circuit, which gave

the battery power as 

CHECK YOUR UNDERSTANDING
Compute the current through each of the headlamps shown in Figure 1.11 assuming
each headlamp consumes 50 W. How much power is the battery providing?

CHECK YOUR UNDERSTANDING
Determine which circuit element, A or B, in the top figure is supplying power and
which is dissipating power. Also determine how much power is dissipated and-  
supplied.

If the voltage source in the bottom figure supplies a total of 10 mW and i1 = 2 mA
and i2 = 1.5 mA, what is the current i3? If i1 = 1 mA and i3 = 1.5 mA, what is i2?

Answers: I1 = I2 = 4.17 A; 100 W.
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1.5  CHARACTERISTICS AND SOURCES
As noted in the previous section, the power supplied or consumed by elements is
defined by P = υi, where υ and i observe the passive sign convention as shown in
Figure 1.29(a). Using this convention, positive power implies that energy is
consumed (dissipated or stored), while negative power P < 0 implies that energy is
provided (supplied or released), by the element. The relationship between υ, i, and
the sign of the power P is depicted in Figure 1.29(b), which is a typical i-υ plot.

Figure 1.29 (a) The passive sign convention for a generalized circuit
element, and (b) the relationship between υ, i, and the power P, as depicted
on a typical i-υ plot

It is possible to create an i-υ plot for any particular circuit element and compare it
to Figure 1.29(b) to determine whether the element supplies or consumes power for
any particular values of i and/or υ. The functional relationship between i and υ for

Answers: A supplies 30.8 W; B dissipates 30.8 W. i3 = −1 mA; i2 = 0 mA.



any particular circuit element may be quite complex and not easily expressed in a
closed mathematical form, such as  However, the plot of the i-υ
characteristic (or volt-ampere characteristic) for most circuit elements is either
known or can be determined experimentally.

For example, consider the circuit shown in Figure 1.30(a), where a conventional
incandescent (tungsten filament) lightbulb is in a simple loop with a variable voltage
source and a meter for measuring current. Notice the passive sign convention used to
define the voltage across and the current through the lightbulb. The i-υ characteristic
of the lightbulb can be determined by varying the voltage over some predetermined
range and recording the resulting current for each particular voltage in that range.
The plot of the i-υ data will be similar to that shown in Figure 1.30(b). Notice that the
i-υ characteristic runs from quadrant III through the origin and into quadrant I. A
positive voltage across the bulb results in a positive current through it, and
conversely, a negative voltage across the bulb results in a negative current through it.
In both cases the bulb power is positive. Thus, the incandescent lamp always
dissipates energy.

Figure 1.30 (a) Depiction of how to measure the i-υ characteristic of an
incandescent (tungsten filament) lightbulb; (b) typical i-υ plot of such a
lightbulb

Page 27

There are electronic devices that can operate, for example, in three of the four
quadrants of the i-υ characteristic and can therefore act as sources of energy for
specific combinations of voltages and currents. An example of this dual behavior is



introduced in Chapter 8, where it is shown that the photodiode can act either in a
passive mode (as a light sensor) or in an active mode (as a solar cell).

The i-υ characteristics of ideal voltage and current sources are simple yet helpful
visual aids. An ideal source is one that can provide any amount of energy without
affecting the behavior of the source itself. Ideal sources are divided into two types:
voltage sources and current sources.

Ideal Voltage Sources
An ideal voltage source generates a prescribed voltage across its terminals
independent of the current through its terminals. The circuit symbol for an ideal
voltage source is shown in Figure 1.31(a). Notice the active sign convention, which
is opposite the passive sign convention. A vertical i-υ characteristic in quadrant I is
shown in Figure 1.31(b) and indicates that the source supplies energy. The amount of
current and energy supplied by the source is determined by the circuit connected to it.
It is important to recognize that an ideal voltage source guarantees a particular
change in voltage from the node attached to its − terminal to the node attached to its
+ terminal. The + and − polarity markers do not indicate positive and negative
voltage values relative to some zero reference. Do not make this mistake when
solving problems!

Figure 1.31 (a) An ideal voltage source, shown with the active sign
convention; and (b) a typical i-υ characteristic for that sign convention,
which indicates power is supplied by the source



An ideal voltage source provides a prescribed voltage across its terminals
independent of the current through those terminals. The amount of current
through the source is determined by the circuit connected to it.

Various types of batteries, electronic power supplies, and function generators
approximate ideal voltage sources when used in proper circumstances. However, all
such real devices have limits on the amount of current that can be supplied without
impacting the voltage across the source. This behavior can be seen in a typical 12-V
car battery. A digital voltmeter can be used to observe the voltage across a car battery
as various electrical devices in the car are turned on and off. Very little change in the
battery voltage will be observed, even when power windows are engaged. However,
when the car is started, the battery voltage will drop significantly during the short
period needed for the engine to start.

Figure 1.32 depicts various symbols for voltage sources that are employed
throughout this book. Note that the output voltage of an ideal source can be a
function of time. In general, the following notation is employed in this book, unless
otherwise noted. A generic voltage source is denoted by a lowercase υ. If it is
necessary to emphasize that the source produces a time-varying voltage, then the
notation υ(t) is employed. Finally, a constant, or direct-current, or DC, voltage Page
28source is denoted by the uppercase character V. By convention, the direction of
positive current is from low to high potential; that is, current enters the − terminal
and exits the + terminal.

Figure 1.32 Three common ideal voltage sources

Ideal Current Sources
An ideal current source generates a prescribed current through its terminals
independent of the voltage across its terminals. The circuit symbol for an ideal
current source is shown in Figure 1.33(a). Notice the sign convention, which is
opposite the passive sign convention. A typical straight horizontal line i-υ
characteristic in quadrant I is shown in Figure 1.33(b) and indicates that the source



supplies energy. The amount of current and energy supplied by the source is
determined by the circuit connected to it. It is important to recognize that an ideal
current source guarantees a particular current through its terminals, such that the
current entering the − terminal is the same as the current exiting the + terminal.

Figure 1.33 (a) An ideal current source, shown with the active sign
convention; and (b) a typical i-υ characteristic for that sign convention,
which indicates power is supplied by the source.

MAKE THE CONNECTION

Hydraulic Analog of a Voltage Source
The role played by a voltage source in an electric circuit is very similar to that played
by a velocity pump in a hydraulic circuit. In a velocity or roto-dynamic pump, such
as a centrifugal pump, impeller vanes add kinetic energy (velocity) to the fluid flow.
This increase in kinetic energy is translated to an increase in pressure across the
pump. The pressure difference across the pump is analogous to the voltage, or
potential difference, across the voltage source.



A centrifugal pump (Giorgio Rizzoni)

An ideal current source provides a prescribed current through its terminals
independent of the voltage across those terminals. The amount of voltage
across the source is determined by the circuit connected to it.

Practical approximations to ideal current sources are not as common or numerous
as those for ideal voltage sources. However, in general, an ideal voltage source in
series with a large output resistance provides a nearly constant—though Page
29small—current and thus approximates an ideal current source. A battery charger is
a common and approximate example of an ideal current source.

Figure 1.34 depicts a circuit that contains the generic symbol for an ideal current
source. The same uppercase and lowercase convention used for voltage sources is
employed in denoting constant (DC) and time-varying current sources, respectively.

Figure 1.34 This simple circuit contains an generic ideal time-varying
current source.

Dependent (Controlled) Sources
The ideal sources described earlier are able to generate a prescribed voltage or
current independent of any other element within the circuit. Thus, they are known as



independent sources. Another category of sources, whose output (current or voltage)
depends on some other voltage or current in a circuit, is known as  dependent (or
controlled) sources. As shown in Figure 1.35, the circuit symbols for these sources
are diamonds, to distinguish them from independent sources. The table illustrates the
relationship between the source voltage υS or source current iS and the circuit voltage
υx or circuit current ix, which they depend upon and which can be any voltage or
current elsewhere in the circuit.

Figure 1.35 Symbols for dependent sources

Dependent sources are very useful in describing certain types of electronic
circuits. You will encounter dependent sources again in Chapters 7, 9, and 10, when
electronic amplifiers are discussed.

MAKE THE CONNECTION

Hydraulic Analog of a Current Source
The role played by a current source in an electric circuit is very similar to that of a
positive displacement pump in a hydraulic circuit. In a positive displacement pump,
such as a peristaltic or reciprocating pump, an internal mechanism, such as a roller,
piston, or diaphragm, forces a particular volume of fluid to be pumped through a
hydraulic line. The volume flow rate through the pump is analogous to the charge
flow rate through the current source.



1.6 RESISTANCE AND OHM’S LAW
When charge flows through a wire or circuit element, it encounters a certain amount
of resistance, the magnitude of which depends on the resistivity of the material and
the geometry of the wire or element. In practice, all circuit elements exhibit some
resistance, which leads to energy dissipation in the form of heat. Whether this loss of
electrical energy as heat is detrimental depends upon the purpose of the circuit
element. For example, a typical electric toaster relies on the conversion of electrical
energy to heat within its resistive coils to accomplish its purpose, the making of toast.
All electric heaters rely upon this process, in one form or another. On the other hand,
heat loss due to resistance in residential wiring is costly, and potentially dangerous.
Resistance in microcircuitry generates heat that effectively limits the speed of
microprocessors and the number and scale of transistors that can be packed into a
given volume.

The resistance of a cylindrical wire segment, as shown in Figure 1.36(a), is given
by



(1.12)

(1.13)

(1.14) 

Figure 1.36 (a) Resistive wire segment; (b) ideal resistor circuit symbol;
(c) the i-υ relationship (Ohm’s law) for an ideal resistor

Page 30where ρ and σ are the material properties resistivity and conductivity,
respectively, and l and A are the segment length and cross-sectional area,
respectively. As evident in the above equation, conductivity is simply the inverse of
resistivity. The units of resistance R are ohms (Ω), where

The resistance of an actual wire or circuit element is usually accounted for in a
circuit diagram by an ideal resistor, which lumps the entire distributed resistance R
of the wire or element into one single element. Ideal resistors exhibit a linear i-υ
relationship known as Ohm’s law, which is

In other words, the voltage across an ideal resistor is directly proportional to the
current through it. The constant of proportionality is the resistance R. The circuit
symbol and i-υ characteristic for an ideal resistor are shown in Figure 1.36(b) and (c),
respectively. Notice the passive sign convention used in the circuit symbol diagram,
as appropriate, since a resistor is a passive element.

It is often convenient to define the conductance, G (in units of siemens, S), of a
circuit element as the inverse of its resistance.



(1.15)

(1.16)

In terms of conductance, Ohm’s law is

Ohm’s law is an empirical relationship that finds widespread application in
electrical engineering. It is a simple yet powerful approximation of the physics of
electrical conductors. However, the linear i-υ relationship usually does not apply over
very large ranges in voltage or current. For some conductors, Ohm’s law does not
approximate the i-υ relationship even over modest ranges in voltage or current.
Nonetheless, most conductors exhibit piecewise linear i-υ characteristics for one or
more ranges of voltage and current, as shown in Figure 1.37 for an incandescent
lightbulb and a semiconductor diode.Page 31

Figure 1.37 Piecewise linear segments within nonlineari-υ characteristics

Short- and Open-Circuits
Two convenient idealizations, the short-circuit and the open-circuit, are limiting
cases of Ohm’s law as the resistance approaches zero or infinity, respectively.
Formally, a short-circuit is an element across which the voltage is zero, regardless of



the current through it. Figure 1.38 depicts the circuit symbol for an ideal short-
circuit.Page 32

Figure 1.38 The short-circuit

In practice, any conductor will exhibit some resistance. For practical purposes,
however, many elements approximate a short-circuit quite accurately under certain
conditions. For example, a large-diameter copper pipe is effectively a short-circuit in
the context of a residential electric power supply, while in a low-power
microelectronic circuit (e.g., an iPhone) a typical ground plane is  thick,
which is adequate for a short-circuit in that context. A typical solderless breadboard
is designed to accept 22-gauge solid jumper wires, which act effectively as short-
circuits between elements on the breadboard. Table 1.1 lists the resistance per 1,000
ft of some commonly used wire, as specified by the American Wire Gauge Standards.

Table 1.1 Resistance of copper wire



MAKE THE CONNECTION

Hydraulic Analog of Electrical Resistance
A useful analogy can be made between the electric current through electric
components and the flow of incompressible fluids (e.g., water, oil) through hydraulic
components. The fluid flow rate through a pipe is analogous to current through a
conductor. Similarly, pressure drop across a pipe is analogous to voltage across a
resistor. The resistance of the pipe to fluid flow is analogous to electrical resistance:
The pressure difference across the pipe causes fluid flow, much as a potential
difference across a resistor causes charge to flow. The figure below depicts how pipe
flow is often modeled as current through a resistance.

Analogy between electrical and fluidresistance

The limiting case for Ohm’s law when  is called an open-circuit.
Formally, an open-circuit is an element through which the current is zero, regardless
of the voltage across it. Figure 1.39 depicts the circuit symbol for an ideal short-
circuit.



Figure 1.39 The open-circuit

In practice, it is easy to approximate an open-circuit. For moderate voltage levels,
any gap or break in a conducting path amounts to an open-circuit. However, at
sufficiently high voltages such a gap will become ionized and thereby enable charge
to flow across the gap. Even an insulating material between two terminals will break
down at a sufficiently high voltage. For an air gap between two conducting elements,
ionized particles near the exposed surfaces of the elements may lead to arcing in
which a pulse of charge jumps the gap and causes the ionized path to collapse. This
phenomenon is employed in spark plugs to ignite the air-fuel mixture in a spark-
ignition internal combustion engine. The dielectric strength is a measure of the
maximum electric field (voltage per unit distance) that an insulating material can
sustain without breaking down and allowing charge to flow. This measure is
somewhat dependent upon temperature, pressure, and the material thickness;
however, typical values are 3 kV/mm for air at sea level and room temperature, 10
kV/mm for window glass, 20 kV/mm for neoprene rubber, 30 kV/mm for pure water,
and 60 kV/mm for PTFE, commonly known as Teflon.

Discrete Resistors
Various types of discrete resistors are used in laboratory experiments, tinkering
projects, and commercial hardware, and are available in a wide range of nominal
values, tolerances, and power ratings. Furthermore, each type of resistor has a
particular temperature range within which it is designed to operate. In fact, some
discrete resistors (known as thermistors) are designed to be highly sensitive to
temperature and to be used as temperature transducers.

The majority of discrete resistors have a cylindrical shape and are color coded for
their nominal value and tolerance. Several common types of resistors are carbon
composites, in which the resistance is set by a mixture of carbon and ceramic powder
(Figure 1.40); carbon film, in which the resistance is set by the length and width of a
thin strip of carbon wrapped around an insulating core; and thin metal film, in which
the resistance is set by the characteristics of a thin metal film also wrapped around an
insulating core (Figure 1.41).



Figure 1.40 Carbon composite resistor

Figure 1.41 Thin-film resistor

Discrete resistors are available with various power ratings, where the power
rating scales with the size of the resistor itself. Figures 1.42 and 1.43 show (to scale)
typical  and  resistors, respectively. Notice the bands along the length of each
resistor. Discrete resistors are also available with typical power ratings of 1, 2, 5, 10
W, and larger. Many industrial power resistors are manufactured by Page 33winding
wire, such as Nichrome, around a nonconducting core, such as ceramic, plastic, or
fiberglass. Others are made of cylindrical sections of carbon. Power resistors are
available in a variety of packages, such as cement or molded plastic, aluminum
encasements with fins for wicking away heat, and enamel coatings. Typical power
resistors are shown in Figure 1.44.

Figure 1.42 Typical 1 _ 4-W resistors (Jim Kearns)



Figure 1.43 Typical 1 _ 2-W resistors (Jim Kearns)

Figure 1.44 (a) 25-W, 20-W, and 5-W, and (b) two 5-W resistors sitting
atop one 100-W resistor (Jim Kearns)

The value of a discrete resistor is determined by the resistivity, shape, and size of
the conducting element. Table 1.2 lists the resistivity of many common materials.

Table 1.2 Resistivity of common materials at room temperature

The nominal value and tolerance are often color-coded on a discrete resistor.
Typically, discrete resistors have four color bands, where the first two designate a
two-digit integer, the third designates a multiplier of 10, and the fourth designates the
tolerance. Occasionally, discrete resistors have five bands, where the first three



designate a three-digit integer, and the remaining two designate the multiplier and the
tolerance. The value of each color band is decoded using the system displayed in
Figure 1.45 and Table 1.3.

Figure 1.45 Resistor color code

Table 1.3 b1b2 indicates the two-digit significand; b3 indicates the
multiplier.

For example, a resistor with four bands (yellow, violet, red, gold) has a nominal
value of:

and a “gold” tolerance of ± 5 percent. 4.7 kΩ is often shortened in practice to 4K7,
where the letter K indicates the placement of the decimal point as well as the unit of
kΩ. Likewise, 3.3 MΩ is often shortened to 3M3. Table 1.3 lists the standard Page
34nominal values established by the Electronic Industries Association (EIA) for a



tolerance of 10 percent, commonly referred to as the E12 series. The number 12
indicates the number of logarithmic steps per decade of resistor values. Notice that
the values in adjacent decades (columns) are different by a factor of 10.

Due to imperfect manufacturing the actual value of a discrete resistor is only
approximately equal to its nominal value. The tolerance is a measure of the likely
variation between the actual value and the nominal value. Other EIA series are E6,
E24, E48, E96, and E192 for tolerances of 20%, 5%, 2%, 1%, and even finer
tolerances, respectively.

Variable Resistors
The resistance of a variable resistor is not fixed but can vary with some other
quantity. Examples of variable resistors are a photoresistor and a thermistor, in which
the resistance varies with light intensity and temperature, respectively. Many useful
sensors are based upon variable resistors.

Figure 1.46 shows a simple loop with a voltage source, a variable resistor R, and
a fixed resistor R0. Apply KVL around the loop to find:

Figure 1.46 A variable resistor R in a series loop

Solve for i and substitute for it in the above equation to find:

Now assume that the variable resistor has a range from 0 Ω to some value Rmax that
is much larger than R0. When R = 0:



When R = Rmax:

Thus, as R varies from 0 to Rmax, υ0 varies from υS to 0. The changes in R can be
observed as changes in υ0. Imagine that the variable resistor in Figure 1.46 is a
photoresistor, such as a cadmium sulfide (CdS) cell shown in Figure 1.47(a), that has
a very small resistance when the incident light intensity is bright and has a very large
resistance when the incident light intensity is dim or dark. The result is that under
bright conditions,  while under dark conditions,  To make a nightlight,
such as that shown in Figure 1.47(b), all we need is a device that turns on the
nightlight when  and turns off the nightlight when  where  is some
appropriate reference voltage, such as 

Figure 1.47 (a) A typical cadmium sulfide (CdS) cell.(b) A nightlight
relies on a CdS cell to detect dark conditions.(Jim Kearns)

Figure 1.48 shows a typical thermistor, which can be used in exactly the same
manner as a CdS cell but which responds to changes in temperature.



Figure 1.48 A typical negative temperature coefficient (NTC) thermistor
(Jim Kearns)

Potentiometers
A potentiometer is a three-terminal device. Figure 1.49 depicts a potentiometer and
its circuit symbol. A potentiometer has a fixed resistance R0, formed by a tightly
Page 35wound coil of wire, between terminals A and C. Terminal B is connected to a
wiper that slides along the coil as the knob is turned. The arrow in the circuit symbol
represents the position of the slider along the length of the coil R0. The resistance
from terminal B to the other two terminals is determined by the wiper position. As
RBA increases, RBC decreases, and vice versa, such that the sum RBA + RBC always
equals R0.

Figure 1.49 A potentiometer is a three-terminal resistive device with a
fixed resistance R0 between terminals A and C. The resistances between
terminal B (the “wiper”) and the other two terminals is set by the knob.



Figure 1.50(a) illustrates the use of a potentiometer symbol in a simple circuit.
The meter represents an ideal voltmeter that is capable of measuring the voltage
across two nodes without impacting the behavior of the circuit. Figure 1.50(b) is an
equivalent representation of the circuit, where the resistance between terminals A and
B and that between terminals B and C are depicted as discrete resistors. Notice that
there are effectively three nodes in these circuits.

Figure 1.50 (a) A potentiometer in a simple circuit; (b) an equivalent
circuit of (a), where R = RAB + RBC = RAC

The ideal voltmeter reading υbc can be calculated in a manner similar to that used
in the preceding section on variable resistors. Apply KVL around the loop containing
the voltage source and the two discrete resistors, using Ohm’s law and the current i in
the loop to express the resistor voltages. The result is:

This important result for two resistors in series is an example of voltage division,
which is discussed fully in the next section. When the wiper is turned all the way to
terminal  When the wiper is turned all the way to terminal 

 In general, as the wiper is turned from terminal A to
terminal C, the voltage across terminals B and C falls continuously from υS to 0.

Power Dissipation in Resistors
All discrete resistors have a power rating, which is not designated by a color band,
but which tends to scale with the size of the resistor itself. Larger resistors typically
have a larger power rating. The power consumed or dissipated by a resistor R is
given by:



(1.17)

Page 36Remember that the voltage υ and the current i are defined and linked by the
passive sign convention and that power consumed by an element is positive. In the
case of resistors, power is always positive and dissipated as heat to the surrounding
environment. The implication is that if the current through (or the voltage across) a
resistor is too large, the power will exceed the resistor’s rating and result in a
smoking and/or burning resistor! The smell of an overheating resistor is well known
to technicians and hobbyists alike.

Positive power is power dissipated (i.e., consumed) by an element.

Example 1.11 illustrates how to use the power rating to determine whether a
given resistor is suitable for a particular application.

Figure 1.51 A typical 1 _ 2-W potentiometer and its internal con struction
(Jim Kearns)

EXAMPLE 1.11 Using Resistor Power Ratings
Problem



For a given voltage across a resistor, determine the minimum allowed resistance for a
 power rating.

Solution
Known Quantities: Resistor power rating 0.25 W. Voltages due to a battery across
the resistor: 1.5 V and 3 V.
Find: The minimum allowed resistance for a  resistor.

Schematics, Diagrams, Circuits, and Given Data: Figures 1.52 and 1.53.
Analysis: The power dissipated by a resistor is

Setting PR equal to the resistor power rating yields  For a
1.5-V battery, the minimum size resistor will be  For a 3-V battery,
the minimum size resistor will be 
Comments: Sizing resistors on the basis of power rating is very important since, in
practice, resistors eventually fail when the power rating is exceeded. Also, notice that
the minimum resistor size was quadrupled when the voltage was doubled, which
reflects the fact that power increases with the square of the voltage. Another
implication of the relationship between power and voltage is that the power
dissipated by a particular R for the 3-V battery is not twice, but four times, the power
dissipated by the same R for the 1.5-V battery. In other words, the power dissipated
by R in Figure 1.53 cannot be computed by assuming that each of the two 1.5-V
batteries supplies the same amount of power as the single 1.5-V battery in Figure
1.52. In fact, each battery in Figure 1.53 supplies twice as much power as the single
battery in Figure 1.52. In mathematical terms, power is not linear and so does not
satisfy the principle of superposition, which is an important concept discussed in
Chapter 2.

Figure 1.52 Figure for Example 1.11



Figure 1.53 Figure for Example 1.11
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CHECK YOUR UNDERSTANDING
A typical three-terminal electronic power supply (see the first illustration) provides ±
12 V, such that the change in voltage from terminal C to B is +12 V and that from
terminals B to A is also +12 V. What is the minimum size (value) of a  resistor
placed across terminals A and C? (Hint: The voltage from terminal C to A is +24 V.)

The single loop circuit in the illustration on the right contains a battery, a resistor, and
an unknown circuit element.



1

2

If the voltage Vbattery is 1.45 V and i = 5 mA, find the power supplied to or by
the battery.
Repeat part 1 if i = −2 mA.

The battery in the triple mesh circuit shown below supplies power to resistors R1, R2,
and R3. Use KCL to determine the current iB, and find the power supplied by the
battery if 

1.7 RESISTORS IN SERIES AND VOLTAGE
DIVISION
It is common to find two or more circuit elements situated along a single current path
or branch; that is, the elements are in series. When elements are in series, the voltage
across the entire branch is divided among the elements in the branch. This important
observation is known as voltage division.

The ratio of the voltages across any two resistances in series equals the ratio of
those resistances.Page 38

The most fundamental instance of voltage division occurs when two resistors are
in series, as shown in Figure 1.54. KVL applied around the series loop requires the
voltage drop υS across the source to be equal to the sum of the voltage drops υ1 and
υ2 across the two resistors.



(1.18)

Figure 1.54 The current i flows through each of the three elements in the
series loop. KVL requires υS = υ 1 + υ 2.

Ohm’s law can be applied to each resistor to find expressions for υ1 and υ2. (Notice
the passive sign convention.)

Plug in for υ1 and υ2 to find:

This expression defines the equivalent resistance REQ of two resistors in series,
where:

When three or more resistors are connected in series, the equivalent resistance is
equal to the sum of all the resistances.

Clearly, REQ is greater than any of the individual resistances in the series. It is often
useful to replace a series of two or more resistances with a single equivalent
resistance, as indicated in Figure 1.55. To do so correctly, remove all the resistances
in series along the branch and replace them with a single equivalent resistance along
the same branch. This simple procedure illustrates a very important principle: From
the perspective of whatever else is eventually attached to that branch (e.g., the
voltage source in Figure 1.54), the resistances in series are seen as a single resistance
REQ.



(1.19)

Figure 1.55 The equivalent resistance of three or more resistances in series
equals the sum of those resistances.

An expression for how the voltage across the entire branch is divided among the
individual resistances along that branch can be found by using Ohm’s law and noting
that the current is the same through each resistance. Consider the series loop in
Figure 1.54:

which yields the following relationships:

These results, known as voltage division, indicate that for resistors in series the ratio
of voltages equals the ratio of the corresponding resistances. The voltage drops υ1
and υ2 are fractions of the total voltage υS because R1 and R2 are both less than REQ.

When series connections are encountered in circuit diagrams, one should
immediately think of voltage division.



It is important to realize that the voltage division rule applies to any two resistances
in series, not just any two discrete resistors. For example, consider the series of
resistors shown in Figure 1.55. The ratio of the voltage across Page 39R1 + R2 to the
voltage across R1 + R2 + R3 equals the ratio of R1 + R2 toR1 + R2 + R3. That is:

Example 1.12 illustrates the voltage division rule.

EXAMPLE 1.12 Voltage Division
Problem

Determine the voltage υ3 in the circuit of Figure 1.56.

Figure 1.56 Figure for Example 1.12

Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage υ3.

Schematics, Diagrams, Circuits, and Given Data: 
Figure 1.56.
Analysis: The circuit is a simple series loop; that is, all the elements are along the
same (the only) current pathway. Apply voltage division directly to solve for υ3:

Thus: 



Comments: The application of voltage division to a series of elements along a branch
is fairly straightforward. Occasionally, it may be difficult to determine which
elements in a circuit are, in fact, in series. This issue is explored in Example 1.14.

CHECK YOUR UNDERSTANDING
Repeat Example 1.12 by reversing the polarity of each resistor voltage, and show that
the same result is obtained when the meaning of a negative sign is taken into account.

1.8 RESISTORS IN PARALLEL AND CURRENT
DIVISION
It is common to find two or more circuit elements situated between the same two
nodes; that is, the elements are in parallel. When elements are in parallel, the current
entering either of the two nodes is divided among the parallel elements. This
important observation is known as current division.

The ratio of the currents through any two resistances in parallel equals the
inverse ratio of those resistances.

Page 40The most fundamental instance of current division occurs when two
resistors are in parallel, as shown in Figure 1.57. KCL applied at the upper node
requires the current iS through the source to be equal to the sum of the currents i1 and
i2 through the two resistors.

Figure 1.57 The voltage υ is across each of the three elements in parallel.
KCL requiresiS = i1 + i2.

Ohm’s law can be applied to each resistor to find expressions for i1 and i2. (Notice
the passive sign convention.)



(1.20)

Plug in for i1 and i2 to find:

This expression defines the equivalent resistance REQ of two resistors in parallel,
where:

However, this inverted expression for the equivalent resistance is awkward and
nonintuitive. Often, a more useful form is:

The notation  indicates a parallel combination of R1 and R2. The same notation
can be used to indicate a parallel combination of three or more resistors by writing:

It is easy to show that REQ is smaller than either R1 or R2. To do so, simply write REQ
as:

Both fractions in the above equation are less than 1; thus,  and 

When three or more resistors are connected in parallel, as shown in  Figure 1.58,
the inverse of the equivalent resistance is equal to the sum of the inverses of all the
resistances.Page 41

or



(1.21)

Notice that REQ is smaller than any of the individual resistances in parallel. It is often
useful to replace two or more resistances in parallel with a single equivalent
resistance, as indicated in Figure 1.58. To do so correctly, remove all the resistances
between nodes a and b and replace them with a single equivalent resistance attached
between these same two nodes. This simple procedure illustrates a very important
principle: From the perspective of whatever else is eventually attached to nodes a
and b (e.g., the current source in Figure 1.57), the parallel resistances are seen as a
single resistance of value REQ.

Figure 1.58 The inverse of the equivalent resistance of three or more
resistances in parallel equals the sum of the inverses of those resistances.

An expression for how the current entering either of the two nodes is divided
among the individual resistances in parallel can be found by using Ohm’s law and
noting that the voltage is the same across each resistance. Consider the parallel
circuit in Figure 1.57:

which yields the following relationships:

These results, known as current division, indicate that for resistors in parallel the
ratio of currents equals the inverse ratio of the corresponding resistances. The
currents i1 and i2 are fractions of the total current iS because R1 and R2 are both
greater than REQ.



(1.22)

The current division results shown in the previous equation can be rewritten by
plugging in for REQ to find:

In these forms, an equivalent description of current division for two resistances in
parallel is that the ratio of i1 to iS equals the ratio of the “other” resistance R2 to the
sum of the two resistances R1 + R2. Likewise, the ratio of i2 to iS equals the ratio of
the “other” resistance R1 to the sum of the two resistances R1 + R2. These forms may
be appealing since they resemble the expressions used to compute  voltage division
for two resistances in series.

When parallel connections are encountered in circuit diagrams, one should
immediately think of current division.

It is important to realize that the current division rule applies to any two resistances
in parallel, not just any two discrete resistors. For example, consider the parallel
resistors shown in Figure 1.58. The ratio of the combined current through R1 and R2
to the current through R3 equals the ratio of R3 to (R12)EQ. That is:Page 42

where

Likewise:

where



(1.23)

These last two expressions can be combined to yield:

Example 1.13 illustrates the current division rule. Many practical circuits contain
resistors in parallel and in series. Examples 1.14 and 1.15 illustrate how such circuits
can be analyzed using voltage and current division. These principles are useful even
in very complicated circuits, such as those presented in Chapter 2, which introduces a
variety of techniques and methods for analyzing resistive networks.

EXAMPLE 1.13 Current Division
Problem

Determine the current i1 in the circuit of Figure 1.59.

Figure 1.59 Figure for Example 1.13

Solution
Known Quantities: Source current, resistance values.
Find: Unknown current i1.

Schematics, Diagrams, Circuits, and Given Data:
 Figure 1.59.

Analysis: Apply current division directly to find:

Thus:



An alternative approach is to find the equivalent resistance of  and then apply
one of the simpler expressions for current division between two resistances in
parallel.

Page 43(Notice that  is less than both R2 and R3.)

The result is the same as that found by applying current division directly:

Comments: The application of current division to elements in parallel between two
nodes is fairly straightforward. Occasionally, it may be difficult to determine which
elements are, in fact, in parallel. This issue is explored in Example 1.14.

EXAMPLE 1.14 Resistors in Series and Parallel
Problem

Determine the voltage υ in the circuit of Figure 1.60.

Figure 1.60 Three-node circuit

Solution
Known Quantities: Source voltage, resistance values.



1.

2.

Find: Unknown voltage υ.
Schematics, Diagrams, Circuits, and Given Data: See Figures 1.60, 1.61.
Analysis: The circuit of Figure 1.60 contains three resistors that are not completely in
series nor in parallel with each other. This fact may not be apparent at first glance,
but consider whether the conditions for series and parallel are met for all three
resistors.

Are all three resistors situated along the same single current path? Is there one
common current through all three resistors? Clearly, the current i entering node b
will be divided on its way to node c. Some of it will pass through R2 while the
rest will pass through R3. Thus, there is not one common current through all
three resistors; that is, they are not in series.
Are all three resistors situated between the same two nodes? R1 sits between
nodes a and b, while R2 and R3 sit between nodes b and c. Thus, the three
resistors do not sit between the same two nodes; that is, they are not in parallel.

However, it is possible to simplify the circuit by noting, as mentioned above and
depicted in Figure 1.61, that R2 and R3 sit between the same two nodes and are,
therefore, in parallel. These two resistors can be removed from the circuit and
replaced by the equivalent resistance between nodes b and c, which is:

Figure 1.61 Simplified three-node circuit

Page 44An equivalent circuit can now be drawn as shown in Figure 1.61. The result
is a simple series loop. Voltage division can be applied directly to solve for υ:

The current can also be found:



Comments: Notice that the expression for i is exactly what would be found by
applying Ohm’s law to the equivalent resistance of R1 in series with  See
Figure 1.61.

EXAMPLE 1.15 The Wheatstone Bridge
Problem

The Wheatstone bridge is a resistive circuit that is frequently encountered in a
variety of measurement circuits. The general form of the bridge circuit is shown in
Figure 1.62(a), where R1, R2, and R3 are known and Rx is to be determined. The
circuit can be redrawn, as shown in Figure 1.62(b), to clarify that R1 and R2 are in
series, as are R3 and Rx. The two branches from node c to the reference node are in
parallel.



1.

2

Figure 1.62 A Wheatstone bridge is a mixed series-parallel circuit.

In the figures, υa and υb are node voltages relative to the common reference node.
The value of the reference node can be chosen arbitrarily; however, it may be helpful
to consider its value to be zero.

Find an expression for the voltage  in terms of the four resistances
and the source voltage υS.

Find the value of Rx when  and 

Solution
Known Quantities: Source voltage, resistance values, bridge voltage.
Find: Unknown resistance Rx.

Schematics, Diagrams, Circuits, and Given Data: See Figure 1.62.

Analysis:



1.

2.

The circuit consists of three parallel branches: the voltage source υS branch, the
R1 + R2 branch, and the R3 + Rx branch. All three branches sit between node c
and the reference node, with the same voltage υS across each branch.

In the analysis that follows it is important to keep in mind that all node voltages
are understood to be relative to the reference node. That is, υa is the voltage acrossR2,
υb is the voltage across Rx, and 

Since R1 and R2 are in series, voltage division can be applied to find υa in terms
of υc. Likewise, since R3 and Rx are in series, voltage division can also be applied to
find υb in terms of υc.

Page 45Plug in  to find that  is given by:

This result is very useful and quite general.
Plug in numerical values for υab, υS, R1, R2, and R3 in the preceding equation to
find:

Divide both sides by −12 and add 0.5 to both sides to find:

Multiply both sides by  to find:

Comments: The Wheatstone bridge finds application in many measuring
instruments.

CHECK YOUR UNDERSTANDING



For the circuit in Figure 1.59, apply current division to find i2 and i3 and verify that
KCL at either node is satisfied by the results. Also, verify that the ratio of any two
branch currents equals the inverse ratio of their associated resistances. Finally, verify
that  because  and that  because  (These
results should not be a surprise since larger currents are expected through the smaller
resistances.)

CHECK YOUR UNDERSTANDING
Consider the circuit of Figure 1.60, with resistor R3 replaced by an open-circuit.
Calculate the voltage υ when the source voltage is 

Repeat when resistor R3 is in the circuit and its value is 

Repeat when resistor R3 is in the circuit and its value is 

CHECK YOUR UNDERSTANDING
Use the result of part 1 of Example 1.15 to find the relationship between Rx and the
other three resistors such that  Using the data in Example 1.15, what is the
value of Rx that satisfies  the so-called balanced condition for the bridge?
Does the balanced bridge condition require that all four resistors be identical?
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FOCUS ON MEASUREMENTS



Resistive Throttle Position Sensor
Problem:
A typical automotive resistive throttle position sensor is shown in Figure 1.63(a).
Figure 1.63(b) and (c) depict the geometry of the throttle plate and the equivalent
circuit of the throttle sensor. A typical throttle plate has a useful measurement range
of just under 90°, from closed throttle to wide-open throttle. The possible mechanical
range of rotation of the sensor is usually somewhat greater. It is always necessary to
calibrate any sensor to determine the actual relationship between the input variable
(e.g., the throttle position) and the output variable (e.g., the sensor voltage). The
following example illustrates such a procedure.

Figure 1.63(a) 500 series resistive throttle position sensors (Courtesy: CTS
Corporation)



Figure 1.63(b) Throttle blade geometry

Solution:
Known Quantities: Functional specifications of throttle position sensor.

Figure 1.63(c) Throttle position sensor equivalent circuit

Find: Calibration of sensor in volts per degree of throttle plate opening.
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: Assume a nominal supply voltage of 5 V and total throttle plate travel
of 88°, with a closed-throttle angle of 2° and a wide-open throttle angle of 90°.Page
47



Analysis: The equivalent circuit of the sensor is a series loop with a battery, a fixed
resistor, and a potentiometer, as shown in Figure 1.43(c). The sensor output voltage is
determined by the position of the wiper arm, whose actual displacement is angular;
however, it is convention to depict all potentiometers in circuit diagrams as having
straight line displacement, as shown in the figure. The range of the potentiometer
(see specifications above) is 2° to 112° for a resistance of 3 to 12 kΩ; thus, assuming
a linear sensor response, the calibration constant of the potentiometer is:

Voltage division requires that the sensor voltage be proportional to the ratio of the
series resistances.

For a 5-V battery, the linear calibration of the throttle position sensor is

The calibration curve for the sensor is shown in Figure 1.63(d).

Figure 1.63(d) Calibration curve for throttle position sensor

When the throttle is closed,

and when the throttle is wide open,



Comments: The fixed resistor R0 prevents the wiper arm from inadvertently
connecting the + terminal of the battery directly to its − terminal, which would occur
if the wiper were shorted to the lower node and  Note that the intended
operational range of the sensor is from 2° to 90°, specifically to avoid a harmful
short-circuit scenario.
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FOCUS ON MEASUREMENTS

Resistance Strain Gauges
A strain gauge is a resistive element that has many applications in engineering
measurements. A strain gauge contains one or more thin conductive strips, usually
encased in an epoxy matrix. These strips shrink or stretch with the surface to which
the strain gauge is bonded. Since the resistance of a thin conducting strip is
dependent upon its geometry, it is possible to calibrate a strain gauge to relate
changes in resistance to material strain along the surface. Surface strain can then be
related to stress, force, torque, and pressure through various constitutive relations,
such as Hooke’s law. A variety of strain gauges are available to transduce the
principal strains (extensional and shear) along a surface. The most versatile and



popular strain gauge is a planar rosette, with which all three planar strains can be
deduced simultaneously.

Recall that the resistance of a cylindrical conductor of cross-sectional area A,
length L, and conductivity σ is given by the expression

When the conductor is compressed or elongated, both the length L and (due to the
Poisson effect) cross-sectional area A will change, and with them the resistance of the
conductor. In particular, when the length of the conductor is increased, its cross-- 
sectional area will decrease, with both changes causing its resistance to increase.

Likewise, when the length of the conductor is decreased, its cross-sectional area
will increase, with both changes causing its resistance to decrease. The empirical
relationship between change in resistance and change in length is defined as the
gauge factor GF:

The fractional change in length of an object is defined as the strain ε:

Using these definitions, the change in resistance due to an applied strain ε is given by

where R0 is the zero strain resistance. The value of GF for metal foil resistance strain
gauges is usually about 2.

Figure 1.64 depicts a typical foil strain gauge. The maximum strain that can be
measured by a foil gauge is  which corresponds to a maximum
change in resistance of approximately 1.2 Ω for a 120-Ω gauge. Because of the small
scale of the change in resistance, strain gauges are usually incorporated in a
Wheatstone bridge, which increases the sensitivity of the resistance measurement.



Figure 1.64 Metal-foil resistance strain gauge

Comments: Resistance strain gauges are used in many measurement applications.
One such application is the measurement of a force on a cantilever beam, which is
discussed in the next example.
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FOCUS ON MEASUREMENTS

The Wheatstone Bridge and Force Measurements
One of the simplest applications of a strain gauge is the measurement of a force
applied to a cantilever beam, as illustrated in Figure 1.65.



Figure 1.65 A force-measuring instrument

Four strain gauges are employed in this case, of which two are bonded to the
upper surface of the beam at a distance L from the point where the external force F0
is applied, and two are bonded on the lower surface, also at a distance L. Under the
influence of the external force, the beam deforms and causes the upper gauges to
extend and the lower gauges to compress. Thus, the resistance of the upper gauges
will increase by an amount ΔR, and that of the lower gauges will decrease by an
equal amount, assuming that the gauges are symmetrically placed. Let R1 and R4 be
the upper gauges and R2 and R3 the lower gauges. Thus, under the influence of the
external force, we have

where R0 is the zero strain resistance of the gauges. It can be shown from elementary
strength of materials and statics that the relationship between the strain ε and a force
F0 applied at a distance L for a cantilever beam is

where h and 𝑤 are as defined in Figure 1.65 and Y is Young’s modulus for the beam.

In the circuit of Figure 1.65, the currents ia and ib are given by



The bridge output voltage is defined by  and may be found from the
following expression:

Plug in 

Page 50where GF is the gauge factor and  was obtained in the previous
Focus on Measurements box, “Resistance Strain Gauges.” Thus, it is possible to
obtain a relationship between the output voltage of the bridge circuit and the force F0
as:

where  is the calibration constant for this force transducer.

Comments: Strain gauge bridges are commonly used in mechanical, chemical,
aerospace, biomedical, and civil engineering applications to make measurements of
force, pressure, torque, stress, or strain.

CHECK YOUR UNDERSTANDING
Compute the full-scale (i.e., largest) output voltage for the force-measuring apparatus
of the Focus on Measurements box, “The Wheatstone Bridge and Force
Measurements.” Assume that the strain gauge bridge is to measure forces ranging
from 0 to 500 newtons (N),L = 0.3 m, 𝑤 = 0.05 m, h = 0.01 m, GF = 2, and Young’s
modulus for the beam is  (aluminum). The source voltage is 12 V.
What is the calibration constant of this force transducer?



1.9 PRACTICAL VOLTAGE AND CURRENT
SOURCES
Ideal sources were defined such that their prescribed output, a voltage or current, is
completely independent of other factors. An ideal voltage source maintains a
prescribed voltage across its terminals independent of the current through those
terminals; likewise, an ideal current source maintains a prescribed current through its
terminals independent of the voltage across those terminals. Neither of these ideal
sources account for the effective internal resistance, which is characteristic of
practical voltage and current sources, and which makes the output of a practical
source dependent on the load that is seen by the source.

Consider, for example, a conventional car battery rated at 12 V, 450 ampere-
hours (A-h). The latter rating implies that there is a limit (albeit a large one) to the
amount of current the battery can deliver to a load and that, to some extent, the
voltage output of the battery is dependent on the current drawn from it. This
dependency can be observed as a drop in battery voltage when starting an
automobile. Fortunately, a detailed understanding and analysis of the battery’s
physics are not necessary to model its behavior. Instead, the concept of internal
resistance allows practical sources to be approximated by either of two different yet
simple and effective models.Page 51

A practical voltage source can be approximated by a Thévenin model, which is
composed of an ideal voltage source υS in series with an internal resistance rS.
In practice, rS is designed to be small compared to a typical equivalent
resistance seen by the source.

A practical current source can be approximated by a Norton model, which is
composed of an ideal current source iS in parallel with an internal resistance rS.
In practice, rS is designed to be large compared to a typical equivalent
resistance seen by the source.

Answer: υo (full scale) = 62.6 mV; k = 0.125 mV/N



The shaded portion of Figure 1.66 depicts the so-called Thévenin model, which is
composed of an ideal voltage source υS in series with an internal resistance rS. With
this model, the source output current iS depends upon the ideal voltage source υS, the
internal resistance rS, and the load Ro. The maximum current is found in the limit that
the load R o → 0 (i.e., a short-circuit load). The equivalent resistance “seen” by the
ideal voltage source is rS + Ro. Therefore, the source current iS is given by Ohm’s law
as simply:

Figure 1.66 The Thévenin model of a real voltage source

The load voltage υL can be found by direct application of voltage division.

Page 52In practice, the internal resistance rS of a real voltage source is designed
to be small compared to a typical load resistance Ro. In such cases, the load voltage
υo is approximately equal to the ideal source voltage υS and the current requirements
of a broad range of loads may be satisfied. Often, the effective internal resistance of a
real voltage source is listed in its technical specifications. In cases where Ro is
comparable to or smaller than rS, the load voltage υo will be significantly less than υS.
This result is known as a loading effect, such as when an automotive battery is
required to start its engine.

The shaded portion of Figure 1.67 depicts the so-called Norton model, which is
composed of an ideal current source iS in parallel with an internal resistance rS. With
this model, the source output voltage υS depends upon the ideal current source iS, the
internal resistance rS, and the load Ro. The maximum current is found in the limit that



the load  (i.e., an open-circuit load). The equivalent resistance “seen” by the
ideal current source is . Therefore, the source voltage υS is given by Ohm’s
law as simply:

Figure 1.67 The Norton model of a real current source

The load current can be found by direct application of current division.

In practice, the internal resistance rS of a real current source is designed to be
large compared to a typical load resistance Ro. In such cases, the load current io is
approximately equal to the ideal source current iS and the voltage requirements of a
broad range of loads may be satisfied. Often, the effective internal resistance of a real
current source is listed in its technical specifications. In cases where Ro is
comparable to or larger than rS, the load current io will be significantly less than iS.
This result is also known as a loading effect.

1.10 MEASUREMENT DEVICES
In practice, the most commonly required measurements are of resistance, current,
voltage, and power. An ideal measurement device would have no effect upon the
quantity being measured. Of course, when a real measurement device is attached to a
network, the network itself is changed (it now includes the measurement device) and
it is quite possible that the quantity being measured is changed from what it was
before the device was attached. At first glance, this problem may seem like a classic



catch-22 scenario. That is, a quantity needs to be measured, so a measurement device
must be used; but when the measurement device is used, the quantity is no longer
what is was. To restore the quantity to its original state, the measurement device must
be removed, but then . . . and so on and so on, around and around.

Luckily, if the characteristics of the measurement device are known, it is often
possible to estimate the qualitative and quantitative impacts of a device on the
measured quantity. In this section, simple models of real measurement devices are
introduced that allow reasonable estimates of both.

The Ohmmeter
An ohmmeter measures the equivalent resistance across two nodes. In particular, an
ohmmeter measures the resistance across an element when connected in parallel with
it. Figure 1.68 depicts an ohmmeter connected across a resistor. One important rule
needs to be remembered when using an ohmmeter:

Figure 1.68 An ideal ohmmeter connected across a resistor

When using an ohmmeter to measure resistance, at least one terminal of the
element must be disconnected from its network.

If the element is not disconnected from its network, the ohmmeter will measure
the effective resistance of the element in parallel with the rest of its network. A
common mistake made by inexperienced users of an ohmmeter is to attempt to
measure the value of a discrete resistor by using one’s fingers to clamp each end of
the resistor to the ohmmeter probes. At best, this approach results in head scratching
when the measured value is far off the nominal value of the resistor. At worst, the
measured value is simply accepted as accurate with the user completely unaware that
the ohmmeter measurement represents the equivalent resistance of the discrete
resistor in parallel with the resistance of the user’s own body.Page 53



1.

2.

The Ammeter
An ammeter measures the current through an element when connected in series with
it. Figure 1.69(a) shows an ideal ammeter inserted into a simple series loop to
measure its current. An ideal ammeter has zero resistance and therefore is able to
measure the current without alteration due to the presence of the ammeter. A more
realistic model of an actual ammeter has an internal resistance in series with an ideal
ammeter, as shown in Figure 1.69(b). To obtain an accurate measurement the internal
resistance of the ammeter must be significantly smaller than the total equivalent
resistance of the branch to which it is attached in series. For example, the internal
resistance rm of the ammeter must be significantly smaller than R1 + R2 in the series
loop of Figure 1.69(a). In practice, it is necessary to observe two rules when using an
ammeter:

Figure 1.69 (a) An ideal ammeter in series with R1 and R2; (b) a practical
model for an actual ammeter. rm is the meter’s internal resistance.

When using an ammeter to measure the current through an element, the
ammeter must be in series with the element.
When using an ammeter, its internal resistance should be much smaller
than the total equivalent resistance in series with the ammeter.

The Voltmeter
A voltmeter measures the voltage across an element when connected in parallel
with it. Figure 1.70(a) shows an ideal voltmeter attached across resistor R2, which is
otherwise in a simple series loop. An ideal voltmeter has infinite resistance and
therefore is able to measure the voltage without alteration due to the presence of the



1.

2.

voltmeter. A more realistic model of an actual voltmeter has an internal resistance in
parallel with an ideal voltmeter, as shown in  Figure 1.70(b). To obtain an accurate
measurement the internal resistance of the voltmeter must be significantly larger than
the total equivalent resistance between the two nodes to which it is attached in
parallel. For example, the internal resistance rm of the voltmeter must be significantly
larger than R2 Page 54in the series loop of Figure 1.70(a). In practice, it is necessary
to observe two rules when using a voltmeter:

Figure 1.70 (a) An ideal voltmeter in parallel with R2; (b) a practical
model for an actual voltmeter. rm is the meter’s internal resistance.

When using a voltmeter to measure the voltage across an element, the
voltmeter must be in parallel with the element.
When using a voltmeter, its internal resistance should be much larger than
the total equivalent resistance in parallel with the voltmeter.

The Wattmeter
A wattmeter, which is a three-terminal device [see Figure 1.71(a)], measures the
power dissipated by a circuit element. A wattmeter is essentially a combination of an
ammeter and a voltmeter, as shown in Figure 1.71(b). Thus, it should be no surprise
that an actual wattmeter is modeled with internal resistances at its terminals similar
to those found in the practical ammeter and voltmeter models. A wattmeter
simultaneously measures the current through and the voltage across an element and
computes the product of these two quantities to determine the power dissipated.



Figure 1.71 (a) An ideal wattmeter in series and parallel with R2. (b) A
model of an ideal wattmeter as a combination of an ideal ammeter and an
ideal voltmeter. A practical model would replace the ideal meters with their
own practical models.
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EXAMPLE 1.16 Impact of a Practical Voltmeter
Problem

Use the tabulated data below to determine the effective internal resistance of the
voltmeter shown in Figure 1.70(a), where the voltmeter is modeled as shown in
Figure 1.70(b).

Solution
Known Quantities:  various values of  voltmeter data.

Find: The effective internal resistance rm of the voltmeter.

Schematics, Diagrams, Circuits, and Given Data: Figure 1.70 and Table 1.4.

Table 1.4 Voltmeter data for determining internal resistance



(1.24)

(1.25)

(1.26)

(1.27)

Analysis: Substitute the practical model of a voltmeter shown in Figure 1.70(b) for
the ideal voltmeter shown in Figure 1.70(a). Notice that the internal resistance rm of
the voltmeter is in parallel with R2. Their parallel equivalent resistance is:

The voltage across R2 and the voltmeter can be found directly by voltage division:

Divide the numerator and denominator by R1 and gather coefficients of rm.

Multiply both sides by the denominator on the right and gather coefficients of rm to
find:

When R2 = R1:



(1.28)

Notice that  when:

Solve for  to find:

Page 56Since , the previous condition is satisfied when 
 This value for υ2 is found in Table 1.4 for 

Thus, the internal resistance of the voltmeter is:

This value is typical of many handheld digital multimeters in voltmeter mode.

Comments: It is possible to acquire a separate estimate of rm for each pair of
valuesR1 = R2 and υ2 found in Table 1.4 by simply plugging in for υ2, υS, R1, and R2,
and solving for rm. However, in practice, the calculated estimates for rm will not be
the same. The reason for the different estimates is that the measurement of υ2 is much
more sensitive to experimental error when  as is the case for the first few
pairs of data in the table. The least sensitivity to experimental error occurs when 

CHECK YOUR UNDERSTANDING
Find a separate estimate of rm for each pair of values R1 = R2 and υ2 found in Table
1.4. Make a plot of rm versus R2.



1.

2.
3.

4.
5.

6.

Conclusion
This chapter introduced the fundamentals student need in later chapters in the book
to successfully analyze electric circuits. Upon successful completion of this chapter,
a student will have learned to:

Identify the principal features of electric circuits or networks: nodes, loops,
meshes, and branches. Sections 1.1.
Apply Kirchhoff’s laws to simple electric circuits. Sections 1.2–1.3.
Apply the passive sign convention to compute the power consumed or supplied
by circuit elements. Sections 1.4.
Identify sources and resistors and their i-υ characteristics. Sections 1.5–1.6.
Apply Ohm’s law and voltage and current division to calculate unknown
voltages and currents in simple series, parallel, and series-parallel circuits.
Sections 1.6–1.8.
Understand the impact of internal resistance in practical models of voltage and - 
current sources as well as of voltmeters, ammeters, and wattmeters. Sections
1.9–1.10.
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HOMEWORK PROBLEMS
Sections 1.1: Charge, Current, and Voltage

Answer: Estimates for rm are: 1.25 M; 9.56 M; 9.92 M; 9.89 M; 10.06 M



1.1

1.2

1.3

a.

b.

1.4

a.

b.

1.5

A free electron has an initial potential energy per unit charge (voltage) of 17
kJ/C and a velocity of 93 Mm/s. Later, its potential energy per unit charge is 6
kJ/C. Determine the change in velocity of the electron.

The units for voltage, current, and resistance are the volt (V), the ampere (A),
and the ohm (Ω), respectively. Express each unit in fundamental MKS units.

A particular fully charged battery can deliver 106 coulombs of charge.

What is the capacity of the battery in ampere-hours?

How many electrons can be delivered?

The charge cycle shown in Figure P1.4 is an example of a three-rate charge.
The current is held constant at 30 mA for 6 h. Then it is switched to 20 mA for
the next 3 h. Find:

The total charge transferred to the battery.

The energy transferred to the battery.Page 58

Hint: Recall that energy 𝑤 is the integral of power, or 

Figure P1.4

Batteries (e.g., lead-acid batteries) store chemical energy and convert it to
electric energy on demand. Batteries do not store electric charge or charge
carriers. Charge carriers (electrons) enter one terminal of the battery, acquire
electrical potential energy, and exit from the other terminal at a lower voltage.
Remember the electron has a negative charge! It is convenient to think of
positive carriers flowing in the opposite direction, that is, conventional current,



a.

b.

1.6
a.

b.

1.7

a.

b.

1.8

and exiting at a higher voltage. (Benjamin Franklin caused this mess!) For a
battery rated at 12 V and 350 A-h, determine:

The rated chemical energy stored in the battery.

The total charge that can be supplied at the rated voltage.

What determines:

The current through an ideal voltage source?

The voltage across an ideal current source?

An automotive battery is rated at 120 A-h. This means that under certain test
conditions it can output 1 A at 12 V for 120 h (under other test conditions,
the battery may have other ratings).

How much total energy is stored in the battery?

If the headlights are left on overnight (8 h), how much energy will still be
stored in the battery in the morning? (Assume a 150-W total power rating
for both headlights together.)

A car battery kept in storage in the basement needs recharging. If the voltage
and the current provided by the charger during a charge cycle are shown in
Figure P1.8,



a.

b.

1.9
a.

b.

c.

Figure P1.8

Find the total charge transferred to the battery.

Find the total energy transferred to the battery.

Suppose the current through a wire is given by the curve shown in Figure P1.9.

Find the amount of charge q that flows through the wire between t1 = 0
and t2 = 0 s.

Repeat part a for t2 = 2, 3, 4, 5, 6, 7, 8, 9, and 10 s.

Sketch q(t) for 



1.10

a.

b.

1.11

Figure P1.9

The charge cycle shown in Figure P1.10 is an example of a two-rate charge.
The current is held constant at 70 mA for 1 h. Then it is switched to 60 mA for
the next 1 h. Find:

The total charge transferred to the battery.

The total energy transferred to the battery.

Hint: Recall that energy 𝑤 is the integral of power, or  Let

Figure P1.10
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The charging scheme used in Figure P1.11 is an example of a constant-current
charge cycle. The charger voltage is controlled such that the current into the



a.

b.

1.12

a.

b.

battery is held constant at 40 mA, as shown in Figure P1.11. The battery is
charged for 6 h. Find:

The total charge delivered to the battery.

The energy transferred to the battery during the charging cycle.

Hint: Recall that the energy 𝑤 is the integral of power, or 

Figure P1.11

The charging scheme used in Figure P1.12 is called a tapered-current charge
cycle. The current starts at the highest level and then decreases with time for
the entire charge cycle, as shown. The battery is charged for 12 h. Find:

The total charge delivered to the battery.

The energy transferred to the battery during the charging cycle.

Hint: Recall that the energy 𝑤 is the integral of power, or 



1.13

1.14

Figure P1.12

Sections 1.2, 1.3: KCL, KVL
Use KCL to determine the unknown currents in the circuit of Figure P1.13.
Assume i0 = 2 A and i2 = − 7 A.

Figure P1.13

Use KCL to find the current i1 and i2 in Figure P1.14. Assume that ia = 3 A, ib
= − 2 A,ic = 1 A, id = 6 A and ie = − 4 A.



1.15

1.16

1.17

Figure P1.14

Use KCL to find the current i1, i2, and i3 in the circuit of Figure P1.15. Assume
that ia = 2 mA, ib = 7 mA and ic = 4 mA.

Figure P1.15

Use KVL to find the voltages υ1, υ2, and υ3 in Figure P1.16. Assume that υa = 2
V, υb = 4 V, and υc = 5 V.

Figure P1.16

Use KCL to determine the current i1, i2, i3, and i4 in the circuit of Figure P1.17.
Assume that ia = − 2 A,ib = 6 A, ic = 1 A and id = − 4 A.



1.18

Figure P1.17
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Sections 1.4: Power and the PassiveSign Convention
In the circuits of Figure P1.18, the directions of current and polarities of
voltage have already been defined. Find the actual values of the indicated
currents and voltages.



1.19

1.20

1.21

Figure P1.18

Find the power delivered by each source in Figure P1.19.

Figure P1.19

Determine whether each element in Figure P1.20 is supplying or dissipating
power, and how much.

Figure P1.20

In the circuit of Figure P1.21, determine the power absorbed by the resistor R4
and the power delivered by the current source.



1.22
a.

b.

1.23

1.24

Figure P1.21

For the circuit shown in Figure P1.22:

Determine whether each component is absorbing or delivering power.

Is conservation of power satisfied? Explain your answer.
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Figure P1.22

For the circuit shown in Figure P1.23, determine the power absorbed by the 5-
Ω resistor.

Figure P1.23

For the circuit shown in Figure P1.24, determine which components are
supplying power and which are dissipating power. Also determine the amount



1.25

1.26
a.

b.

c.

of power dissipated and supplied.

Figure P1.24

For the circuit shown in Figure P1.25, determine which components are
supplying power and which are dissipating power. Also determine the amount
of power dissipated and supplied.

Figure P1.25

If an electric heater requires 23 A at 110 V, determine

The power it dissipates as heat or other losses.

The energy dissipated by the heater in a 24-h period.

The cost of the energy if the power company charges at the rate 6
cents/kWh.



1.27

1.28

1.29

1.30

1.31

a.

b.

Sections 1.5–1.6: Sources, Resistance, and Ohm’s Law
In the circuit shown in Figure P1.27, determine the terminal voltage υT of the
source, the power absorbed by Ro, and the efficiency of the circuit. Efficiency
is defined as the ratio of load power to source power.

Figure P1.27

A 24-V automotive battery is connected to two headlights that are in parallel,
similar to that shown in Figure 1.11. Each headlight is intended to be a 75-W
load; however, one 100-W headlight is mistakenly installed. What is the
resistance of each headlight? What is the total resistance seen by the battery?
Page 62

What is the equivalent resistance seen by the battery of Problem 1.28 if two
15-W tail lights are added (in parallel) to two 75-W headlights?

For the circuit shown in Figure P1.30, determine the power absorbed by the
variable resistor R, ranging from 0 to 30 Ω. Plot the power absorption as a
function of R. Assume that υS = 15 V, RS = 10 Ω.

Figure P1.30

Refer to Figure P1.27 and assume that υS = 15 V and RS = 100 Ω. For iT = 0,
10, 20, 30, 80, and 100 mA:

Find the total power supplied by the ideal source.

Find the power dissipated within the nonideal source.



c.

d.

1.32

1.33

a.

b.

1.34

1.35

How much power is supplied to the load resistor?

Plot the terminal voltage υT and power supplied to the load resistor as a
function of terminal current iT.

In the circuit of Figure P1.32, assume υ2 = υS⁄6 and the power delivered by the
source is 150 mW. Also assume that R1 = 8 kΩ, R2 = 10 kΩ, R3 = 12 kΩ. Find
R, υS, υ2, and i.

Figure P1.32

A GE SoftWhite Longlife lightbulb is rated as follows:

VR = rated operating voltage = 115 V

The resistance of the filament of the bulb, measured with a standard multimeter,
is 16.7 Ω. When the bulb is connected into a circuit and is operating at the rated
values given above, determine:

The resistance of the filament.

The efficiency of the bulb.

An incandescent lightbulb rated at 100 W will dissipate 100 W as heat and
light when connected across a 110-V ideal voltage source. If three of these
bulbs are connected in series across the same source, determine the power each
bulb will dissipate.

An incandescent lightbulb rated at 60 W will dissipate 60 W as heat and light
when connected across a 100-V ideal voltage source. A 100-W bulb will
dissipate 100 W when connected across the same source. If the bulbs are



1.36

a.

b.

1.37

a.

b.

1.38

a.

b.

connected in series across the same source, determine the power that either one
of the two bulbs will dissipate.

Refer to Figure P1.36, and assume that υS = 12 V, R1 = 5 Ω, R2 = 3 Ω, R3 = 4
Ω, and R4 = 5 Ω. Find:

The voltage υab.

The power dissipated in R2.

Figure P1.36

Refer to Figure P1.37, and assume that VS = 7 V,iS = 3 A, R1 = 20 Ω, R2 = 12
Ω, and R3 = 10 Ω. Find:

The currents i1 and i2.

The power supplied by the source Vs.

Figure P1.37

Refer to Figure P1.38, and assume υ1 = 15 V,υ2 = 6 V, R1 = 18 Ω, R2 = 10 Ω.
Find:

The currents i1, i2.

The power delivered by the sources υ1 and υ2.
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1.39
a.

b.

1.40

a.

b.

Figure P1.38

Consider NiMH hobbyist batteries depicted in Figure P1.39.

If V1 = 12.0 V, R1 = 0.15 Ω, and Ro = 2.55 Ω, find the load current Io and
the power dissipated by the load.

If battery 2 with V2 = 12 V and R2 = 0.28 Ω is placed in parallel with
battery 1, will the load current Io increase or decrease? Will the power
dissipated by the load increase or decrease? By how much?

Figure P1.39

With no load attached, the voltage at the terminals of a particular power supply
is 50.8 V. When a 10-W load is attached, the voltage drops to 49 V.

Determine υS and RS for this nonideal source.

What voltage would be measured at the terminals in the presence of a 15-
Ω load resistor?



c.

1.41

1.42

How much current could be drawn from this power supply under short-
circuit conditions?

A 220-V electric heater has two heating coils that can be switched such that
either coil can be used independently or the two can be connected in series or
parallel, for a total of four possible configurations. If the warmest setting
corresponds to 2,000-W power dissipation and the coolest corresponds to 300
W, find the resistance of each coil.

Sections 1.7–1.8: Voltage and Current Division
For the circuits of Figure P1.42, determine the resistor values (including the
power rating) necessary to achieve the indicated voltages. Resistors are
available in ⅛-, ¼-, ½-, and 1-W ratings.

Figure P1.42



1.43

1.44
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At an engineering site, a 1-hp motor is placed a distance d from a portable
generator, as depicted in Figure P1.43. The generator can be modeled as an
ideal DC source VG = 110 V. The nameplate on the motor gives the following
rated voltages and full-load currents:

If d = 150 m and the motor must deliver its full-rated power, determine the
minimum AWG conductors that must be used in a rubber-insulated cable. Assume
that losses occur only in the wires.

Figure P1.43

Cheap resistors are fabricated by depositing a thin layer of carbon onto a
nonconducting cylindrical substrate (see Figure P1.44). If such a cylinder has
radius a and length d, determine the thickness of the film required for a
resistance R if:

Neglect the end surfaces of the cylinder and assume that the thickness is much
smaller than the radius.



1.45

1.46

Figure P1.44

The resistive elements of fuses, lightbulbs, heaters, etc., are nonlinear (i.e., the
resistance is dependent on the current through the element). Assume the
resistance of a fuse (Figure P1.45) is given by  where: 

  and P is the power
dissipated in the resistive element of the fuse. Determine the rated current at
which the fuse will melt (that is, “blow”) and thus act as an open-circuit. (Hint:
The fuse blows when R becomes infinite.)

Figure P1.45

Use KCL and Ohm’s law to determine the current through each of the resistors
R4, R5, and R6 in Figure P1.46. VS = 10 V, R1 = 20 Ω, R2 = 40 Ω, R3 = 10 Ω, R4
= R5 = R6 = 15 Ω.



1.47

1.48

1.49

a.

b.

Figure P1.46

Refer to Figure P1.13. Assume R0 = 1 Ω, R1 = 2 Ω, R2 = 3 Ω, R3 = 4 Ω, and υS
= 10 V. Use KCL and Ohm’s law to find the unknown currents.

Apply KCL and Ohm’s law to find the power supplied by the voltage source in
Figure P1.48. Assume 

Figure P1.48
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Refer to Figure P1.49 and assume R0 = 2 Ω, 
Use KVL and Ohm’s law to find:

The mesh currents ia, ib, and ic.

The current through each resistor.



1.50

a.

b.

1.51

1.52

a.

b.

1.53

Figure P1.49

Refer to Figure P1.49 and assume R0 = 2 Ω, R1 = 2 Ω, R2 = 5 Ω, R3 = 4 A, and
VS = 24 V. Use KVL and Ohm’s law to find:

The mesh currents ia, ib, and ic.

The voltage across each resistor.

Assume that the voltage source in Figure P1.49is now replaced by a DC
current source IS, andR0 = 1 Ω, R1 = 3 Ω, R2 = 2 Ω, R3 = 4 A, and iS = 12 A,
directed positively upward. Use KVL and Ohm’s law to determine the voltage
across each resistor.

The voltage divider network of Figure P1.52 is designed to provide 
However, in practice, the resistors may not be perfectly matched; that is, their
tolerances are such that the resistances are unlikely to be identical. Assume υS
= 10 V and nominal resistance values of R1 = R2 = 5 kΩ.

If the resistors have ± 10 percent tolerance, findthe expected range of
possible output voltages.

Find the expected output voltage range for a tolerance of ± 5 percent.

Figure P1.52

Sections 1.9–1.10: Practical Sourcesand Measuring Devices
A thermistor is a nonlinear device that changes its terminal resistance value as
its surrounding temperature changes. The resistance and temperature generally
have a relation in the form of:



a.

b.

1.54

a.

b.

c.

1.55

a.

If R0 = 300 Ω and  as a function of the surrounding
temperature T for 

If the thermistor is in parallel with a 250-Ω resistor, find the expression for
the equivalent resistance and plot Rth(T) on the same graph for part a.

A moving-coil meter movement has a meter resistance rM = 200 Ω, and full-
scale deflection is caused by a meter current im = 10 μA. The meter is to be
used to display pressure, as measured by a sensor, up to a maximum of 100
kPa. Models of the meter and pressure sensor are shown in Figure P1.54 along
with the relationship between measured pressure and the sensor output υT.

Devise a circuit that will produce the desired behavior of the meter,
showing all appropriate connections between the terminals of the sensor
and the meter.

Determine the value of each component in the circuit.

What is the linear range, that is, the minimum and maximum pressure that
can accurately be measured?

Figure P1.54
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The circuit of Figure P1.55 is used to measure the internal impedance of a
battery. The battery being tested is a NiMH battery cell.

A fresh battery is being tested, and it is found that the voltage υout is 2.28
V with the switch open and 2.27 V with the switch closed. Find the
internal resistance of the battery.



b.

1.56

1.57

a.

b.

The same battery is tested one year later. υout is found to be 2.2 V with the
switch open but 0.31 V with the switch closed. Find the internal resistance
of the battery.

Figure P1.55

Consider the practical ammeter, depicted in Figure P1.56, consisting of an
ideal ammeter in series with a 1-kΩ resistor. The meter sees a full-scale
deflection when the current through it is 30 μA. If we desire to construct a
multirange ammeter reading full-scale values of 10 mA, 100 mA, and 1 A,
depending on the setting of a rotary switch, determine appropriate values of R1,
R2, and R3.

Figure P1.56

A circuit that measures the internal resistance of a practical ammeter is shown
in Figure P1.57, where RS = 50,000 Ω, υS = 12 V, and Rp is a variable resistor
that can be adjusted at will.

Assume that ra ≪ 50, 000 Ω. Estimate the current i.

If the meter displays a current of 150 μA whenRp = 15 Ω, find the internal
resistance of the meter ra.



1.58

1.59

1.60

a.

b.

Figure P1.57

A practical voltmeter has an internal resistance rm. What is the value of rm if
the meter reads 11.81 V when connected as shown in Figure P1.58? AssumeVS
= 12 V and RS = 25 kΩ.

Figure P1.58

Using the circuit of Figure P1.58, find the voltage that the meter reads if VS =
24 V and RS has the following values:

How large (or small) should the internal resistance of the meter be relative to
RS?

A voltmeter is used to determine the voltage across a resistive element in the
circuit of Figure P1.60. The instrument is modeled by an ideal voltmeter in
parallel with a 120-kΩ resistor, as shown. The meter is placed to measure the
voltage across R4. Assume R1 = 8 kΩ, R2 = 22 kΩ, R3 = 50 kΩ, RS = 125 kΩ,
and iS = 120 mA. Find the voltage across R4 with and without the voltmeter in
the circuit for the following values:

R4 = 100 Ω

R4 = 1 kΩ



c.

d.

1.61

a.

b.

c.

d.

1.62

R4 = 10 kΩ

R4 = 100 kΩ
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Figure P1.60

An ammeter is used as shown in Figure P1.61. The ammeter model consists of
an ideal ammeter in series with a resistance. The ammeter model is placed in
the branch as shown in the figure. Find the current through R5 both with and
without the ammeter in the circuit for the following values, assuming that RS =
20 Ω, R1 = 800 Ω, R2 = 600 Ω, R 3 = 1.2 kΩ,R4 = 150 Ω, and υS = 24 V.

R5 = 1 kΩ

R5 = 100 Ω

R5 = 10 Ω

R5 = 1 Ω

Figure P1.61

Figure P1.62 shows an aluminum cantilevered beam loaded by the force F.
Strain gauges R1, R2, R3, and R4 are attached to the beam as shown in Figure
P1.62 and connected into the circuit shown. The force causes a tension stress
on the top of the beam that causes the length (and therefore the resistance) of



1.63

R1 and R4 to increase and a compression stress on the bottom of the beam that
causes the length (and therefore the resistance) of R2 and R3 to decrease. The
result is a voltage of 50 mV at node B with respect to node A. Determine the
force if

Figure P1.62

Refer to Figure P1.62 but assume that the cantilevered beam loaded by a force
F is made of steel. Strain gauges R1, R2, R3, and R4 are attached to the beam
and connected in the circuit shown. The force causes a tension stress on the top
of the beam that causes the length (and therefore the resistance) of R1 and R4 to
increase and a compression stress on the bottom of the beam that causes the
length (and therefore the resistance) of R2 and R3 to decrease. The result is a
voltage υBA across nodes B and A. Determine this voltage if F = 1.3 MN and

 

 

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

2Gustav Robert Kirchhoff (1824–1887), a German scientist, published the first
systematic description of the laws of circuit analysis. His contribution—though not



original in terms of its scientific content—forms the basis of all circuit analysis.
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C H A P T E R
2

RESISTIVE NETWORK ANALYSIS

hapter 2 illustrates the fundamental techniques for the analysis of resistive
circuits. The chapter begins with the definition of network variables and of
network analysis problems. Next, the two most widely applied methods—
node analysis and mesh analysis—are introduced. These are the most

generally applicable circuit solution techniques used to derive the equations of all
electric circuits; their application to resistive circuits in this chapter is intended to
acquaint you with these methods, which are used throughout the book. The second
solution method presented is based on the principle of superposition, which is
applicable only to linear circuits. Next, the concept of Thévenin and Norton
equivalent circuits is explored, which leads to a discussion of maximum power
transfer in electric circuits and facilitates the ensuing discussion of nonlinear loads
and load-line analysis. At the conclusion of the chapter, you should have developed
confidence in your ability to compute numerical solutions for a wide range of
resistive circuits. The following box outlines the principal learning objectives of the
chapter.Page 70

 Learning Objectives
Students will learn to...

Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 2.2.



2.

3.

4.

5.

Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 2.3.
Apply the principle of superposition to linear circuits containing independent
sources. Sections 2.4.
Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Sections 2.5.
Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Sections 2.6.

2.1 NETWORK ANALYSIS
The analysis of an electric network consists of determining one or more of the
unknown branch currents and node voltages. It is important to define all the relevant
variables as clearly as possible and in a systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables is
constructed, and these equations are solved by means of suitable techniques. The
procedures and conventions required to write these equations are the subject of
Chapter 2 and are documented and codified in the form of simple rules.

Example 2.1 defines voltages and currents associated with a typical circuit.

EXAMPLE 2.1
Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of
Figure 2.1.

Figure 2.1 Figure for Example 2.1



Solution

The following node and branch voltages may be identified:

Comments: Currents ia and ib are known as mesh currents.

Page 71Nine variables were identified in the example! Methods are needed to
organize the wealth of information that can be generated even in simple circuits.
Ideally, these methods would produce only the minimum number of equations
needed and result in n equations in n unknowns. The remainder of the chapter is
devoted to an exploration of systematic circuit analysis and solution methods.

2.2 THE NODE VOLTAGE METHOD
Node voltage analysis is the most general method for the analysis of electric circuits.
Its application to linear resistive circuits is illustrated in this section. The node
voltage method is based on defining the voltage at each node as an independent
variable. One of the nodes is freely chosen as a reference node (usually—but not
necessarily—ground), and each of the other node voltages is relative to this node.
Ohm’s law is used to express resistor currents in terms of node voltages, such that
each branch current is expressed in terms of one or more node voltages. Finally,
KCL is applied to each nonreference node to generate one equation for each node
voltage. The result is that only node voltages and known parameters appear explicitly
in the equations. Figures 2.2 and 2.3 illustrate how to apply Ohm’s law and KCL in
this method.



(2.1)

Figure 2.2 Branch current formulation in node analysis

Figure 2.3 Use of KCL in node analysis

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

The systematic application of this method to a circuit with n nodes leads to n − 1
equations. However, one node must be chosen as a reference, which is freely and
conveniently assigned a value of 0 V. (Recall the discussion of reference voltage
from Chapter 1.) Thus, the result is n − 1 variables (the node voltages) in n − 1
independent linear equations. Node analysis provides the minimum number of
equations required to solve the circuit. A systematic method for applying node
analysis is outlined in the Focus on Problem Solving box, “Node Analysis.”
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 F O C U S  O N  P R O B L E M  S O LV I N G

NODE ANALYSIS
Select a reference node. Often, the best choice for this node is the one with
most elements attached to it. The voltage associated with each nonrefere
node will be relative to the reference node, which is (for simplicity) typic
assigned a value of 0 V.
Define voltage variables υ1, υ2, . . . , υn−1 for the remaining n − 1 nodes.

If the circuit contains no voltage sources, then all n − 1 node voltages
treated as independent variables.

If the circuit contains m voltage sources:

There are only (n − 1) − m independent voltage variables.

There are m dependent voltage variables.

For each voltage source, one of the two adjacent node voltage varia
(e.g., υj or υk) must be treated as a dependent variable.

Apply KCL at each node associated with an independent variable, using Oh
law to express each resistor current in terms of the adjacent node voltages. 
convention used consistently in this book is that currents entering a node
positive and currents exiting a node are negative; however, the oppo
convention could be used.

For each voltage source υS there will be one additional dependent equa
(e.g., υk = υj + υS).

When a voltage source is adjacent to the reference node, either υj or υk 
be the reference node value, which is typically assigned as 0 V, and
additional dependent equation is particularly simple.

Collect coefficients for each of the n − 1 variables, and solve the linear system
n − 1 equations.

Some of the dependent equations may have the simple form υ k = υ S 
this case, the total number of equations and variables is reduced by di
substitution.

This procedure can be used to find a solution for any circuit. A good approach i
first practice solving circuits without any voltage sources and then learn to deal w



(2.2)

the added complexity of circuits with voltage sources. The remainder of this sec
is organized in this fashion.

For some readers it is advantageous to redraw circuits in an equivalent 
nonrectangular manner by viewing the circuit as a collection of circuit elem
located between nodes. The right-hand portion of Figure 2.4 is constructed by 
drawing three node circles and then adding in the elements that sit between each 
of nodes. To successfully redraw a circuit or to apply node analysis it is impera
that the correct number of nodes is known. Thus, it is worthwhile to prac
recognizing and counting nodes!

Page 73

Figure 2.4 Illustration of node analysis

Details and Examples
Consider the circuit shown in Figure 2.4. The directions of currents i1 , i2 , and i3 may
be selected arbitrarily; however, it is often helpful to select directions that appear to
conform with one’s expectations. In this case, iS is directed into node a and therefore
one might guess that i1 and i2 should be directed out of that same node. Application
of KCL at node a yields

whereas at node b



(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

It is not necessary nor appropriate to apply KCL at the reference node since that
equation is dependent on the other two. It may be useful to demonstrate this fact for
this example. The equation obtained by applying KCL at node c is

The sum of the equations obtained at nodes a and b yields this same equation. This
observation confirms the statement made earlier:

KCL yields n − 1 independent equations for a circuit of n nodes. The nth

equation is usually chosen to be υ = 0 for the reference.   

When applying the node voltage method, the currents must be expressed in terms of
the node voltages. For the example above, i1 , i2 , and i3 can be expressed in terms of
υa , υb , and υc by applying Ohm’s law. Between nodes a and c the current is

Similarly, for the other two branch currents

Page 74These expressions for i1 , i2 , and i3 can be substituted into the two nodal
equations (equations 2.2 and 2.3) to obtain:



(2.8)

(2.9)

With a little practice, equations 2.7 and 2.8 can be obtained by direct observation of
the circuit. These equations can be solved for υa and υb, assuming that iS, R1, R2, and
R3 are known. The same equations may be reformulated as follows:

Examples 2.2 to 2.6 further illustrate the details of this method.

EXAMPLE 2.2 Node Analysis: Solving for Branch Currents
Problem

Solve for all currents and voltages in the circuit of Figure 2.5.

Figure 2.5 Figure for Example 2.2

Solution



1.
2.

3.

Given: Source currents, resistor values.
Find: All node voltages and branch currents.
Schematics, Diagrams, Circuits, and Given Data: i1 = 10 mA; i2 = 50 mA; R1 = 1
kΩ; R2 = 2 kΩ; R3 = 10 kΩ; R4 = 2 kΩ.

Analysis: Follow the steps outlined in the Focus on Problem Solving box, “Node
Analysis.”

The node at the bottom of the circuit is chosen as the reference.
The circuit of Figure 2.5 is shown again in Figure 2.6, with two nonreference
nodes and the associated two independent variables υ1 and υ2.

Figure 2.6 Figures for Example 2.2

Apply KCL at each node and use Ohm’s law to express branch currents in terms
of node voltages to obtain:

Page 75The same equations can be written more systematically as a function of
the node voltages, as was done in equations 2.9.



4. Solve the system of equations. With some manipulation, the equations can be
represented in the following form:

These equations may be solved simultaneously to obtain

Knowing the node voltages, each branch current can be determined. For
example, the current through R3 (the 10-k Ω resistor) is given by

The positive value for  indicates that the initial (arbitrary) choice of direction
for this current is the same as its actual direction. As another example, consider
the current through R1 , the 1-kΩ resistor:

Here, the value is negative, which indicates that the actual direction of this
current is from ground to node 1, opposite of what was assumed, but as it must
be, since the voltage at node 1 is negative with respect to ground. The branch-
by-branch analysis may be continued to verify that  and 

EXAMPLE 2.3 Node Analysis: Solving for Node Voltages
Problem



1.
2.

3.

Write the node equations and solve for the node voltages in the circuit of Figure 2.7.

Figure 2.7 Figure for Example 2.3

Solution
Given: Source currents, resistor values.
Find: All node voltages.
Schematics, Diagrams, Circuits, and Given Data: ia = 1 mA; ib = 2 mA; R1 = 1 kΩ;
R2 = 500 Ω; R3 = 2.2 kΩ; R4 = 4.7 kΩ.

Analysis: Follow the steps outlined in the Focus on Problem Solving box, “Node
Analysis.”

The bottom node of the circuit is chosen as the reference (ground) node.
See Figure 2.8. There are two nonreference nodes, labeled υa and υb, in the
circuit. The two nodes are associated with two independent variables, the node
voltages υa and υb .Page 76

Figure 2.8 Figure for Example 2.3

Apply KCL at each node and use Ohm’s law to express branch currents in terms
of node voltages to obtain:



4.

These equations may be rewritten as the following linear system:

Numerical values can be plugged into these equations to find:

Multiply the second equation by  add the result to the first equation to find
υb = 2 V. Plug υb into either equation to find υa = 1.667 V.

EXAMPLE 2.4 Using Cramer’s Rule to Solve a 2 × 2 System of Linear
Equations
Problem

Use Cramer’s rule (see Appendix A) to solve the circuit equations obtained in
Example 2.3.

Solution
Given: A linear system of equations.
Find: Node voltages.
Analysis: The 2 × 2 system of equations in Example 2.3 may be written in matrix
form and solved, in terms of ratios of determinants, using Cramer’s rule from linear
algebra.

Cramer’s rule provides the solution for υa and υb as follows:



Voila! The result is the same as in Example 2.3.Page 77

Comments: Cramer’s rule is an efficient solution method for simple circuits (e.g.,
those with only two nonreference nodes); however, it is not recommended for larger
circuits. Once the nodal equations have been set in the general form (e.g., equations
2.9), various computer applications, such as Matlab®, may be employed to compute
the solution. See Example 2.5 for an example of using Matlab.

EXAMPLE 2.5 Using MatLab to Solve a 3 × 3 System of Linear
Equations
Problem

Use the node voltage analysis to determine the voltage υ in the circuit of Figure
2.9(a). Assume that R1 = 2 Ω, R2 = 1 Ω, R3 = 4 Ω, R4 = 3 Ω, i1 = 2 A, and i2 = 3 A.

Figure 2.9(a) Circuit for Example 2.5

Solution
Given: Values of the resistors and the current sources.
Find: Voltage across R3.



1.
2.
3.

4.

5.

6.

Analysis: Refer to Figure 2.9a and the steps in the Focus on Problem Solving box,
“Node Analysis.”

Select one node as the reference and label it.
Define node voltages υ1 , υ2 , υ3 for the three nonreference nodes.
Apply KCL at each of the n − 1 nodes, using Ohm’s law to express the current
through a resistor as the difference between the two adjacent node voltages
divided by the resistance.

Collect the coefficients of each independent variable (node voltage) to express
the system of equations as:

Multiply both sides of each equation by the common denominator on the left
side. The common denominators are R1R2 for node 1, R2R3 for node 2, and R1R4
for node 3. Plug in values for the resistors and current sources to obtain:

By including zero coefficients explicitly, all three voltage variables are now
present in each equation. The resulting system of three equations in three
unknowns can be solved by many handheld calculators. An alternative is
Matlab.Page 78
To solve using Matlab it is necessary to write the equations in matrix form.



In general, these equations can be written using compact notation as
Ax = b

where x is a 3 × 1 column vector whose elements are the node voltages υ1, υ2,
and υ3. In Matlab the 3 × 3 A matrix and the 3 × 1 b column vector are entered as
shown in Figure 2.9(b).

Figure 2.9(b) Typical Matlab command window. User-entered data follows
the » prompt. Note that Matlab is case sensitive, as shown at the fourth
prompt. (The MathWorks, Inc.)

Page 79The apostrophe at the far right of the above equation is the Matlab
transpose operator. It is used here to change a 1 × 3 row matrix into a 3 × 1



column vector. The solution for x is computed in Matlab by writing x = A\b to
yield

which are the three node voltages [υ1 υ2 υ3]′. The solution for the voltage drop υ
across R3 is

CHECK YOUR UNDERSTANDING
Find io and υx in the circuits on the left and right, respectively, using the node voltage
method.

CHECK YOUR UNDERSTANDING
In Example 2.3, use the two node voltages to verify that KCL is indeed satisfied at
each node.

CHECK YOUR UNDERSTANDING
Repeat Example 2.5 when the directions of the current sources are opposite those
shown in Figure 2.9(a). Find υ.

Answers: 0.2857 A; −18 V



•

•

•

Node Analysis With Voltage Sources   

The circuits in the preceding examples did not contain voltage sources. However, in
practice, it is quite common to encounter them in circuits. To illustrate how node
analysis is applied to such circuits, consider the circuit in Figure 2.10. Verify that this
circuit has n = 4 total nodes. The relevant solution steps found in the Focus on
Problem Solving box, “Node Analysis,” are listed below with added comments.Page
80

Figure 2.10 Node analysis with voltage sources

Step 1: Select a reference node. Often, the best choice for this node is the one with
the most elements attached to it. The voltage associated with each nonreference node
will be relative to the reference node, which is (for simplicity) typically assigned a
value of 0 V.

When voltage sources are present, it is also advantageous to pick the reference node
so that at least one of those voltage sources is attached to it. In Figure 2.10, the
reference node, denoted by the ground symbol, is assumed to have a value of 0 V.

Step 2: Label the remaining n − 1 nodes with voltage variables υ1, υ2, . . . , υn−1. If
the circuit contains m voltage sources:

There are only (n − 1) − m independent voltage variables.
There are m dependent voltage variables.
For each voltage source, one of the two adjacent node voltage variables (e.g., υj
or υk) must be treated as a dependent variable.
Answer: υ = 0.4 V



•

•

(2.10a)

(2.10b)

(2.10c)

•

The remaining three (4 − 1 = 3) node voltages are labeled υa , υb , and υc as shown
Figure 2.10. Since the circuit contains one (m = 1) voltage source, there are two (4 −
1 − 1 = 2) independent variables and one dependent variable. Only υa is adjacent to
the voltage source; thus, it is the one dependent variable.

Step 3: Apply KCL at each node associated with an independent variable, using
Ohm’s law to express each resistor current in terms of the adjacent node voltages.
Currents entering a node are assumed to be positive while those exiting a node are
assumed to be negative.

For each voltage source υS there will be one additional dependent equation (e.g.,
υk = υj + υS).

When a voltage source is adjacent to the reference node, either υj or υk will be the
reference node value, which is typically assigned as 0 V, and the additional
dependent equation is particularly simple.

Apply KCL at the two nodes associated with the independent variables υb and υc :

At node b:

At node c:

The equation for the dependent variable υa is simply:

Step 4: Collect coefficients for each of the n − 1 variables, and solve the linear
system of n − 1 equations.

Some of the dependent equations may have the simple form υ k = υS . In this case,
the total number of equations and variables is reduced by direct substitution.Page
81

Substitute for υa in equations 2.10. At node b:



(2.11)

(2.12)

1.

Finally, collect the coefficients of the two independent variables to express the
system of two equations as:

The resulting system of two equations in two unknowns is now ready to be solved.

EXAMPLE 2.6 Solution When a Voltage Source Is Not Adjacent to the
Reference Node
Problem

Use node analysis to determine the current i through the voltage source in the circuit
of Figure 2.11(a). Assume that R1 = 2 Ω, R2 = 2 Ω, R3 = 4 Ω, R4 = 3 Ω, iS = 2 A, and
υS = 3 V.

Figure 2.11(a) Circuit for Example 2.6

Solution
Given: Resistance values; current and voltage source values.
Find: The current i through the voltage source.
Analysis: Refer to Figure 2.11(a) and the steps in the Focus on Problem Solving box,
“Node Analysis.”

Select the reference node and label it.



2.

3.

Define three nonreference node voltages υ1, υ2, and υ3. Because of the voltage
source, we must treat either υ2 or υ3 as a dependent variable. Observe that υ 3 =
υ 2 + υS because the voltage source requires that the potential at node 3 be υS
higher than the potential at node 2. This expression for υ3 makes it convenient to
choose υ3 as the dependent variable. This choice requires the other two node
voltages (υ1 and υ2) to be treated as independent variables, with one KCL
equation needed for each.
We apply KCL at the two nodes associated with the independent variables υ1 and
υ2:

where 
Rearranging the node 2 equation by substituting the value of i yields

Page 82It turns out that the somewhat cumbersome process of introducing a new
variable i, applying KCL to find an expression for it in terms of node voltages,
and then eliminating it immediately by substitution is not necessary. In fact, this
problem illustrates that while KCL can certainly be applied at any node, it also
can be applied to any closed boundary. For instance, imagine a closed boundary
surrounding nodes υ2, υ3, and the voltage source, as shown in Figure 2.11(b).
There are four currents that cross this boundary, namely those through the four
resistors. When KCL is applied to this boundary, the result is

Figure 2.11(b) Circuit for Example 2.6 with “supernode”



4.

Rearranging yields

which is identical to the node 2 equation obtained after the substitution for i. A
closed boundary that surrounds two or more nodes is known as a supernode.
Finally, substitute known values for the resistors, and the current and voltage
sources, collect coefficients of υ1, υ2, and υ3, and write the system of equations
as:

This system of linear equations may be solved directly on most modern
calculators. However, it is also possible to simplify the equations by substituting
υ2 + 3 V for υ3 in the node 1 and 2 equations to yield

This system of two equations in two unknowns can be solved analytically by
multiplying the first equation by 6 and adding the result to the second equation
to eliminate υ1. The result is

Substitute this value into either equation to find

And

The current through the voltage source i is



Comments: Knowing all three node voltages, the current through each resistor can be
computed as follows:  and 
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CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 2.6 when the direction of the current source is
opposite that shown in Figure 2.11(a). Find the node voltages and i.

2.3 THE MESH CURRENT METHOD
Another method of circuit analysis employs mesh currents. The objective, similar to
that of node analysis, is to generate one independent equation for each independent
variable in a circuit. In this method, each mesh in a circuit is assigned a mesh current
variable and Kirchhoff’s voltage law (KVL) is applied at some or all of the meshes to
generate a system of equations that relate these variables.

It is important to recall that mesh currents are not the same as branch currents.
The perspective taken in the mesh current method is that there is one current
circulating within each mesh and that branch currents in the circuit are comprised of
these mesh currents. Specifically, when a branch is part of only one mesh, the branch
current is the same as that mesh current. However, when a branch is shared by two
meshes, the branch current is comprised of two mesh currents.

In the mesh current method it is necessary to assume a direction for the
circulation of each mesh current. A helpful convention is to assume that all mesh
currents circulate in the clockwise (CW) direction. With this convention, when a
branch is shared by two meshes, the branch current is equal to the difference of two
mesh currents. This result is illustrated in Figure 2.12 where the current through
resistor R2 is the difference of i1 and i2. The voltage drop across R2 is given by
Ohm’s law as either:



(2.13)

Figure 2.12 Two meshes

Which of these expressions is the right one to use? The answer depends upon the
convention used when applying KVL. To avoid confusion when expressing Ohm’s
law it is helpful to always apply KVL around a mesh in the same direction (e.g., CW)
used to define the mesh current. This approach is helpful because Ohm’s law implies
that current through a resistor is directed from high to low voltage, as shown in
Figure 2.13, and that the change in voltage is proportional to the net current through
the resistor. Thus, when KVL is applied in the same direction as the mesh current
(e.g., i1), the voltage drop across a resistor in that mesh will be represented in the
same direction as the mesh current (see Figure 2.14) and equal to either:

Figure 2.13 Ohm’s law implies that current is directed from high (+) to
low (−) potential.

Figure 2.14 Use of KVL in mesh analysis



(2.14)

1.

2.

•

•

⚬

⚬

3.

•

4.

⚬
⚬

or

Notice that the net current through R2 in the direction of mesh current i1 is (i1 − i2).
The following procedure outlines the steps taken in applying the mesh current
method to a linear circuit.Page 84

 F O C U S  O N  P R O B L E M  S O LV I N G

MESH ANALYSIS
Select a circulation convention (either CW or CCW) for the mesh currents 
KVL. All the examples in this book use a CW (clockwise) convention un
there is a good reason to do otherwise.
Define mesh current variables i1 , i2 , . . . , in for each of the n meshes.

If the circuit contains no current sources, then all n mesh currents are tre
as independent variables.

If the circuit contains m current sources:

There are n − m independent variables.

There are m dependent variables.

When a current source borders only one mesh, the value of that m
current is dictated by the current source. Treat that mesh current 
dependent variable.

When a current source borders two meshes, the value of the differenc
those mesh currents is dictated by the source. Treat one of those m
currents as a dependent variable and the other as an independent variab

Apply KVL at each mesh associated with an independent variable, using Oh
law to express each resistor voltage drop in terms of the adjacent mesh curren

For each current source iS there will be one additional dependent equa
(e.g., iS = ik − ij).

Collect coefficients for each of the n variables, and solve the linear system 
equations.



•

5.

(2.15)

Some of the dependent equations may have the simple form ij = iS. In 
case, the total number of equations and variables is reduced by di
substitution.

Use the known mesh currents to solve for any or all branch currents in
circuit. Any voltage drop can be found by applying Ohm’s law and, w
necessary, KVL.

This procedure can be used to find a solution for any planar circuit. A good appro
is to first practice solving circuits without any current sources and then learn to 
with the added complexity of circuits with current sources. The remainder of 
section is organized in this fashion.

Details and Examples
In Figure 2.15, there are two meshes, each with a defined clockwise mesh current.
There are no current sources in the circuit, so there are two independent mesh current
variables i1 and i2 . The KVL equation for mesh i1 is:

Figure 2.15 Assignment of currents and voltages around mesh 1

Page 85When KVL is applied to mesh i2 , the net current through R2 in the direction
of mesh current i2 is (i2 − i1). Thus, the KVL equation for mesh i2 (see Figure 2.16)
is:



(2.16)

(2.17)

Figure 2.16 Assignment of currents and voltages around mesh 2

Then, collect coefficients of i1 and i2 in each equation to yield the following
system of equations:

These two equations can be solved simultaneously for the two independent mesh
current variables i1 and i2 . The branch current through R2 can then be found as well.
If the resulting numerical answer for a mesh current is negative, then the actual
direction for that mesh current is opposite of the defined direction.

Note that the expressions for the voltage drop across R2 in the two KVL
equations are different because the same clockwise convention is used in both
meshes for KVL. In mesh 1, the KVL loop traverses R2 from top to bottom while in
mesh 2 the KVL loop traverses R2 from bottom to top. The result is a potential source
of confusion and error when applying the mesh current method. A careful
determination of the voltage drops around each mesh, one mesh at a time, and in
accord with the positive sign convention for Ohm’s law, is necessary for success.

Examples 2.7 to 2.11 further illustrate the details of this method.



EXAMPLE 2.7 Mesh Analysis: Solving for Mesh Currents in a Circuit
With Two Meshes
Problem

Find the mesh currents in the circuit of Figure 2.17.

Figure 2.17 Circuit for Example 2.7

Solution
Given: Source voltages; resistor values.
Find: Mesh currents.
Schematics, Diagrams, Circuits, and Given Data: υa = 10 V; υb = 9 V; υc = 1 V; R1
= 5 Ω; R2 = 10 Ω; R3 = 5 Ω; R4 = 5 Ω.

Analysis: Refer to Figures 2.17 and 2.18 and the steps in the Focus on Problem
Solving box, “Mesh Analysis.”



1.

2.

3.

4.

Figure 2.18 Mesh analysis for Example 2.7

Select a clockwise circulation convention.
Note that there are two meshes in the circuit, and define clockwise mesh current
variables i1 and i2 . There are no current sources in the circuit, so both i1 and i2
are independent variables.Page 86
Apply KVL to each mesh associated with an independent variable, and use
Ohm’s law to express each resistor voltage drop in terms of the adjacent mesh
currents to generate two equations.

Collect coefficients, and enter parameter values to yield the following system of
linear equations:

Multiply the mesh 1 equation by 2 and add the result to the mesh 2 equation to
find i1. Substitute for i1 in either equation to find i2. The results are:

Comments: Note that the voltage across R2 is assigned a different polarity in the
KVL expression for mesh 1 than that in the KVL expression for mesh 2. In mesh 1,
R2 is traversed top to bottom in the KVL loop; in mesh 2, R2 is traversed bottom to
top in the KVL loop.

EXAMPLE 2.8 Mesh Analysis: Finding Mesh Equations in a Circuit
With Three Meshes
Problem

Find the mesh current equations for the circuit of Figure 2.19.



1.
2.

3.

Figure 2.19 Circuit for Example 2.8

Solution
Given: Source voltages; resistor values.
Find: Mesh current equations.
Schematics, Diagrams, Circuits, and Given Data: υ1 = 12 V; υ2 = 6 V; R1 = 3 Ω; R2
= 8 Ω; R3 = 6 Ω; R4 = 4 Ω.

Analysis: Refer to Figure 2.19 and the steps in the Focus on Problem Solving box,
“Mesh Analysis.”

Select a clockwise circulation convention.
Note that there are three meshes in the circuit, and define clockwise mesh
current variables i1 , i2 , and i3 as shown in Figure 2.19. There are no current
sources in the circuit, so i1 , i2 , and i3 are all independent variables.
Apply KVL to each mesh associated with an independent variable, and use
Ohm’s law to express each resistor voltage drop in terms of the adjacent mesh
currents. KVL applied to mesh 1 yields

KVL applied to mesh 2 yields

while in mesh 3 KVL yields

Page 87



4. Collect coefficients and enter parameter values to obtain

Check that KVL holds around any mesh to check these equations.

EXAMPLE 2.9 Mesh Analysis: Using MatLab to Solve for Mesh
Currents in a Circuit With Three Meshes
Problem

The circuit of Figure 2.20 is a simplified DC circuit model of a three-wire electrical
distribution service to residential and commercial buildings. The two ideal sources
and the resistances R4 and R5 represent the equivalent circuit of the distribution
system; R1 and R2 represent 110-V lighting and utility loads rated at 800 and 300 W,
respectively. Resistance R3 represents a 220-V heating load rated at 3 kW. Determine
the voltages across the three loads.

Figure 2.20 Circuit for Example 2.9

Solution
Given: The values of the voltage sources and of the resistors in the circuit of Figure
2.20 are υS1 = υS2 = 110 V; R4 = R5 = 1.3 Ω; R1 = 15 Ω; R2 = 40 Ω; R3 = 16 Ω.

Find: i1 , i2 , i3 , υa, and υb.



1.
2.

3.

4.

Analysis: Refer to Figure 2.20 and the steps in the Focus on Problem Solving box,
“Mesh Analysis.”

Select a clockwise circulation convention.
Note that there are three meshes in the circuit, and define clockwise mesh
current variables i1 , i2 , and i3 as shown in Figure 2.20. There are no current
sources in the circuit, so i1 , i2 , and i3 are all independent variables.
Apply KVL to each mesh separately, and use Ohm’s law to represent the voltage
drop across each resistor in terms of the mesh currents directly.

Collect coefficients to obtain the following system of three equations in three
unknown mesh currents.

Enter numerical values for the parameters, and express the equations in matrix
form as shown.

Page 88This form can be more simply represented as the product of a resistance
matrix [R] and a mesh current vector [I] set equal to a voltage source vector [V].

with a solution of

The solution for the mesh current vector can be found using an analytic or
numerical technique. In this problem, Matlab was used to compute the inverse
[R]−1 of the 3 × 3 [R] matrix.



The value of each mesh current is now determined.

Therefore, we find

The two unknown node voltages υa and υb are easily calculated using Ohm’s law
and the mesh currents. Notice the positive sign convention used in the following
calculations!

The values of the node voltages υa and υb are relative to the reference node.
Verify that KVL holds for each mesh to check your understanding.

Comments: The inverse matrix computation is numerically inefficient compared to
the Matlab left division computation used in Example 2.5. However, for most
problems solved by a typical personal computer, the difference in computation time
will not be noticed by a user.

CHECK YOUR UNDERSTANDING
Use mesh analysis to find the unknown voltage υx in the circuit on the left.

Use mesh analysis to find the unknown current ix in the circuit on the right.
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•
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CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 2.9, using node voltage analysis instead of mesh
analysis.

Mesh Analysis With Current Sources
The circuits in the preceding examples contained no current sources. However, it is
common, in practice, to encounter current sources in circuits. The relevant steps
found in the Highlights section are listed below with added comments.

Step 1: Select a circulation convention (either CW or CCW) for the mesh currents
and KVL.

Step 2: Define mesh current variables i1 , i2, . . . in for each of the n meshes. If the
circuit contains m current sources:

There are n − m independent variables.
There are m dependent variables.
When a current source borders only one mesh, the value of that mesh current is
dictated by the current source. Treat that mesh current as a dependent variable.
When a current source borders two meshes, the value of the difference in those
mesh currents is dictated by the source. Treat one of those mesh currents as a
dependent variable and the other as an independent variable.

The circuit in Figure 2.21 has two meshes and one current source. Thus, there is one
independent mesh current variable i1 and one dependent mesh current variable i2 .
Note that the circulation of i1 indicates a clockwise convention. With that convention,
i2 has the opposite direction of iS in the rightmost branch. Thus, i2 = − iS and Figure
2.21 shows the second mesh current as iS circulating counterclockwise.

Answers: 5 V; 2 A



•

(2.18)

•

(2.19)

Figure 2.21 Mesh analysis with current sources

Step 3: Apply KVL at each mesh associated with an independent variable, using
Ohm’s law to express each resistor voltage drop in terms of the adjacent mesh
currents.

For each current source iS there will be one additional dependent equation (e.g., 
).

The one dependent equation is, of course:

i2 = − iS

KVL around the i1 mesh yields:

Step 4: Collect coefficients for each of the n variables, and solve the linear system of
n equations.

Some of the dependent equations may have the simple form ij = iS. In this case,
the total number of equations and variables is reduced by direct substitution.Page
90

Page 91The presence of the current source has simplified the problem. There is only
one unknown mesh current, i1 , and one equation.

Step 5: Use the known mesh currents to solve for any branch current in the circuit.
Any voltage drop can be found by applying Ohm’s law and, when necessary, KVL.

By inspection, the current through R1 is i1 and the current through R3 is iS. The
current through R2 is i1 + iS. The change in voltage across the current source, with



(2.20)

1.
2.

3.

•

respect to the reference node, is given by KVL as:

EXAMPLE 2.10 Mesh Analysis: Three Meshes and One Current
Source
Problem

Find the mesh currents in the circuit of Figure 2.22.

Figure 2.22 Circuit for Example 2.10

Solution
Given: Source and resistor values.
Find: Mesh currents.
Schematics, Diagrams, Circuits, and Given Data: iS = 0.5 A; υS = 6 V; R1 = 3 Ω; R2
= 8 Ω; R3 = 6 Ω; R4 = 4 Ω.

Analysis: Refer to Figure 2.22 and the steps in the Focus on Problem Solving box,
“Mesh Analysis.”

Select a clockwise circulation convention.
Define three mesh current variables i1, i2, and i3. The current source is not shared
by two meshes; thus, mesh current i1 is a dependent variable and mesh currents
i2 and i3 are the independent variables.
Apply KVL at each mesh associated with an independent variable, using Ohm’s
law to express each resistor voltage drop in terms of the adjacent mesh currents.

For each current source there will be one additional dependent equation.
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•

By inspection, the one dependent equation is:
i1 = iS = 0.5 A

KVL around meshes 2 and 3 yield:

Collect coefficients for each of the n variables, and solve the linear system of n
equations.

Some of the dependent equations may have the simple form i j = iS. In this
case, the total number of equations and variables is reduced by direct
substitution.

The presence of the current source has simplified the problem. There are only
two unknown mesh currents, i2 and i3, and two equations. These equations can
be solved to obtain

Check these answers by verifying that KVL holds.

EXAMPLE 2.11 Mesh Analysis: Two Meshes and One Current Source
Problem

Find the unknown voltage υx in the circuit of Figure 2.23.

Figure 2.23 Illustration of mesh analysis in the presence of current sources
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5.

Solution
Given: The values of the voltage sources and of the resistors in the circuit of Figure
2.23: υS = 10 V; iS = 2 A; R1 = 5 Ω; R2 = 2 Ω; and R3 = 4 Ω.

Find: υx .
Analysis: Refer to Figure 2.23 and the steps in the Focus on Problem Solving box,
“Mesh Analysis.”

Select a clockwise circulation convention.
Define two mesh current variables i1 and i2 . The current source borders mesh 2
only; thus, i2 is a dependent variable and i1 is an independent variable.
Apply KVL at each mesh associated with an independent variable, using Ohm’s
law to express each resistor voltage drop in terms of the adjacent mesh currents.

For each current source there will be one additional dependent equation.
By inspection, the one dependent equation is:

i2 = iS
KVL around mesh 1 yields:

Collect coefficients for each of the n variables, and solve the linear system of n
equations.

Some of the dependent equations may have the simple form i j = iS . In this
case, the total number of equations and variables is reduced by direct
substitution.

The presence of the current source has simplified the problem. There is only one
unknown mesh current, i1 , and one equation. Substitute i2 = iS into the mesh 1
equation to find:

Use the known mesh currents to solve for any or all branch currents in the
circuit. Any voltage drop can be found by applying Ohm’s law and, when
necessary, KVL.

Apply KVL around mesh 2 to find:

or
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Comments: The presence of the current source reduced the number of unknown
mesh currents by one. Thus, we were able to find υx without solving simultaneous
equations.

CHECK YOUR UNDERSTANDING
Use the mesh currents to find the branch currents in Example 2.10. Apply KCL at
each node to validate.

CHECK YOUR UNDERSTANDING
Find the value of the current i1 in Example 2.11 when the value of the current source
is 1 A.

2.4 THE PRINCIPLE OF SUPERPOSITION
The principle of superposition is a valid, and frequently used, analytic tool for any
linear circuit. It is also a powerful conceptual aid for understanding the behavior of
circuits with multiple sources.

 For any linear circuit, the principle of superposition states that each
independent source contributes to each voltage and current present in the
circuit. Moreover, the contributions of one source are independent of those
from the other sources. In this way, each voltage and each current in a circuit of
N independent sources is the sum of N component voltages and N component
currents, respectively.

Answer: 1.56 A



As a problem-solving tool, the principle of superposition permits a problem to be
decomposed into two or more simpler problems. The efficiency of this “divide and
conquer” tactic depends upon the particular problem being solved. However, it may
enable a simple closed-form solution of an otherwise complicated symbolic circuit
problem, where node and mesh analyses may offer little help.

The method is to turn off (set to zero) all independent sources but one, and then
solve for voltages and currents due to the lone remaining independent source. This
procedure may be repeated successively for each source until the contributions due to
all the sources have been computed. The components for a particular voltage or
current can be summed to find its value in the original complete circuit.Page 93

A zero voltage source is equivalent to a short-circuit and a zero current source is
equivalent to an open-circuit. When using the principle of superposition, it is
necessary, and helpful, to replace each zero source with its equivalent short- or open-
circuit and thus simplify the circuit. These substitutions are summarized in Figure
2.24.

Figure 2.24 Zeroing voltage and current sources

Superposition may be applied to circuits containing dependent sources; however,
the dependent sources must not be set to zero. They are not independent sources and
must not be treated as such. To do so, would lead to an incorrect result.

F O C U S  O N  P R O B L E M  S O LV I N G     
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3.

4.

(2.21)

SUPERPOSITION
Define the voltage V or current I to be solved in the circuit.
For each of the N sources, define a component voltage υk or current ik such th

Turn off all sources except source Sk and solve for the component voltage υ
current ik . Find components for all k where k = 1, 2, . . . , n.
Find the complete solution for the voltage V or current I by summing all of
components as defined in step 2.

Details and Examples
An elementary application of the principle is to find the current in a single loop with
two sources connected in series, as shown in Figure 2.25.Page 94

Figure 2.25 The principle of superposition

The current in the far left circuit of Figure 2.25 is easily found by a direct
application of KVL and Ohm’s law.

Figure 2.25 depicts the far left circuit as being equivalent to the combined effects of
two component circuits, each containing a single source. In each of these two
circuits, one battery (which is a DC voltage source) has been set to zero and replaced
with a short-circuit.

KVL and Ohm’s law can be applied directly to each of these component circuits.



(2.22)

(2.23)

According to the principle of superposition

Voila! The complete solution is found, as expected. This simple example illustrates
the essential method; however, more challenging examples are needed to reinforce it.

Examples 2.14 and 2.15 further illustrate the details of this method.

EXAMPLE 2.12 Principle of Superposition
Problem

Determine the current i2 in the circuit of Figure 2.26(a), using the principle of
superposition.

Figure 2.26(a) Circuit for the illustration of the principle of superposition

Solution
Known Quantities: Voltage and current values of each source; resistor values.
Find: Unknown current i2.

Given Data: υS = 10 V; iS = 2 A; R1 = 5 Ω; R2 = 2 Ω; R3 = 4 Ω.

Analysis: Refer to Figure 2.26(a) and the steps in the Focus on Problem Solving box,
“Superposition.”
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The objective is to find current i2.
There are two independent sources in the circuit, so there will be two
components of i2.
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Part 1: Turn off the current source and replace it with an open-circuit. The
resulting circuit is a simple series loop shown in Figure 2.26(b). Here, i′2 is the
same as the loop current because of the open-circuit. The total series resistance
is 5 + 2 + 4 = 11 Ω, such that i′ 2 = 10 V⁄11 Ω = 0.909 A.

Figure 2.26(b) Circuit with current source set to zero

Part 2: Turn off the voltage source and replace it with a short-circuit. The
resulting circuit consists of three parallel branches, as shown in Figure 2.26(c):
iS, R1, and R2 + R3. By current division, we find

Figure 2.26(c) Circuit with voltage source set to zero

The complete i2 is found to be



1.
2.

3.

Comments: Superposition is not always a very efficient tool. Beginners may find it
preferable to rely on more systematic methods, such as node analysis, to solve
circuits. Eventually, experience will suggest the preferred method for any given
circuit.

EXAMPLE 2.13 Principle of Superposition
Problem

Determine the voltage υR across resistor R in the circuit of Figure 2.27(a).

Figure 2.27(a) Circuit used to demonstrate the principle of superposition

Solution
Known Quantities: The values of the sources and resistors in the circuit of Figure
2.27(a) are ib = 12 A; υG = 12 V; R B = 1 Ω; R G = 0.3 Ω; R = 0.23 Ω.

Find: υR .

Analysis: Refer to Figure 2.27(a) and the steps in the Focus on Problem Solving box,
“Superposition.”

The objective is to find voltage υR .
There are two independent sources in the circuit, so there will be two
components of υR.

Part 1: Turn off the voltage source and replace it with a short-circuit. Redraw
the circuit as shown in Figure 2.27(b), find the equivalent resistance of all three
resistors in parallel, and apply Ohm’s law to find υ′

R.



4.

Figure 2.27(b) Circuit obtained by suppressing the voltage source

Part 2: Turn off the current source and replace it with an open-circuit. Redraw
the circuit, as shown in Figure 2.27(c), and apply KCL at the upper node:

Figure 2.27(c) Circuit obtained by suppressing the current source

This same result can be found by finding the equivalent resistance of RB in
parallel with R and applying voltage division.

Compute the voltage across R as the sum of the two component voltages:



Comments: The only advantage offered by the principle of superposition in this
problem is that it clearly reveals the contributions to υR from each source. However,
the work required to solve this problem is nearly doubled. The voltage across R can
easily be determined by applying KCL at the upper node.

CHECK YOUR UNDERSTANDING
In Example 2.12, verify that the same answer is obtained by mesh or node analysis.

CHECK YOUR UNDERSTANDING
In Example 2.13, verify that the same answer can be obtained by a single application
of KCL.

CHECK YOUR UNDERSTANDING
Find the voltages υa and υb for the circuits of Example 2.3 by superposition.

CHECK YOUR UNDERSTANDING
Solve Example 2.7, using superposition.
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CHECK YOUR UNDERSTANDING
Solve Example 2.10, using superposition.

2.5 EQUIVALENT NETWORKS
Recall from the discussion of ideal sources in Chapter 1 that a circuit can be thought
of as having two parts, a source and a load, each attached to the other at two
terminals such that power flows from the source to the load. It is important to note



•

•

•

that the term source used in this context (and throughout this chapter) is a
generalization of the source terms (i.e., ideal, practical, dependent, and independent)
defined in Chapter 1. Figure 1.1 shows two circuit diagrams in which each circuit is
divided into two parts, a source and a load. Essentially, the load is that circuit portion
of interest to the analyst. Everything else is, by default, the source for that load. A
simple example and an abstract representation of this perspective are shown in Figure
1.1(a) and (b), respectively. The small circles along the upper and lower wires in
these figures represent connection points between the two one-port networks, the
source and load. Figure 1.1(a) shows a simple practical example of an automotive
battery as the source attached to a headlight as the load. Such figures vary in the
detail with which the source and load are represented. Nonetheless, the impact of the
source on the load is completely determined by the i-υ characteristic of the source. If
the i-υ characteristic is the same for two sources, then the sources are said to be
electrically equivalent. The details inside each source do not matter so far as the load
is concerned.

A network (a circuit or part of a circuit) that has two, and only two, terminals at
which it can attach to other networks, as in Figure 2.28, is known as a one-port
network. Such a network is characterized by the relationship between the current i
through and voltage υ across its terminals for various loads (e.g., open-circuit, short-
circuit). The key concepts are:

Figure 2.28 One-port network

The impact of a one-port source on a one-port load is completely represented by
the i-υ characteristic of the source.

Two one-port networks are electrically equivalent if their i-υ characteristics are
equivalent.

Equivalent networks are those for which the voltage across and current through
their terminals are the same for any load.

This concept of equivalence was introduced for networks of resistors in Chapter 1.
The central idea was that an entire network of resistors can be replaced by a single
equivalent resistor. Here, the concept of equivalence is generalized to networks that
include resistors, ideal sources, and other linear circuit elements.
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Thévenin and Norton Equivalent Circuits

Any one-port linear network, no matter how complicated, can always be represented
by either of two simple equivalent networks, and the transformations leading Page
98to these equivalent representations are easily managed, with a little practice. In this
section, techniques are presented for computing these equivalent networks, which
reveal some simple—yet general—results for linear networks, and are useful for
analyzing basic nonlinear circuits.

H  I  G  H  L  I  G  H  T  S

Any one-port linear network can be represented by either of two simple equiva
network forms. They are:

A Thévenin source, comprised of an independent voltage source υT in series w
a resistor RT, as shown in Figure 2.29.

Figure 2.29 Illustration of Thévenin theorem

A Norton source, comprised of an independent current source iN in parallel w
resistor RN, as shown in Figure 2.30.

Figure 2.30 Illustration of Norton theorem

Moreover, since each of these equivalent network forms is equivalent to the orig
linear network, the forms themselves must be equivalent to each other. As a resu
Thévenin source is interchangeable with its equivalent Norton source, which lead
a solution technique known as source transformation.
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The equivalent network of any specific one-port linear network is comprise
specific values for υT and RT, or iN and RN, which are known as:

Thévenin voltage υT.

Thévenin equivalent resistance RT.

Norton current iN.

Norton equivalent resistance RN.

In addition, for any specific linear source network RT = R n and υT = i n 
Furthermore, the specific values of υT and iN are the open-circuit voltage VOC ac
and the short-circuit current ISC through, respectively, the source network termin
Read on to learn how to compute their values for various cases.
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Linearity, Thévenin’s Theorem, and Norton’s Theorem
In general, the criteria for a linear function are:

Superposition: If y1 = f (x1) and y2 = f (x2), then y1 + y2 = f (x1 + x2).

Homogeneity: If y = f (x), then αy = f (αx).

where x is the function input and y is the function output.

Linear networks obey the same rules. Superposition implies that each source
(e.g., x1 and x2) makes its own independent contribution (e.g., y1 and y2) to each
current and voltage in a network, and that the total value of each current and voltage
is the sum (e.g., y1 + y2) of these contributions.

Homogeneity implies that the contribution due to any one source scales linearly
with the value of the source. For example, if the contribution due to source x1 is y1,
then the contribution due to the same source doubled 2x1 is also doubled 2y1, where α
= 2 is an example scaling factor.

In general, to determine if a network is linear, it is necessary to verify that these
two criteria are satisfied for all possible inputs, or at least to verify a range of inputs
within which the network is linear. Luckily, it is not always necessary to verify



superposition and homogeneity directly. A sufficient, but not necessary, alternative
condition is:

Any network composed of linear elements only is itself linear. Common linear

elements are ideal sources, resistors, capacitors, and inductors.   

The essence of Sections 2.5 is captured in the statement of two very important
theorems about linear networks.

Thévenin’s Theorem  

When viewed from its terminals, any linear one-port network may be
represented by an equivalent circuit consisting of an ideal voltage source υT in
series with an equivalent resistance RT.

Norton’s Theorem  

When viewed from its terminals, any linear one-port network may be
represented by an equivalent circuit consisting of an ideal current source iN in
parallel with an equivalent resistance RN.

The next few sections illustrate how to compute RT (and its equivalent RN), υT, and
iN. The only way to master the computation of Thévenin and Norton equivalent
circuits is by patient repetition.Page 100

Computation of RT or RN: Networks Without Dependent
Sources
The first step to calculate the Thévenin (or Norton) equivalent resistance of a one-
port linear source network with no dependent sources is to identify the two terminals



(e.g., a and b) of the source network. Sometimes just the one-port source network is
given in a problem, in which case the network terminals should be readily apparent.
Other times a complete circuit is given such that it is necessary to define and/or
identify the load and, by default, the source network. In Figure 2.31, the resistor Ro is
chosen as the load such that terminals a and b define the one-port (two-terminal)
connection between the load and the source network.

Figure 2.31 Computation of Thévenin resistance

The second step is to remove the load and set all independent sources in the
source network to zero; that is, replace all independent voltage sources with short-
circuits and all independent current sources with open-circuits. The source network
of Figure 2.31 is shown with the voltage source replaced by a short-circuit.

Finally, apply series and parallel equivalent resistance substitutions to find the
effective equivalent resistance “seen” by the load Ro across terminals a and b. For
example, in the circuit of Figure 2.32, R1 and R2 are in parallel since they are
connected between the same two nodes, b and c. The total resistance between
terminals a and b is simply:



(2.24)

(2.25)

Figure 2.32 Equivalent resistance seen by the load

When series and parallel equivalent resistance substitutions are not sufficient,
find RT by attaching an independent voltage source υ to the source network
terminals, finding the current i through the voltage source, and computing υ⁄i , which
is, by definition, the equivalent resistance. For example, consider the resistor network
between terminals a and b shown in Figure 2.33. Notice that there are no series nor
parallel connections in this network. To determine RT a voltage source υ attached
across terminals a and b results in a current i through the voltage source. Then, RT is
simply:

Figure 2.33 A general method of determining the Thévenin resistance



(2.26)

Figure 2.33 shows a particularly well known network in which the resistors are
neither in series nor in parallel.

Computation of RT or RN: Networks With Dependent
Sources
When a dependent source is present in the source network, it is not possible to
calculate the Thévenin equivalent resistance RT directly after setting independent
sources to zero. The result of that method would be a network of resistors with one or
more dependent sources still present. Dependent sources must not be set to zero.
Instead, as above, one must rely on the definition of equivalent resistance:

As depicted in Figure 2.33, the equivalent resistance between two terminals of an
arbitrary resistive network can be found by attaching a voltage source υ across those
terminals, solving for the current i, and computing the ratio υ⁄i. This approach also
applies for source networks containing resistors and dependent sources. Thus, when
the source network contains a dependent source, follow the steps below to find
RT.Page 101

Step 1: Set independent sources to zero. Replace them with short- and open-circuits.

Step 2: Attach an independent voltage source υS across the source network terminals.

Step 3: Compute the current iS through the voltage source, as in Figure 2.33.

Step 4: Compute RT = υS⁄iS.

If the original source network has no independent sources, this method will still
work. Finally, to apply Thévenin’s or Norton’s theorem to circuits containing
dependent sources, the following rule must be obeyed.

Each dependent source and its associated dependent variable must be
collocated in either the source network or the load when applying Thévenin’s

or Norton’s theorem.   
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(a)
(b)

(a)

(b)

(c)

(2.27)    

 F O C U S  O N  P R O B L E M  S O LV I N G

THÉVENIN RESISTANCE
Use the following steps to compute the Thévenin equivalent resistance of so
networks.

Identify the source network and label its terminals a and b.
Turn off all independent voltage and current sources in the source network, 
replace them with short- and open-circuits, respectively.
For source networks without dependent sources:

Use series and parallel equivalent resistance substitutions to find RT .
When series and parallel equivalent resistance substitutions are 
sufficient, find RT by attaching a voltage source υS to the terminal
produce a current iS through those terminals. Then, RT = υS⁄iS .

For source networks with dependent sources:
Attach an arbitrary independent voltage source υS across the source netw
terminals.
Compute the resulting current iS through the voltage source, as in Fi
2.33.
Compute RT = υS⁄iS .

When a dependent source is present in the source network, its associated depen
variable must also be part of the source network.

The source network and its equivalents are independent of the load and, thus, are
valid for any load. Also, the Thévenin and Norton equivalent resistances are always
equivalent to each other:

As a result, often only the RT notation is used.Page 102
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Examples 2.14 to 2.16 further illustrate the procedure.

EXAMPLE 2.14 Computing RT for a Network Without a Dependent
Source
Problem

Find the Thévenin equivalent resistance “seen” by the load Ro in the circuit of Figure
2.34.

Figure 2.34 Circuit for Example 2.14

Solution
Known Quantities: Resistor and current source values.
Find: The Thévenin equivalent resistance RT.

Schematics, Diagrams, Circuits, and Given Data: R1 = 20 Ω; R2 = 20 Ω; iS = 5 A;
R3 = 10 Ω; R4 = 20 Ω; R5 = 10 Ω.

Analysis: Refer to Figure 2.34 and the steps in the Focus on Problem Solving box,
“Thévenin Resistance.”

The source network is everything except the load Ro; remove it. The source
network terminals are marked a and b.
Turn off the current source and replace it with an open-circuit. The result is
shown in Figure 2.35.



3.

Figure 2.35 Equivalent circuit with current source set to zero

There are four nodes remaining in the source network and no dependent source.
Clearly, R1 and R2 are in parallel since they sit between nodes d and b. Their
parallel equivalent resistance is in series with R3. Thus, there are two parallel
resistances from c → b: R3 + (R1 ∥ R2) and R4. Finally, the equivalent resistance
from a → c → b is:

Comments: The network in this example is drawn in an uncomplicated rectangular
manner. However, it is always possible to draw the same network in a more
confusing manner. In any case, it is easy to correctly calculate the equivalent
resistance of the network by focusing on the network as a collection of nodes,
between which sit various resistances, and applying the rules for equivalent parallel
and series resistances.Page 103

EXAMPLE 2.15 Computing RT for a Network Without a Dependent
Source
Problem

Compute the Thévenin equivalent resistance seen by the load Ro in Figure 2.36.Page
104

Figure 2.36 Circuit for Example 2.15

Solution
Known Quantities: Resistor values.
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2.

3.

Find: The Thévenin equivalent resistance RT.

Schematics, Diagrams, Circuits, and Given Data: υS = 5 V; R1 = 2 Ω; R2 = 2 Ω; R3
= 1 Ω; iS = 1 A; R4 = 2 Ω.

Analysis: Refer to Figure 2.36 and the steps in the Focus on Problem Solving box,
“Thévenin Resistance.”

The source network is everything except the load Ro; remove it. The source
network terminals are marked a and b.
Turn off the voltage and current sources and replace them with a short- and
open-circuit, respectively. The result is shown in Figure 2.37.

Figure 2.37 Circuit modified to compute equivalent resistance

There are four nodes remaining in the source network and no dependent source.
Clearly, R1 and R2 are in parallel since they sit between nodes c and b. Their
parallel equivalent resistance is in series with R3. Thus, there are two parallel
resistances from a → b: R3 + (R1 ∥ R2) and R4. Finally, the equivalent resistance
from a → b is:

Comments: Note the similarity of Figures 2.35 and 2.37. Could you have anticipated
these similar resistive networks simply by observing Figures 2.34 and 2.36? Try it.

EXAMPLE 2.16 Computing RT for a Network With a Dependent
Source
Problem

Compute the Thévenin equivalent resistance seen by the load Ro in Figure 2.38.
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Figure 2.38 Circuit for Example 2.16

Solution
Known Quantities: Source and resistor values.
Find: The Thévenin equivalent resistance RT seen by the load Ro .

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.

Analysis: Refer to Figure 2.38 and the steps in the Focus on Problem Solving box,
“Thévenin Resistance.”

The source network is everything except the load Ro; remove it. The source
network terminals are marked a and b.
Turn off the independent voltage source in Figure 2.38 and replace it with a
short-circuit. As a result, R1 and R2 are in parallel and can be replaced by a
single equivalent resistance.
The source network contains a dependent source. Attach an arbitrary
independent voltage source υS across terminals a and b, and label its current iS as
shown in Figure 2.39. Included in this figure are two mesh currents i1 and i2 that
can be used to solve the circuit using mesh analysis.

Figure 2.39 Reduced circuit for Example 2.16

The counterclockwise circulation was chosen so that i1 = iS . Apply KVL around
each mesh:



Note that υ2 = i1 (R1 ∥ R2) such that the equations can be rewritten as:

Collect coefficients of i1 and i2 and substitute values for the resistors.

Divide both sides of the mesh 2 equation by 3 and subtract the result from the mesh 1
equation.
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Comments: This result can be computed by an alternate method. First, remove the
load and compute the open-circuit voltage VOC across terminals a and b. Second,
connect terminals a and b with a wire and compute the short-circuit current ISC
through that wire. Last, compute RT from its definition (see the section highlights):

Try it. Does it work?

Computing the Thévenin Voltage
This section describes the computation of the Thévenin voltage υT for an arbitrary
linear network containing sources, both independent and dependent, and linear
resistors. The Thévenin voltage is defined as follows:

The Thévenin voltage υT is equal to the open-circuit voltage υOC across the

source network terminals.   



(2.28)

1.
2.
3.

(b)

4.

To compute υ T , it is sufficient to remove the load from the source network and
compute the open-circuit voltage across the source network terminals. Figure 2.40
illustrates that the open-circuit voltage υOC and the Thévenin voltage υT are the same.
That is, when terminals a-b are open, the current i through RT is zero, thus, the
voltage across RT is also zero. KVL around the network gives

Figure 2.40 Equivalence of open-circuit and Thévenin voltage

F O C U S  O N  P R O B L E M  S O LV I N G    

THÉVENIN VOLTAGE
Follow the steps below to compute the Thévenin voltage for a source network.

Identify the source network and label its terminals (e.g., a and b).
Define the open-circuit voltage υOC across those terminals.
(a) For source networks with at least one independent source: Apply 
preferred method (e.g., node analysis) to solve for υOC.

For source networks without an independent source: The open-cir
voltage υOC is simply zero even when a dependent source is present.

The Thévenin equivalent voltage υT of the source network is, by definition, υ



The actual computation of the open-circuit voltage is best illustrated by
examples. As shown again in Figure 2.41, the equivalent resistance from a → c → b
is given by RT = R3 + R1 ∥ R2.

Figure 2.41 Circuit for illustration of open circuit voltage calculation

To compute υOC, remove the load Ro, as shown in Figure 2.42, and observe that
the current through R3 must be zero. Thus, R1 and R2 are in series and, as Page
106illustrated in Figure 2.43, υOC is equal to the voltage across R2, which can be
found by voltage division in the series loop υS → R1 → R2 → υS.

Figure 2.42 Open circuit voltage calculation - details

Figure 2.43 Open circuit voltage calculation - details

Now, consider, side by side, the original circuit and the circuit with the source
network replaced by its Thévenin equivalent, as shown in Figure 2.44. The current io
through the load Ro must be the same in both circuits.



(2.29)

1.

2.

Figure 2.44 Two circuits with equivalent source networks for the load Ro

Notice that the latter portion of this expression is rather complicated. However, if you
focus on the source network alone, it is often possible, with some practice, to readily
determine RT and υT, by observation, and then apply Ohm’s law to the simplified
version of the original circuit to find the same complicated expression for io.
Practice! Practice!! Practice!!!

It is possible for υT to be zero. In such a case, RT may still be nonzero even
though RT is defined by υT = i n RT. The implication is that when υT is zero, iN may
also be zero, and vice versa, allowing finite, nonzero values for RT. In this case the
Thévenin equivalent of the source network is a simple resistor RT. There are two
other exceptional cases:

When υT and RT are both zero, iN can be any value. Such a source network is
trivial, being equivalent to a short-circuit. Do you see why?
When iN is zero and RT is infinitely large, υT can be any value. Such a source
network is also trivial, being equivalent to an open-circuit. Do you see why? If
not, see the next section “Computing the Norton Current.”

Examples 2.17 to 2.19 further illustrate the process of finding υT.
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EXAMPLE 2.17 Computing υT for a Network With One Independent
Source
Problem



1.

2.
3.

Compute the open-circuit voltage υOC in the circuit of Figure 2.45.

Figure 2.45 Circuit for Example 2.17

Solution
Known Quantities: Source voltage, resistor values.
Find: Open-circuit voltage υOC .

Schematics, Diagrams, Circuits, and Given Data: υS = 12 V; R1 = 1 Ω; R2 = 10 Ω;
R3 = 10 Ω; R4 = 20 Ω.

Analysis: Refer to Figure 2.45 and the steps in the Focus on Problem Solving box,
“Thévenin Voltage.”

In this problem, the source network is given as everything to the left of terminals
a and b.
The open-circuit voltage υOC is across terminals a and b, as shown in the figure.
There are four nodes in the network. Node b is selected as the reference with a
voltage υb = 0. Another node is fixed at υS by the voltage source. For the other
two nodes, nodal analysis will yield two KCL equations in the two unknown
node voltages, υ and υa. Apply KCL to obtain the following two equations:

Collect terms to find:



Substitute numerical values and write the equations in matrix form as:

Solving the above matrix equations yields υ = 10.6 V and υa = 7.1 V. Thus, υOC
= υa − 0 = 7.1 V.

Comments: In problems involving Thévenin’s theorem it can be unclear whether the
circuit is to be viewed as a source network plus load or as just a source network. A
common mistake would be to assume that R4 is the load in this example even though
there is no mention of a load. The fact that the voltage drop across R4 is given as the
open-circuit voltage υOC indicates that the entire circuit to the left of terminals a and
b is to be treated as the source network.
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EXAMPLE 2.18 Computing υT and RT for a Network With Two
Independent Sources
Problem

Find the Thévenin equivalent of the source network and use it to compute the load
current i in the circuit of Figure 2.46.

Figure 2.46 Circuit for Example 2.18

Solution
Known Quantities: Source and resistor values.
Find: υT and RT for the source network and the load current i.



1.
2.
3.

•

•

Schematics, Diagrams, Circuits, and Given Data: υS = 24 V; iS = 3 A; R1 = 4 Ω; R2
= 12 Ω; R3 = 6 Ω.

Analysis: Refer to Figure 2.46 and the steps in the Focus on Problem Solving box,
“Thévenin Voltage.”

R3 is the load. Everything else is the source network.
The open-circuit voltage υOC is defined in Figure 2.48.
Solve for RT and υT of the source network, and use them to find the load current
i.

Find RT: Set both voltage and current sources to zero and replace them with
short- and open-circuits, respectively, as shown in Figure 2.47. The resulting
equivalent resistance between terminals a and b is simply RT = R1 ∥ R2 = 4
∥ 12 = 3 Ω.

Figure 2.47 Circuit for Example 2.18 with sources set to zero

Find υT: The circuit shown in Figure 2.48 has only three nodes. Node b is
selected as the reference with a voltage υb = 0. Of the remaining two nodes,
one is fixed at a voltage υS by the voltage source. Thus, only a single node
equation is needed for a solution:

Figure 2.48 Equivalent circuit for calculation of open circuit voltage for
Example 2.18



•

•

•

•

•

Substitute numerical values to find: υa = υ OC = 27 V. Of course, the
Thévenin voltage υT is the open-circuit voltage υOC across terminals a and b.

Find i: Construct the Thévenin equivalent of the source network and reattach
the load R3, as shown in Figure 2.49. The load current is easily computed
using voltage division.

Figure 2.49 Equivalent circuit

Comments: Equivalent circuit analysis has several key advantages. By reducing any
complicated linear source network to a simple structure, one can quickly determine:

The voltage across and current through any load.

The maximum possible load current υT⁄RT (for loads approaching short-
circuits).

The maximum possible load voltage υT (for loads approaching open-
circuits).

The value of the load that gives maximum power transfer to the load (see
Sections 2.6).
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EXAMPLE 2.19 Computing υT for a Network With a Dependent
Source
Problem



1.

2.

3.

Find the Thévenin voltage υT of the source network seen by the load Ro in Figure
2.50.

Figure 2.50 Circuit for example 2.19

Solution
Known Quantities: Source and resistor values.
Find: υT for the source network.

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.

Analysis: Refer to Figure 2.50 and the steps in the Focus on Problem Solving box,
“Thévenin Voltage.” This circuit is identical to the one from Example 2.16, where the
Thévenin equivalent resistance RT seen by Ro was found to be 8 kΩ. In this example,
the Thévenin voltage υT seen by Ro is found.

The source network is everything except the load Ro; remove it. The source
network terminals are marked a and b.
Define the open-circuit voltage υOC as in Figure 2.51.

Figure 2.51 Circuit of Example 2.19 with load resistance removed

The resulting circuit has two series loops sharing one common node c. Define
the voltage υ3 across R3. Then KVL around the middle portion of the circuit
yields:



4.

Voltage division can be applied to the series loop on the left to solve for υ2.

Voltage division can also be applied to the series loop on the right to find υ3 in
terms of υ2.
Page 110Plug these values into the KVL equation to find:

The Thévenin voltage is υT = υOC = 1 V.

Computing the Norton Current
The Norton current, very similar in concept to the Thévenin voltage, is defined as:

The Norton current iN is equal to the short-circuit current iSC through the

source network terminals.   

Consider an arbitrary linear one-port network and its Norton equivalent, each
attached to a short-circuit, as shown in Figure 2.52. The current iSC through the short-
circuit is exactly the Norton current iN because all the source current must pass
through the short-circuit. This simple observation implies the basic method for
finding the Norton current for any arbitrary linear source network. Attach a short-
circuit wire to its terminals to determine the Norton current through the wire.



1.
2.
3.

•

•

4.

Figure 2.52 Illustration of Norton equivalent circuit

 F O C U S  O N  P R O B L E M  S O LV I N G

NORTON CURRENT
Follow the steps below to compute the Norton current for a source network.

Identify the source network and label its terminals (e.g., a and b).
Define the short-circuit current iSC across those terminals.
For source networks with at least one independent source:

Apply any preferred method (e.g., node analysis) to solve for iSC.
For source networks without an independent source:

The short-circuit current iSC is simply zero even when a dependent sourc
present.

The Norton current iN of the source network is, by definition, iSC.

Consider the circuit of Figure 2.53, shown with a short-circuit attached to the
source network (i.e., in place of the load). The short-circuit current iSC can be found
easily using any of the solution techniques presented in this chapter. Both node and
mesh analysis work very well here.

Figure 2.53 Computation of Norton current

In terms of the mesh currents i1 and i2 , the KVL mesh equations are:



Collect terms to find:

Page 111Multiply the mesh 2 equation by ( R 1 + R 2)⁄R2 and add the result to the
mesh 1 equation to find:

Finally, multiply both sides of the equation by R2 to obtain:

Alternatively, in terms of the node voltage υ, the one KCL node equation is:

Multiply both sides of the equation by R1 R2 R3 and collect terms to find:

or

Finally, the short-circuit current is:

Of course, the results are the same for both methods. Great! Thus, the Norton current
iN is:



Why solve for iSC twice, using two separate methods? When time allows, it is always
a good idea to validate your results!

Examples 2.20 and 2.21 further illustrate the process of finding iN.

EXAMPLE 2.20 Computing iN for a Network With Two Independent
Sources
Problem

Determine the Norton current iN and the Norton equivalent for the network in Figure
2.54.

Figure 2.54 Circuit for Example 2.20

Solution
Known Quantities: Source voltage and current; resistor values.
Find: Norton current i n = iSC; Equivalent resistance RT.

Schematics, Diagrams, Circuits, and Given Data: υS = 6 V; iS = 2 A; R1 = 6 Ω; R2 =
3 Ω; R3 = 2 Ω.
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Assumptions: Assume the reference node is at the bottom of the circuit.
Analysis: Refer to Figure 2.54 and the steps in the Focus on Problem Solving box,
“Norton Current.”



•

(a)

(b)

(c)

(d)

(e)

Find iN: In Figure 2.55, the source network terminals a and b are defined and
a short-circuit wire is attached to them. Mesh analysis would work very well
in this problem (do you see why?), but node analysis will also work, and this
circuit provides a good opportunity to practice the use of a “supernode,” as
discussed earlier in this chapter.

Figure 2.55 Supernode in Circuit for Example 2.20

There are three nodes in this circuit. The reference node is labeled in the
figure.

There are two nonreference nodes labeled υ1 and υ2.

There is one voltage source in the circuit; thus, only one of the node
voltage variables is independent. The other variable is dependent.

Apply KCL at the boundaries of the supernode shown in the figure to
find:

υ2 is the primary objective since υ 2 = i SC R 3. Use the constraint
equation to substitute for υ1 in the supernode equation.

Form the common denominator R1R2R3 for the bracketed term and find:



(f)

•

Finally, the short-circuit current is given by:

Find RT: To compute the Thévenin equivalent resistance, set the independent
voltage and current sources to zero and replace them with short- and open-
circuits, respectively. The resulting resistor network is shown in Figure 2.56.
It is easy to see that RT = R1 ∥ R 2 + R3 = 6 ∥ 3 + 2 = 4 Ω.

Figure 2.56 Circuit of Example 2.20 with sources set to zero

The Norton equivalent of the original source network is shown in Figure 2.57.

Figure 2.57 Norton equivalent network

Comments: Superposition is a reasonable alternative method for solving for iSC. Take
another look at Figure 2.55 and note that current division will quickly yield the
component of iSC due to the current source iS. Also note that voltage division will
quickly yield the component of υ2, and then by Ohm’s law the component of iSC, due
to the voltage source υS.



1.

2.
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EXAMPLE 2.21 Computing iN for a Network With a Dependent
Source
Problem

Find the Norton current iN of the source network seen by the load Ro in Figure 2.58.

Figure 2.58 Circuit for Example 2.21

Solution
Known Quantities: Source and resistor values.
Find: iN for the source network.

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.

Assumptions: Assume the reference node is at the bottom of the circuit.
Analysis: Refer to Figure 2.58 and the steps in the Focus on Problem Solving box,
“Norton Current.” This circuit is identical to the one from Example 2.19, where the
Thévenin voltage seen by Ro was found to be 1 V. In this example, the Norton current
iN seen by Ro is found.

The source network is everything except the load Ro; remove it. The source
network terminals are marked a and b.
Define the short-circuit current iSC as in Figure 2.59.



3.

4.

Figure 2.59 Defining the reference node

The resulting circuit has three nonreference nodes; however, the voltage of one
is known while the voltages of the other two are both determined by υ2. Thus,
there is only one independent variable υ2, which can be found by applying KCL
at node υ2.

Page 114Plug in values for the resistors and multiply both sides of the equation
by the common denominator to get:

or

To find iSC apply KCL at the wire junction directly above R2.

Plug in for υ2 to find

Comments: Note that the circuit in this example is identical to the one used in
Examples 2.16 and 2.19. In these three example problems, the Thévenin equivalent
resistance RT , the Thévenin voltage υT, and the Norton current iN were found to be 8
kΩ, 1 V, and 0.125 mA, respectively, for the same source network. Although all three



(2.30)

values were found by independent means, the result is that υT = i n ⋅ RT . Check it
out! Amazing!! Read on to learn about a powerful and popular (among students)
solution technique based upon this important relationship.

Source Transformations
The Norton and Thévenin theorems state that any linear one-port network has an
equivalent representation as a voltage source in series with a resistance (a Thévenin
source), or as a current source in parallel with a resistance (a Norton source), as
illustrated in Figure 2.60. It follows that the Thévenin and Norton equivalents of a
specific source network are themselves equivalent and can be interchanged. That is, a
Thévenin source can be transformed into a Norton source, and vice versa. The
parameter values are related by:

Figure 2.60 Simplified equivalent representations of a linear one-port
network

    

The Thévenin source in the shaded box in Figure 2.61 may be replaced by its Norton
equivalent. The computation of iSC is straightforward since a simple current divider
may be used to compute the short-circuit current. Observe that the short-circuit
current is the current through R3; therefore,



(2.31)

Figure 2.61 Result of source transformation

Page 115which is the identical result obtained for the same circuit in the preceding
section. Source transformations can be very useful, if employed correctly. Figure
2.62 shows how to recognize subnetworks that are amenable to these
transformations. Example 2.22 illustrates the procedure.

Figure 2.62 Networks amenable to source transformation

EXAMPLE 2.22 Source Transformations
Problem

Use source transformations to find the Norton equivalent of the network seen by the
load Ro, as shown in Figure 2.63.



Figure 2.63 Circuit for Example 2.22

Solution
Known Quantities: Source voltages and current; resistor values.
Find: Thévenin equivalent resistance RT; Norton current iN = iSC .

Schematics, Diagrams, Circuits, and Given Data: υ1 = 50 V; iS = 0.5 A; υ2 = 5 V; R1
= 100 Ω; R2 = 100 Ω; R3 = 200 Ω; R4 = 160 Ω.

Assumptions: Assume the reference node is at the bottom of the circuit.
Analysis: Highlight key terminals in the circuit to emphasize the Thévenin and
Norton sources present in the circuit, as shown in Figure 2.64. The Thévenin source
consisting of υ1 and R1, which appears between terminals a″ and b″, can be replaced
with a Norton source consisting of a current source υ1⁄R1 in parallel with R1.
Similarly, the Thévenin source between terminals a′ and b′ can be replaced with a
Norton source consisting of a current source υ2⁄R3 in parallel with R3. Both of these
transformations are shown in Figure 2.65. The order of elements in parallel can be
interchanged without changing the behavior of the overall circuit, as is shown in
Figure 2.66(a) with numerical values of the elements included.Page 116

Figure 2.64 Identifying Norton and Thevenin equivalents in the circuit



Figure 2.65 Converting all equivalent pairs to Norton form

The three current sources in parallel can be replaced by a single equivalent 0.025-A
current source (0.5 − 0.025 − 0.5 = 0.025 A) directed downward, and the three
parallel resistors 200 ∥ 100 ∥ 100 can be replaced by a single equivalent 40-Ω
resistor, as shown in Figure 2.66(b).

Figure 2.66(a) Transformed, but not yet simplified, circuit

Figure 2.66(b) Simplified circuit

The Norton source on the left can be transformed into a Thévenin source such
that the 40-Ω resistor is in series with the 160-Ω resistor and the current source is
transformed into a 0.025 A × 40 Ω = 1-V voltage source. Finally, combine the two
series resistors to form a single equivalent 200-Ω resistor and transform the resulting
Thévenin source into an equivalent Norton source with a 0.005-A current source
directed downward, as shown in Figure 2.67.



(2.32)

Figure 2.67 Equivalent circuit

Comments: The Thévenin equivalent resistance seen by the load Ro in Figure 2.63 is
easily computed once each current and voltage source is set to zero such that:

which is the same (as it must be) as the Thévenin equivalent resistance seen by Ro in
Figure 2.67.Page 117

It is not always possible to use source transformations to simplify an entire
network to a Norton or Thévenin source as was done in this example. However,
source transformations can often be used to partially simplify a network so that
another solution method is readily applied.

Experimental Determination of Thévenin and Norton
Equivalents
Thévenin and Norton equivalent networks are often used as linear models of practical
devices, such as batteries, power supplies, voltmeters, and ammeters, over a limited
range of operation. While it is usually not possible nor feasible, because of the
internal complexity of the devices, to determine those models analytically, simple
experimental methods can be used instead. In practice, it is very useful to measure,
for example, the equivalent internal (Thévenin) resistance of an instrument, so as to
understand its operating limits and power requirements. Essentially, the linear model
of a device is completely determined by its Thévenin (open-circuit) voltage υT and its
Norton (short-circuit) current iN. The equivalent internal (Thévenin) resistance RT is

In cases where the short-circuit current can be measured directly by an ammeter,
Figure 2.68 illustrates the measurement of the short-circuit current and the open-



(2.33)

circuit voltage. The figure clearly illustrates that the finite meter resistances rA and rV
must be accounted for in the computation of the short-circuit current iSC and the
open-circuit voltage υOC, respectively.

Figure 2.68 Measurement of open-circuit voltage and short-circuit current

Page 118See the section in Chapter 1 on measurement devices to confirm that the
“true” short-circuit current iN and the “true” open-circuit voltage υT are related to the
measured values iSC and υOC by:

where RT is the Thévenin equivalent resistance across terminals a and b of the
unknown network. For an ideal ammeter, the internal resistance rA is zero (a short-
circuit). For an ideal voltmeter, the internal resistance rV is infinite (an open-circuit).
The two expressions in Equations 2.22 determine the “true” Thévenin and Norton
equivalent networks using imperfect measurements of the short-circuit current and
the open-circuit voltage, provided that the internal meter resistances are known. In



practice, when the equivalent resistance seen by a voltmeter is much smaller than rV,
the measured υOC will closely approximate the “true” υOC. Likewise, when the
equivalent resistance seen by an ammeter is much larger than rA, the measured iSC
will closely approximate the “true” iSC.

It is often not advisable to measure iSC directly with an ammeter since its
magnitude is not known. An ammeter is designed to approximate a short-
circuit when inserted in a network, such that a large current may result and
destroy an overcurrent protection fuse and perhaps damage the ammeter itself.

An alternative to measuring iSC directly is to collect data along the device load line
and extrapolate iSC from that data. Experimental load line data can be acquired by
inserting resistive loads between the device terminals. The first load should be an
open-circuit to determine directly the open-circuit voltage. The second load should
be very large and followed by successively smaller loads. The load voltage can be
measured by a voltmeter and the load current deduced by applying Ohm’s law to the
resistive load. For an ideal linear device, these data points will trace a straight line
from the intersection with the voltage axis (υOC) to the intersection with the current
axis, which is the short-circuit current iSC. In practice, experimental errors should be
accounted for by using the load line data to compute a “best fit” trendline.

FOCUS ON MEASUREMENTS



Experimental Determination of Thévenin Equivalent
Networks
Problem:
Determine the Thévenin equivalent of an unknown source network from
measurements of open-circuit voltage and short-circuit current.

Solution:
Known Quantities—Short-circuit current iSC, open-circuit voltage υOC, ammeter
internal resistance rA, and voltmeter internal resistance rV.

Find—Equivalent resistance RT; Thévenin voltage υT = υOC.

Schematics, Diagrams, Circuits, and Given Data—Measured υOC = 6.5 V;
measured iSC = 3.25 mA; rA = 25 Ω; rV = 10 MΩ.
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Assumptions—The unknown network is linear containing ideal sources and resistors
only. The short-circuit current was able to be measured directly using an ammeter
without damaging the instrument or its fuse.
Analysis—The unknown circuit shown in Figure 2.69 is replaced by its Thévenin
equivalent and is connected to an ammeter to measure the short-circuit current and to
a voltmeter to measure the open-circuit voltage. Ohm’s law can be applied to the
current measurement to find:



Figure 2.69 Experimental set-up for measurement of short-circuit current
and open-circuit voltage

Voltage division can be applied to the voltage measurement to find:

These expressions can be solved for υT to yield:

Or

Since rV is typically on the order of 106 times larger than rA, one or both of the
fractions in the previous expression will be negligible for a given RT. Under the
assumption that RT ≪ r V the above expression is approximated by:



Under the assumption that RT ≫ r A the above expression is instead approximated
by:

If both assumptions are true, the Thévenin equivalent resistance is approximated by:

which is the calculation that many inexperienced users make for every measurement,
regardless of the relative values of RT, rA, and rV. Of course, RT is not known a priori
so it is important to consider whether either or both of the limiting assumptions is
reasonable.

Consider the example measurement data listed above. The measured values of the
short-circuit current and open-circuit voltage are:

If both limiting assumptions are made, then the Thévenin equivalent resistance RT
between terminals a and b of the unknown network is approximately:

This value is 80 times larger than rA but 5,000 times smaller than rV. Thus, one might
expect that the impact of rA is more significant than the impact of rV for this
particular network.

If only RT ≪ r V is assumed, then using the appropriate expression above yields:

Page 120which is a 1.25% change from 2.0 kΩ. If only RT ≫ r A is assumed, then
using the appropriate expression above yields:



which is a negligibly small 0.02% change from 2.0 kΩ. If neither limiting
assumption is made, then RT is:

As expected it is important in this example to include the impact of rA when
calculating the “true” value of RT. The impact of rV on the calculation is negligible.

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent resistance of the circuit below, as seen by the load
resistor Ro.

Page 121Find the Thévenin equivalent resistance seen by the load resistor Ro in the
following circuit.

Answers: RT = 2.5 kΩ; RT = 7 Ω



CHECK YOUR UNDERSTANDING
For the circuit below, find the Thévenin equivalent resistance seen by the load
resistor Ro.

For the circuit below, find the Thévenin equivalent resistance seen by the load
resistor Ro.

CHECK YOUR UNDERSTANDING
Find the open-circuit voltage υOC for the circuit of Figure 2.45 if R1 = 5 Ω.
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Answers: RT = 4.23 kΩ; RT = 7.06 Ω

Answer: 4.8 V



CHECK YOUR UNDERSTANDING
With reference to Figure 2.41, find the load current io by mesh analysis if υS = 10 V,
R1 = R3 = 50 Ω, R2 = 100 Ω, and R0 = 150 Ω.

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent of the source network seen by the load resistor Ro.

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent of the source network seen by the load resistor Ro.

Answer: 28.57 mA

Answers: RT = 30 Ω; υOC = υT = 5 V



CHECK YOUR UNDERSTANDING
Repeat Example 2.20, using mesh analysis. Note that in this case one of the three
mesh currents is known, and therefore the complexity of the solution will be
unchanged.Page 123

2.6 MAXIMUM POWER TRANSFER
The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
load. The Thévenin and Norton models imply that some of the power generated by
the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power can
be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what is the value of the load resistance that will absorb maximum
power from the source? The answer to these questions is contained in the maximum
power transfer theorem, which is the subject of this section.

The model employed in the discussion of power transfer is illustrated in Figure
2.70, where a practical source is represented by means of its Thévenin equivalent
circuit. The power absorbed by the load Po is:

Answers: RT = 10 Ω; υOC = υT = 0.704 V



(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Figure 2.70 Power transfer between source and load

and the load current is:

Combining the two expressions, the load power can be computed as

The expression for Po can be differentiated with respect to Ro and set to zero to find
the value of Ro that gives the maximum power absorbed by the load. (Here, υT and RT
are assumed constant.)

Plug in for Po and solve to obtain:

Thus, at the maximum value of Po the following expression must be satisfied.



(2.39)

(2.40)   

The solution of this equation is:

Thus, to transfer maximum power to a load, the equivalent source and load
resistances must be matched, that is, equal to each other. Figure 2.71 depicts a plot
of the load power divided by υT 2 versus the ratio of Ro to RT. Note that this value is
maximum when R o = RT .Page 124

Figure 2.71 Graphical representation of maximum power transfer

This analysis shows that to transfer maximum power to a load, given a fixed
equivalent source resistance, the load resistance must match the equivalent source
resistance. What if the problem statement were reversed such that the maximum
power transfer to the source resistance is sought for a fixed load resistance? What
would be the value of the source resistance that maximizes the power transfer in this
case? The answer can be found by solving the Check Your Understanding exercises
at the end of the section.

A problem related to power transfer is that of source loading. This phenomenon,
which is illustrated in Figure 2.72, may be explained as follows: When a practical
voltage source is connected to a load, the source current through the load will cause a
voltage drop across the internal source resistance υint; as a consequence, the voltage
actually seen by the load will be somewhat lower than the open-circuit voltage of the



(2.41)

(2.42)

source. As stated earlier, the open-circuit voltage is the Thévenin voltage. The extent
of the internal voltage drop within the source depends on the amount of current
drawn by the load. With reference to Figure 2.72, this internal drop is equal to iRT,
and therefore the load voltage will be

Figure 2.72 Source loading effects

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
current is denoted by iint in Figure 2.72. Thus the load will receive only part of the
short-circuit current (the Norton current) available from the source:

It is therefore desirable to have a very large internal resistance in a practical current
source. Refer to the discussion of practical sources in Chapter 1 to see that these
sources are themselves Thévenin and Norton equivalent sources.Page 125

EXAMPLE 2.23 Maximum Power Transfer



Problem

Use the maximum power transfer theorem to determine the increase in power
delivered to a loudspeaker resulting from matching the speaker resistance to the
amplifier source resistance, as depicted in the simplified model of Figure 2.73.

Figure 2.73 A simplified model of an audio system

Solution
Known Quantities: Source equivalent resistance RT; unmatched speaker load
resistance RU; matched loudspeaker load resistance RM.

Find: Difference between power delivered to loudspeaker with unmatched and
matched loads, and corresponding percentage increase.
Schematics, Diagrams, Circuits, and Given Data: RT = 8 Ω; RU = 16 Ω; RM = 8 Ω.

Assumptions: The amplifier can be modeled as a linear resistive device.
Analysis: Consider connecting (unwittingly) an 8-Ω amplifier to a 16-Ω speaker. The
power delivered to the speaker can be computed using voltage division as follows:

and the load power is then computed to be

Repeat the calculation for the case of a matched 8-Ω speaker resistance RM. The new
load voltage υM and the corresponding load power PM are calculated as follows:



and

The increase in load power is therefore
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Comments: In practice, an audio amplifier and a speaker are not well represented by
the simple resistive models used in this example. Circuits that are appropriate to
model amplifiers and loudspeakers are presented in later chapters. The audiophile
can find further information concerning hi-fi circuits in Chapter 6.

CHECK YOUR UNDERSTANDING
A practical voltage source has an internal resistance of 1.2 Ω and generates a 30-V
output under open-circuit conditions. What is the smallest load resistance we can
connect to the source if we do not wish the load voltage to drop by more than 2
percent with respect to the source open-circuit voltage?

A practical current source has an internal resistance of 12 kΩ and generates a 200-
mA output under short-circuit conditions. What percentage drop in load current will
be experienced (with respect to the short-circuit condition) if a 200-Ω load is
connected to the current source?

Repeat the derivation leading to equations 2.30 for the case where the load resistance
is fixed and the source resistance is variable. That is, differentiate the expression for
the load power Po with respect to RS instead of Ro. What is the value of RS that
results in maximum power transfer to the load?

Answers: 58.8 Ω; 1.64%; R s = 0



1.

2.

3.

4.

5.

2.1

CONCLUSION
This chapter provides a practical introduction to the analysis of linear resistive
circuits and the important two-step problem-solving method of simplifying, and then
solving. The emphasis on examples is important at this stage since familiarity with
basic circuit analysis techniques greatly eases the task of learning more advanced
concepts. In this chapter, a student should have mastered five analysis methods,
summarized as follows:

Recognizing nodes and learning the source-load perspective are important first
steps toward acquiring the ability to see meaningful structure in circuit diagrams.
Node voltage and mesh analysis are analogous in concept. They are generally
applicable to the circuits analyzed in this book and are amenable to solution by
matrix methods.
The principle of superposition is an important concept as well as a useful
simplification method in problem solving.
Thévenin and Norton equivalent networks are also important concepts as well as
invaluable simplification methods for problem solving. Mastery of these two
simplification methods is essential for successful further study.
Maximum power transfer. Equivalent circuits provide a very clear explanation of
how power is transferred from a source to a load.

The material covered in this chapter is essential to the development of more
advanced techniques throughout the remainder of the book.
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HOMEWORK PROBLEMS
Sections 2.2–2.3: Nodal and Mesh Analyses

Use node voltage analysis to find the voltages V1 and V2 for the circuit of
Figure P2.1.



2.2

2.3

2.4

Figure P2.1

Using node voltage analysis, find the voltages V1 and V2 for the circuit of
Figure P2.2.

Figure P2.2

Using node voltage analysis in the circuit of Figure P2.3, find the voltage υ
across the 0.25-Ω resistance.

Figure P2.3

Using node voltage analysis in the circuit of Figure P2.4, find the current i
through the voltage source.



2.5

a.

2.6

2.7

Figure P2.4

In the circuit shown in Figure P2.5, the mesh currents are

Figure P2.5

Determine the branch currents through:

R1. b. R2. c. R3.

In the circuit shown in Figure P2.5, the source and node voltages are

Determine the voltage across each of the five resistors.Page 128

Use nodal analysis in the circuit of Figure P2.7 to find Va. Let R1 = 12 Ω, R2 =
6 Ω, R3 = 10 Ω, V1 = 4 V, V2 = 1 V.



2.8

2.9

2.10

Figure P2.7

Use mesh analysis in the circuit of Figure P2.7 to find Va. Let R1 = 12 Ω, R2 =
6 Ω, R3 = 10 Ω, V1 = 4 V, V2 = 1 V.

Use nodal analysis in the circuit of Figure P2.9 to find υ1, υ2, and υ3. Let R1 =
10 Ω, R2 = 8 Ω, R3 = 10 Ω, R4 = 5 Ω, iS = 2 A, υS = 1 V.

Figure P2.9

Use nodal analysis in the circuit of Figure P2.10 to find the voltages at nodes
A, B, and C. Let V1 = 12 V, V2 = 10 V, R1 = 2 Ω, R2 = 8 Ω, R3 = 12 Ω, R4 = 8
Ω.

Figure P2.10



2.11

2.12

2.13

Use nodal analysis in the circuit of Figure P2.11 to find Va and Vb . Let R1 = 10
Ω, R2 = 4 Ω, R3 = 6 Ω, R4 = 6 Ω, V1 = 2 V, V2 = 4 V, I1 = 2 A.

Figure P2.11

Find the power delivered to the load resistor R0 for the circuit of Figure P2.12,
using node voltage analysis, given that R1 = 2 Ω, RV = R2 = R0 = 4 Ω, VS = 4 V,
and IS = 0.5 A.

Figure P2.12

For the circuit of Figure P2.13, write the node equations necessary to find
voltages V1, V2, and V3. Note that G = 1⁄R = conductance. From the results,
note the interesting form that the matrices [G] and [I] have taken in the
equation [G][V] = [I] where



2.14

2.15

Figure P2.13

Write the matrix form of the node voltage equations again, using the following
formulas:
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Using mesh analysis, find the currents i1 and i2 for the circuit of Figure P2.14.

Figure P2.14

Using mesh analysis, find the currents i1 and i2 and the voltage across the
upper 10-Ω resistor in the circuit of Figure P2.15.



2.16

2.17

Figure P2.15

Using mesh analysis, find the voltage υ across the 3-Ω resistor in the circuit of
Figure P2.16.

Figure P2.16

Using mesh analysis, find the currents I1 , I2 , and I3 in the circuit of Figure
P2.17 (assume polarity according to I2).



2.18

2.19

Figure P2.17

Using mesh analysis, find the voltage V across the current source in Figure
P2.18.

Figure P2.18
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For the circuit of Figure P2.19, write the mesh equations in matrix form.
Notice the form of the [R] and [V] matrices in [R][I] = [V], where

Write the matrix form of the mesh equations again by using the following
formulas:



2.20

2.21

a.

b.

Figure P2.19

For the circuit of Figure P2.20, use mesh analysis to find four equations in the
four mesh currents. Collect coefficients and solve for the mesh currents.

Figure P2.20

In the circuit in Figure P2.21, assume the source voltage and source current
and all resistances are known.

Write the node equations required to determine the node voltages.

Write the matrix solution for each node voltage in terms of the known
parameters.



2.22
a.

b.

2.23

Figure P2.21

For the circuit of Figure P2.22 determine:

The most efficient way to solve for the voltage across R3. Prove your case.

The voltage across R3.

Figure P2.22

Figure P2.23 represents a temperature measurement system, where temperature
T is linearly related to the voltage source VS2 by a transduction constant k. Use
nodal analysis to determine the temperature.



2.24

2.25

2.26

In practice, Vab is used as the measure of temperature, which is introduced to
the circuit through a Page 131temperature sensor modeled by the voltage
source VS2 in series with RS.

Figure P2.23

Use mesh analysis to find the mesh currents in Figure P2.24. Let R1 = 10 Ω, R2
= 5 Ω, V1 = 2 V, V2 = 1 V, Is = 2 A.

Figure P2.24

Use mesh analysis to find the mesh currents in Figure P2.25. Let R1 = 6 Ω, R2
= 3 Ω, R3 = 3 Ω V1 = 4 V, V2 = 1 V, V3 = 2 V.

Figure P2.25

Use mesh analysis to find V4 in Figure P2.26. Let R2 = 6 Ω, R3 = 3 Ω, R4 = 3
Ω, R5 = 3 Ω, υS = 4 V, iS = 2 A.



2.27

2.28

2.29

Figure P2.26

Use mesh analysis to find mesh currents in Figure P2.27. Let R1 = 8 Ω, R2 = 3
Ω, R3 = 5 Ω, R4 = 2 Ω, R5 = 4 Ω, R6 = 3 Ω, V1 = 4 V, V2 = 2 V, V3 = 1 V, V4 = 2
V, V5 = 3 V, V6 = 2 V.

Figure P2.27

Use mesh analysis to find the current i in Figure P2.28. Assume iS = 2 A.

Figure P2.28

Use nodal analysis to find node voltages V1, V2, and V3 in Figure P2.29. Let R1
= 10 Ω, R2 = 6 Ω, R3 = 7 Ω, R4 = 4 Ω, I1 = 2 A, I2 = 1 A.



2.30

2.31

Figure P2.29

Use mesh analysis to find the currents through every branch in Figure P2.30.
Let R1 = 10 Ω, R2 = 5 Ω, R3 = 4 Ω, R4 = 1 Ω, V1 = 5 V, V2 = 2 V.

Page 132

Figure P2.30

Use nodal analysis to find the current through R4 in Figure P2.31. Let R1 = 10
Ω, R2 = 6 Ω, R3 = 4 Ω, R4 = 3 Ω, R5 = 2 Ω, R6 = 2 Ω, I1 = 2 A, I2 = 3 A, I3 = 5
A.



2.32

a.

b.

c.

2.33
a.

b.

c.

2.34

2.35

Figure P2.31

The circuit shown in Figure P2.32 is a simplified DC version of an AC three-
phase wye-wye (Y-Y) electrical distribution system commonly used to supply
industrial loads, particularly rotating machines.

Determine the number of nonreference nodes.

Determine the number of unknown node voltages.

Compute  and υ′
n.

Notice that once υ′
n is known the other unknown node voltages can be

computed directly by voltage division.

Figure P2.32

Using the data of Problem 2.32 and Figure P2.32

Determine the number of meshes.

Compute the mesh currents.

Use the mesh currents to determine υ′
n.

Use the data of Problem 2.32 and Figure P2.32 and the principle of
superposition to determine υ′

n.

Use the data of Problem 2.32 and Figure P2.32 and source transformations to
determine υ′

n.



2.36

2.37

2.38

Use nodal analysis in the circuit of Figure P2.36 to find the three indicated
node voltages and the current i. Assume: R1 = 10 Ω, R2 = 20 Ω, R3 = 20 Ω, R4
= 10 Ω, R5 = 10 Ω, R6 = 10 Ω, R7 = 5 Ω, V1 = 20 V, V2 = 20 V.

Sections 2.4: The Principle of Superposition
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Figure P2.36

With reference to Figure P2.37 determine the current i through R1 due only to
the source VS2.

Figure P2.37

Refer to Figure P2.10 and use the principle of superposition to find the
voltages at nodes A, B, and C. Assume V1 = 12 V, V2 = 10 V, R1 = 2 Ω, R2 = 8
Ω, R3 = 12 Ω, R4 = 8 Ω.



2.39

2.40

2.41

Use the principle of superposition to determine the voltage υ across R2 in
Figure P2.39.

Figure P2.39

Refer to Figure P2.40 and use the principle of superposition to determine the
component of the current i through R3 that is due to VS2.

Figure P2.40

Refer to Figure P2.41 and use the principle of superposition to determine the
current i through R4 due to the current source IS. Assume: R1 = 12 Ω, R2 = 8 Ω,
R3 = 5 Ω, R4 = 3 Ω, VS = 3 V, and IS = 2 A.



2.42

2.43

2.44

2.45

Figure P2.41

Refer to Figure P2.41 and use the principle of superposition to determine the
current i through R4 due to the voltage source VS. Assume: R1 = 12 Ω, R2 = 8
Ω, R3 = 5 Ω, R4 = 3 Ω, VS = 3 V, and IS = 2 A.

Use the principle of superposition node to determine the voltages Va and Vb in
Figure P2.11. Let R1 = 10 Ω, R2 = 4 Ω, R3 = 6 Ω, R4 = 6 Ω, V1 = 2 V, V2 = 4 V,
I1 = 2 A.

Use the principle of superposition to determine the current i through R3 in
Figure P2.44. Let R1 = 10 Ω, R2 = 4 Ω, R3 = 2 Ω, R4 = 2 Ω, R5 = 2 Ω, VS = 10
V, IS = 2 A.

Figure P2.44

Figure P2.23 represents a temperature measurement system, where temperature
T is linearly related to the voltage source VS2 by a transduction constant k. Use
the principle of superposition to determine the temperature.

In practice, the voltage across R3 is used as the measure of temperature, which
is introduced to the circuit through a temperature sensor modeled by the
voltage source VS2 in series with Rs.



2.46

2.47

2.48

Use the principle of superposition to determine the power P supplied by VS in
Figure P2.46. Let R1 = 12 Ω, R2 = 10 Ω, R3 = 5 Ω, R4 = 5 Ω, VS = 10 V, IS = 5
A. (Hint: Is power linear?)
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Figure P2.46

Use the principle of superposition to determine the current io through R1 in
Figure P2.47. Let R1 = 8 Ω, R2 = 2 Ω, R3 = 3 Ω, R4 = 4 Ω, R5 = 2 Ω, V1 = 15 V,
I1 = 2 A, I2 = 3 A.

Figure P2.47

Sections 2.5: Equivalent Networks
Find the Thévenin equivalent of the network seen by the 3-Ω resistor in Figure
P2.48.



2.49

2.50

Figure P2.48

Find the Thévenin equivalent of the network seen by the 3-Ω resistor in Figure
P2.49. Use it and voltage division to find the voltage υ across the 3-Ω resistor.

Figure P2.49

Find the Norton equivalent of the network seen by R2 in Figure P2.50. Use it
and current division to compute the current i through R2. Assume I1 = 10 A, I2
= 2 A, V1 = 6 V, R1 = 3 Ω, and R2 = 4 Ω.

Figure P2.50



2.51

2.52

2.53

Find the Norton equivalent of the network between nodes a and b in Figure
P2.51.

Figure P2.51

Find the Thévenin equivalent of the network seen by R in Figure P2.52 and use
the result to compute the current iR. Assume Vo = 10 V, Io = 5 A, R1 = 2 Ω, R2
= 2 Ω, R3 = 4 Ω, and R = 3 Ω.
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Figure P2.52

Find the Thévenin equivalent resistance seen by the load Ro in Figure P2.53.



2.54

2.55

2.56

Figure P2.53

Find the Thévenin equivalent of the network seen by the load Ro in Figure
P2.54.

Figure P2.54

Find the Thévenin equivalent network seen by the load Ro in Figure P2.55,
where R1 = 10 Ω, R2 = 20 Ω, Rg = 0.1 Ω, and Rp = 1 Ω.

Figure P2.55

A Wheatstone bridge such as that shown in Figure P2.56 is used in numerous
practical applications, such as determining the value of an unknown resistor
RX.



2.57

a.

b.

c.

d.

2.58

2.59

Figure P2.56

Determine V ab = V a − V b in terms of R, RX, and VS. If R = 1 kΩ, V S = 12 V,
and V ab = 12 mV, what is the value of RX?

Thévenin’s theorem can be useful when dealing with a Wheatstone bridge. For
the circuit of Figure P2.57:

Express the Thévenin equivalent resistance seen by the load resistor Ro in
terms of R1, R2, R3, and RX.

Determine the Thévenin equivalent network seen by Ro and use it to
compute the power dissipated by Ro. Assume R o = 500 Ω, V S = 12 V, R1
= R2 = R3 = 1 kΩ, and R X = 996 Ω.

Find the power dissipated by the Thévenin equivalent resistance seen by
Ro.

Find the power dissipated by the entire bridge when Ro is replaced by an
open-circuit.

Figure P2.57
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Find the Thévenin equivalent resistance seen by resistor R3 in the circuit of
Figure P2.5. Compute the Thévenin (open-circuit) voltage and the Norton
(short-circuit) current from node A to node B when R3 is the load.

Find the Thévenin equivalent resistance seen by resistor R4 in the circuit of
Figure P2.10. Compute the Thévenin (open-circuit) voltage and the Norton



2.60

2.61

2.62

2.63

(short-circuit) current from node C to the reference node when R4 is the load.

Find the Thévenin equivalent network seen from node a to b in Figure P2.60.
Let R1 = 10 Ω, R2 = 8 Ω, R3 = 5 Ω, R4 = 4 Ω, R5 = 1 Ω, VS = 10 V, IS = 2 A.

Figure P2.60

Find the Thévenin equivalent resistance seen by R3 in Figure P2.23. Compute
the Thévenin (open-circuit) voltage VT and the Norton (short-circuit) current IN
from node a to node b when R3 is the load.

Find the Norton equivalent of the network seen by R5 in Figure P2.62. Use it
and current division to compute the current through R5. Assume R1 = 15 Ω, R2
= 8 Ω, R3 = 4 Ω, R4 = 4 Ω, R5 = 2 Ω, I1 = 2 A, I2 = 3 A.

Figure P2.62

Find the Norton equivalent of the network seen by R3 in Figure P2.63. Use it to
determine the power dissipated by R3. Assume R1 = 10 Ω, R2 = 9 Ω, R3 = 4 Ω,
R4 = 4 Ω, IS = 2 A.



2.64

2.65

2.66

Figure P2.63

Find the Thévenin equivalent resistance seen by R in Figure P2.64. Compute
the Thévenin (open-circuit) voltage VT and the Norton (short-circuit) current IN
from node a to node b when R is the load. Assume:

Figure P2.64

Find the Norton equivalent network between terminals a and b in Figure P2.65.
Let R1 = 6 Ω, R2 = 3 Ω, R3 = 2 Ω, R4 = 2 Ω, Vs = 10 V, IS = 3 A.

Figure P2.65

Find the Norton equivalent of the network seen by R4 in Figure P2.66. Use it to
determine the current through R4. Assume R1 = 8 Ω, R2 = 5 Ω, R3 = 4 Ω, R4 =
3 Ω, Vo = 10 V, and Io = 2 A.

Figure P2.66



2.67

2.68

2.69
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Find the Norton and Thévenin equivalent networks seen from node a to b in
Figure P2.67. Assume R1 = 12 Ω, R2 = 10 Ω, R3 = 5 Ω, R4 = 2 Ω, iS = 3 A.

Figure P2.67

A real voltage source is modeled in Figure P2.68 as an ideal source VS in series
with a resistance RS. This model accounts for internal power losses found in a
real voltage source. The following data characterizes the real (nonideal)
source:

Figure P2.68

Determine the internal resistance RS and the ideal voltage VS.

Sections 2.6: Maximum Power Transfer
The Thévenin equivalent network seen by a load Ro is depicted in Figure
P2.69. Assume V T = 10 V, RT = 2 Ω, and that the value of Ro is such that
maximum power is transferred to it. Determine:



a.

b.

c.

2.70

a.

b.

c.

2.71

a.

b.

Figure P2.69

The value of Ro.

The power Po dissipated by Ro.

The efficiency (P o⁄P V T ) of the circuit.

The Thévenin equivalent network seen by a load Ro is depicted in Figure
P2.69. Assume V T = 25 V, RT = 100 Ω, and that the value of Ro is such that
maximum power is transferred to it. Determine:

The value of Ro.

The power Po dissipated by Ro.

The efficiency (P o⁄P V T ) of the circuit.

A real voltage source is modeled in Figure P2.68 as an ideal source VS in series
with a resistance RS . This model accounts for internal power losses found in a
real voltage source. A load R is connected across the terminals of the model.
Assume:

Plot the power dissipated in the load as a function of the load resistance.
What can you conclude?

Prove that your conclusion is valid in general.

 

 

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.
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C H A P T E R
3

AC NETWORK ANALYSIS

hapter 3 introduces capacitors and inductors, which are energy
storage elements, and methods for solving circuits that contain them.
This chapter also introduces AC circuits, which contain time-
dependent sinusoidal voltage and current sources, as opposed to DC

circuits, which contain constant sources only. Solutions of AC circuits
containing capacitors and/or inductors result in differential equations
because the i-υ relationships for capacitors and inductors involve time
derivatives. Luckily, the method of phasor analysis can be used to convert
differential equations into algebraic equations, which are much easier to
solve. However, the price (“there is no such thing as a free lunch”) of using
phasor analysis is that the algebraic equations contain complex quantities,
which must be added, subtracted, multiplied, and divided. (Most calculators
can perform these operations.) More important, it is necessary to understand
the meaning of and relationships among complex quantities. With some
practice and patience even those students with no prior experience using
complex numbers will soon become comfortable with phasor analysis.



Sinusoids are an especially important class of signals for two reasons.
First, nearly all residential and industrial electric power is generated,
transmitted, and distributed as a sinusoidal waveform. All turbine-based
power systems (e.g., coal-fired power stations, solar power arrays,
hydroelectric dams, wind turbines) produce periodic rotating motion, which
is represented mathematically by a sinusoid. Page 140Second, all periodic
waveforms (e.g., sawtooth, triangle, square) can be reconstructed as the sum
of component sinusoidal waves (Fourier’s theorem).

Sinusoidal signals (voltages and currents) have three basic
characteristics: amplitude (or magnitude), frequency, and phase (or phase
angle). The frequency of all voltages and currents in an AC circuit is
constant, uniform, and determined by an independent voltage or current
source. As a result, it is not necessary to compute frequency in phasor
analysis. On the other hand, while the amplitude and phase of voltages and
currents in an AC circuit are constant, they are not uniform and are
determined not only by an independent source but also by the elements
present in the circuit. Consequently, AC circuit analysis is concerned with
the computation of the amplitude and phase of one or more voltages and
currents. (DC circuit analysis was only concerned with amplitude.) Phasor
analysis is well suited for AC circuit analysis because a phasor bundles
together amplitude and phase into a single quantity known as a phasor.

In phasor analysis, resistors, capacitors, and inductors are represented as
impedance elements. Impedance allows Ohm’s law to be generalized as a
phasor relationship applicable to resistors, capacitors, and inductors.
Kirchhoff’s laws can also be generalized as phasor relationships.
Consequently, AC circuits can be solved using the same DC methods (e.g.,
voltage division, current division, nodal analysis, superposition, Thévenin’s
and Norton’s theorem, and source transformations) discussed in Chapters 1
and 2. The only difference is that these relationships now involve phasors,
that is, complex quantities.

The average and effective (root-mean-square) amplitude of a waveform
are introduced in this chapter. An effective value represents the equivalent
DC value required to supply or dissipate the same power as the AC
waveform and thus provides a means of comparing different waveforms.

In this chapter and throughout the book, angles are given in units of
radians, unless indicated otherwise.



1.

2.

3.

4.

5.

 Learning Objectives
Students will learn to...

Compute current, voltage, and energy of capacitors and inductors.
Sections 3.1.
Calculate the average and effective (root-mean-square) value of an
arbitrary periodic waveform. Sections 3.2.
Write the differential equation(s) for circuits containing inductors and
capacitors. Sections 3.3.
Convert time-domain sinusoidal voltages and currents to phasor
notation, and vice versa; and represent circuits using impedances
Sections 3.4.
Apply DC circuit analysis methods to AC circuits in phasor form
Sections 3.5.

3.1 CAPACITORS AND INDUCTORS
The ideal resistor was introduced in Chapter 1 as a useful approximation of
many practical electrical devices. However, in addition to resistance, which
always dissipates energy, an electric circuit may also exhibit capacitance and
inductance, which act to store and release energy, in the same way that an
expansion tank and flywheel, respectively, act in a mechanical system.
These two distinct energy Page 141storage mechanisms are represented in
electric circuits by two ideal circuit elements: the ideal capacitor and the
ideal inductor, which approximate the behavior of actual discrete capacitors
and inductors. They also approximate the bulk properties of capacitance and
inductance that are present in any physical system. In practice, any element
of an electric circuit will exhibit some resistance, some inductance, and
some capacitance, that is, some ability to dissipate and store energy.

The energy of a capacitor is stored within the electric field between two
conducting plates, while the energy of an inductor is stored within the
magnetic field of a conducting coil. Both elements can be charged (i.e.,
stored energy is increased) or discharged (i.e., stored energy is decreased).



Ideal capacitors and inductors can store energy indefinitely; however, in
practice, discrete capacitors and inductors exhibit “leakage,” which typically
results in a gradual reduction in the stored energy over time.

MAKE THE CONNECTION

Hydraulic Analog of a Capacitor
If the walls of a vessel have some elasticity, energy is stored in the walls
when the vessel is filled by a fluid or gas (e.g., an inflated balloon). The
ratio of the mass of the fluid or gas to the potential energy stored in the
walls per unit mass is the fluid capacitance of the vessel, a property similar
to electrical capacitance. Figure 3.1 depicts a gas bag accumulator, such as
an expansion tank attached to the hot water line in many residential homes.
The two-chamber arrangement permits fluid to displace a membrane
separating an incompressible fluid (e.g., water) from a compressible fluid
(e.g., air). The analogy shown in Figure 3.1 assumes that the reference
pressure p0 and the reference voltage υ2 are both zero.



Figure 3.1 Analogy between electrical and fluid capacitance

All the relationships for capacitors and inductors exhibit duality, which
means that the capacitor relations are mirror images of the inductor
relations. Examples of duality are apparent in Table 3.1.

Table 3.1 Properties of capacitors and inductors

The Ideal Capacitor
A capacitor is a device that can store energy due to a charge separation. In
general, a capacitor (and thus, capacitance) is present when any two
conducting surfaces are separated by a distance. A simple example is two
parallel plates of shared cross-sectional area A separated by a distance d.
The gap between the plates may be a vacuum or filled with some dielectric
material, such as air, mica, or Teflon. The impact of the dielectric material
on the capacitance is represented by the dielectric constant κ.1 Figure 3.2
depicts a typical configuration and the circuit symbol for a capacitor.



(3.1)

(3.2)

Figure 3.2 Structure of parallel-plate capacitor

The capacitance C of an ideal parallel-plate capacitor such as the one
described above is:

where ε0 = 8.85 × 10−12 F⁄m is the permittivity constant of a vacuum.Page
142

The presence of a dielectric or vacuum between the conducting plates
does not permit charge to pass directly from one plate to the other. However,
if the applied voltage across a capacitor changes, so will the accumulated
charge. Thus, although no charge can literally pass from one plate of an
ideal capacitor directly through to the other, a change in voltage will cause
the accumulated charge to change, which is the equivalent effect of a current
through the capacitor.

At all times the charge separation is proportional to the applied voltage



(3.3)

(3.4)

(3.5)

where the parameter C is the capacitance and is a measure of the ability of
the device to accumulate charge. The unit of capacitance is coulomb per
volt, or farad (F). The farad is an impractically large unit for many common
electronic applications; units of microfarads (1 μF = 10−6 F) and picofarads 

 are more common in practice.

The current through a capacitor is defined as the time rate of change of
its stored charge. That is,

The i-υ relationship for a capacitor is obtained from equations 3.3 by using
equations 3.2 to plug in for qC(t). The result is:

      

Equations 3.4 can be integrated to yield an equivalent i-υ relationship for a
capacitor:

One immediate implication of equations 3.4 is that the current through a
capacitor in a DC circuit is zero. Why? Since the voltage across a capacitor
in a DC circuit must, by definition, be constant, the time derivative of the
voltage must be zero. Thus, equations 3.4 requires the current through the
capacitor to also be zero.

 A capacitor in a DC circuit is equivalent to an open-circuit.

Equations 3.5 indicates that the voltage across a capacitor depends on
the history of the current through it. To calculate that voltage it is necessary
to know the initial voltage V0 (i.e., an initial condition) across the capacitor
at some previous time t0. Then:



(3.6)

(3.7)

The significance of the initial voltage υC(t0) = V0 is simply that at time t0
some charge was stored in the capacitor, resulting in V0 , according to the
relationship Q = Cυ.

Equivalent Capacitance
Just as resistors can be in series and parallel to yield an equivalent
resistance, so capacitors can also be in series and parallel to yield an
equivalent capacitance. The calculation rules are given below.Page 143

For two capacitors in series and parallel, the equivalent capacitances are,
respectively:

Notice that the rule for the equivalent capacitance of two capacitors in series
is the product divided by the sum, which is the same rule used for two
resistors in parallel. Likewise, the equivalent capacitance of two capacitors
in parallel is simply the sum of the two, which is the same rule used for two
resistors in series. The more general rules are illustrated in Figure 3.3.



Figure 3.3 Equivalent capacitance in a circuit

   When calculating equivalent capacitance, capacitors in series
combine like resistors in parallel and capacitors in parallel combine
like resistors in series.

Discrete Capacitors
Actual capacitors are rarely constructed of two parallel plates separated by
air because this configuration either yields very low values of capacitance or
requires very large plate areas. To increase the capacitance (i.e., the ability to
store energy), physical capacitors are often made of tightly rolled sheets of
metal film, with a dielectric (e.g., paper or Mylar) sandwiched in between.
Table 3.2 illustrates typical values, materials, maximum voltage ratings, and
useful frequency ranges for various types of capacitors. The voltage rating is
important because any insulator will break down if a sufficiently high
voltage is applied across it.

Table 3.2 Capacitors

In practice, actual capacitors exhibit some leakage between the plates.
Imperfect construction techniques invariably provide some capability for
charge to pass from one plate to the other. This imperfection is often
represented by an equivalent resistance in parallel with an ideal capacitor.

Energy Storage in Capacitors
The energy stored in a capacitor WC (t) may be derived easily from its
definition as the time integral of power, which is the product of voltage and



(3.8)

(3.9)

current:

Page 144The total energy stored in the inductor is found by integrating the
power, as shown below:

   

Example 3.4 illustrates the calculation of the energy stored in a
capacitor.

FOCUS ON MEASUREMENTS

Capacitive Displacement Transducer and
Microphone



As shown in Figure 3.2, the capacitance of a flat parallel-plate capacitor is:

where ε is the permittivity of the dielectric material, κ is the dielectric
constant, ε0 = 8.854 × 10−12 F/m is the permittivity of a vacuum, A is the
area of each of the plates, and d is their separation. The dielectric constant
for air is κair ≈ 1. Thus, the capacitance of two flat parallel plates of area 1
m2, separated by a 1-mm air gap, is 8.854 nF, a very small value for such
large plates. As a result, flat parallel-plate capacitors are impractical for use
in most electronic devices. On the other hand, parallel-plate capacitors find
application as motion transducers, that is, as devices that can measure the
motion or displacement of an object. In a capacitive motion transducer, the
plates are designed to allow relative motion when subjected to an external
force. Using the capacitance value just derived for a parallel-plate capacitor,
one can obtain the expression

where C is the capacitance in picofarads, A is the area of the plates in square
millimeters, and x is the separation distance in millimeters. Note that the
change in C due to a change in x is nonlinear, since C ∝ 1/x. However, for
small changes in x, the change in C is approximately linear.

The sensitivity S of the transducer is defined as the rate of change in
capacitance C with respect to a change in separation distance x.

Thus, the sensitivity is itself a function of the separation distance, as shown
in Figure 3.4. Note that as x → 0, the slope of C(x) increases and so the
sensitivity S increases as well. Figure 3.4 depicts this behavior for a
transducer with area equal to 10 mm2. This type of capacitive displacement
transducer is used in the popular condenser microphone, in which sound
pressure waves act to displace a thin metallic foil. The change in capacitance
can then be converted to a change in voltage or current by means of a



suitable circuit. An extension of this concept that permits measurement of
differential pressures is shown in Figure 3.5. A three-terminal variable
capacitor is made of two fixed surfaces with a single deflecting plate, often
made of steel, between them. Typically, the fixed surfaces are spherical
depressions ground into glass disks and coated with a conducting material.
Page 145Inlet orifices expose the deflecting plate to the outside fluid or gas.
When the pressure on both sides of the deflecting plate is the same, the
capacitance between terminals b and d, denoted by Cdb , will be equal to
that between terminals b and c, denoted by Cbc . If any pressure differential
exists, the two capacitances will change, with an increase on the side where
the deflecting plate has come closer to the fixed surface and a corresponding
decrease on the other side.

Figure 3.4 Response of a capacitive displacement transducer

A Wheatstone bridge circuit, such as that shown in Figure 3.5, is ideally
suited to precisely balance the output voltage υout when the differential
pressure across the transducer is zero. The output voltage will deviate from
zero whenever the two capacitances are not equal because of a pressure
differential across the transducer. The bridge circuit will be analyzed later.



Figure 3.5 Capacitive pressure transducer and related bridge
circuit

EXAMPLE 3.1 Charge Separation in Ultracapacitors   
Problem

Ultracapacitors are finding application in a variety of fields, including as a
replacement or supplement for batteries in hybrid-electric vehicles. In this
example you will make your first acquaintance with these devices.

An ultracapacitor, or “supercapacitor,” stores energy electrostatically by
polarizing an electrolytic solution. Although it is an electrochemical device
(also known as an Page 146electrochemical double-layer capacitor), there
are no chemical reactions involved in its energy storage mechanism. This
mechanism is highly reversible, allowing the ultracapacitor to be charged
and discharged hundreds of thousands of times. An ultracapacitor can be
viewed as two nonreactive porous plates suspended within an electrolyte,
with a voltage applied across the plates. The applied potential on the
positive plate attracts the negative ions in the electrolyte while the potential
on the negative plate attracts the positive ions. This effectively creates two
layers of capacitive storage, one where the charges are separated at the
positive plate and another at the negative plate.

Recall that capacitors store energy in the form of separated electric
charge. The greater the area for storing charge and the closer the separated
charges, the greater the capacitance. A conventional capacitor gets its area
from plates of a flat, conductive material. To achieve high capacitance, this
material can be wound in great lengths, and sometimes a texture is imprinted
on it to increase its surface area. A conventional capacitor separates its
charged plates with a dielectric material, sometimes a plastic or paper film,
or a ceramic. These dielectrics can be made only as thin as the available
films or applied materials.



An ultracapacitor gets its area from a porous carbon-based electrode
material, as shown in Figure 3.6. The porous structure of this material
allows its surface area to approach 2,000 square meters per gram (m2/g),
much greater than can be accomplished using flat or textured films and
plates. An ultracapacitor’s charge separation distance is determined by the
size of the ions in the electrolyte, which are attracted to the charged
electrode. This charge separation [less than 10 angstroms (Å)] is much
smaller than can be achieved using conventional dielectric materials. The
combination of enormous surface area and extremely small charge
separation gives the ultracapacitor its outstanding capacitance relative to
conventional capacitors.

Figure 3.6 Ultracapacitor structure

Use the data provided to calculate the charge stored in an ultracapacitor
and calculate how long it will take to discharge the capacitor at the
maximum current rate.

Solution
Known Quantities: Technical specifications are as follows:

Find: Charge separation at nominal voltage and time to complete discharge
at maximum current rate.
Analysis: Based on the definition of charge storage in a capacitor, we
calculate



To calculate how long it would take to discharge the ultracapacitor,
approximate the current as:

Since the available charge is 250 C, the time to completely discharge the
capacitor, assuming a constant 25-A discharge, is:

Comments: Ultracapacitors will be explored further in Chapter 5. The
charging and discharging behavior of these devices is examined, taking into
consideration their internal resistance.Page 147

EXAMPLE 3.2 Calculating Capacitor Current From Voltage   

Problem

Calculate the current through a capacitor from knowledge of its terminal
voltage.

Solution
Known Quantities: Capacitor terminal voltage; capacitance value.
Find: Capacitor current.
Assumptions: The initial current through the capacitor is zero.
Schematics, Diagrams, Circuits, and Given Data:

 The terminal voltage is plotted in Figure
3.7.



Figure 3.7 Circuit and voltage response for Example 3.2.

Assumptions: The capacitor is initially discharged: υ(t = 0) = 0.
Analysis: Using the defining differential relationship for the capacitor, we
may obtain the current by differentiating the voltage:

A plot of the capacitor current is shown in Figure 3.8. Note how the current
jumps to 0.5 A instantaneously as the voltage rises exponentially: The
ability of a capacitor’s current to change instantaneously is an important
property of capacitors.



Figure 3.8 Current response for Example 3.2.

Comments: As the voltage approaches the constant value 5 V, the capacitor
reaches its maximum charge storage capability for that voltage (since Q =
Cυ) and no more current flows through the capacitor. The total charge stored
is Q = 0.5 × 10−6 C. This is a fairly small amount of charge, but it can
produce a substantial amount of current for a brief time. For example, the
fully charged capacitor could provide 100 mA of current for a time equal to
5 μs:

Page 148There are many useful applications of this energy storage property
of capacitors in practical circuits.

EXAMPLE 3.3 Calculating Capacitor Voltage From Current

and an Initial Condition   
Problem

Solve for the voltage across a capacitor from knowledge of its current and
initial charge.

Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance
value.
Find: Capacitor voltage as a function of time.
Schematics, Diagrams, Circuits, and Given Data:



The capacitor current is plotted in Figure 3.9(a).

Figure 3.9 Current input and voltage response for Example 3.3.

Assumptions: The capacitor is initially charged such that V0 = υC(t = 0) = 2
V.
Analysis: The integral relationship between voltage and current for a
capacitor can be used to find voltage when current is known.

Page 149

Comments: Once the current stops, at t = 1 s, the capacitor voltage remains
constant because the charge remains constant. That is, υ = Q⁄C = constant =
12 V at t = 1 s. Remember, the final value of the capacitor voltage depends
on two factors: (1) the initial value of the capacitor voltage and (2) the
history of the capacitor current. Figure 3.9(a) and (b) depict the two
waveforms.



EXAMPLE 3.4 Energy Storage in Ultracapacitors
Problem

Determine the energy stored in the ultracapacitor of Example 3.1.

Solution
Known Quantities: See Example 3.1.
Find: Energy stored in capacitor.
Analysis: To calculate the energy, use equations 3.9:

CHECK YOUR UNDERSTANDING
Compare the energy stored in the ultracapacitor of Example 3.4 with a
(similarly sized) electrolytic capacitor used in power electronics
applications. Calculate the energy stored for a 2,000-μF electrolytic
capacitor rated at 400 V.
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CHECK YOUR UNDERSTANDING
Compare the charge separation achieved in the ultracapacitor of Example
3.1 with a (similarly sized) electrolytic capacitor used in power electronics
applications, by calculating the charge separation for a 2,000-μF electrolytic
capacitor rated at 400 V.

Answer: 160 J



CHECK YOUR UNDERSTANDING
Find the maximum current through the capacitor of Example 3.3 if the
capacitor voltage is described by υC(t) = 5t + 3 V for 0 ≤ t ≤ 5 s.

CHECK YOUR UNDERSTANDING
The voltage waveform shown below appears across a 1,000-μF capacitor.
Plot the capacitor current iC(t).

Answer: 0.8 C

Answer: 5 mA



The Ideal Inductor
An inductor is an element that can store energy in a magnetic field within
and around a conducting coil. In general, an inductor (and thus, inductance)
is present whenever a conducting wire is turned to form a loop. A simple
example is a solenoid, which is a narrow and tightly wound coil of length ℓ,
cross-sectional area A, and N turns. Inductors are typically made by winding
wire around a core, which Page 151can be an insulator or a ferromagnetic
material, as shown in Figure 3.10. A current through the coil establishes a
magnetic field through and around the core. In an ideal inductor, the
resistance of the wire is zero.

Figure 3.10 Inductance and practical inductors

The inductance L is defined by the following ratio:



(3.10)

(3.11)

(3.12)

where Φ is the magnetic flux through the inductor core and iL is the current
through the inductor coil. The inductance of an ideal solenoid is:

where μ is the permeability of the core. Another inductor found in many
applications is the toroid, which is also depicted in Figure 3.10. Expressions
for the inductance of toroids with rectangular and circular cross sections are
readily found.

The inductance of a coil is measured in henrys (H) where

Henrys are reasonable units for practical inductors although millihenrys
(mH) are very common and microhenrys (μH) are occasionally found.Page
152

The i-υ relationship for an inductor is derived directly from Faraday’s
law of induction but with the total flux N Φ replaced by Li from the
definition of inductance L. The result is:

   

Equations 3.11 can be integrated to yield an equivalent i-υ relationship for
an inductor:

One immediate implication of equations 3.11 is that the voltage across
an inductor in a DC circuit is zero. Why? Since the current through an
inductor in a DC circuit must, by definition, be constant, the time derivative



(3.13)

(3.14)

of the current must be zero. Thus, equations 3.11 requires the voltage across
an inductor to also be zero.

    An inductor in a DC circuit is equivalent to a short-circuit.

Equations 3.12 indicates that the current through an inductor depends on
the history of the voltage across it. To calculate the current it is necessary to
know the initial current I0 (i.e., an initial condition) through the inductor at
some previous time t0 . Then:

Equivalent Inductance
Just as resistors can be in series and parallel to yield an equivalent
resistance, so inductors can also be in series and parallel to yield an
equivalent inductance. The calculation rules are given below.

For two inductors in series and parallel, the equivalent inductances are,
respectively,

Notice that the equivalent inductance of two inductors in series is simply the
sum of the two, which is the same rule used for two resistors in series.
Likewise, the rule for the equivalent inductance of two inductors in parallel
is the product divided by the sum, which is the same rule used for two
resistors in parallel. The more general rules are illustrated in Figure 3.11.



Figure 3.11 Equivalent inductance in a circuit

   When calculating equivalent inductance, inductors in series
combine like resistors in series and inductors in parallel combine like
resistors in parallel.
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Duality
All the relationships for capacitors and inductors exhibit duality, which
means that the capacitor relations are mirror images of the inductor
relations. Specifically, the roles played by voltage and current in a capacitor
relation are reversed in the analogous inductor relation. For example, the i-υ
relationships for capacitors and inductors, respectively, are:

Notice that the inductor relation is obtained from the capacitor relation by
replacing i with υ and υ with i. It is also necessary, of course, to replace the
capacitance C with the inductance L. Another example of duality is found in
the energy storage relations for capacitors and inductors (see the next
section).

Duality is also at work in other relations not involving voltage and
current explicitly. For example, consider the rules for calculating equivalent
capacitance and equivalent inductance. Capacitors in series combine like



inductors in parallel while capacitors in parallel combine like inductors in
series. Another example of duality is seen in the DC behavior of capacitors
and inductors. In a DC circuit, a capacitor acts like an open-circuit while an
inductor acts like a short-circuit. Other examples of duality can be found in
later chapters. Duality provides a powerful mnemonic for students trying to
memorize equations for a test!

MAKE THE CONNECTION

Hydraulic Analog of an Inductor
Fluid inertance, which is caused by the inertial properties (i.e., the mass) of
a fluid in motion, is analogous to inductance in an electric circuit. It is well
known that a particle in motion possesses kinetic energy; likewise, a fluid in
motion, which consists of a collection of particles, also possesses (i.e.,
stores) kinetic energy. Think of the water flowing out of a fire hose! The
equations that define the analogy are given below:

The figure below depicts the analogy. These analogies and the energy
equations that apply to electric and fluid circuit elements are summarized in
Table 3.3.



(3.15)

(3.16)

Table 3.3 Analogy between electric and fluid circuits

Analogy between fluid inertance and electrical inductance

Energy Storage in Inductors
The energy stored in an inductor WL(t) may be derived easily from its
definition as the time integral of power, which is the product of voltage and
current:

   



Note, once again, the duality with the expression for the energy stored in a
capacitor, in equations 3.9.Page 154

    EXAMPLE 3.5 Calculating Inductor Voltage From
Current
Problem

Calculate the voltage across an inductor from knowledge of its current.

Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.
Schematics, Diagrams, Circuits, and Given Data:

where time t is in milliseconds. The inductor current is plotted in Figure
3.12.



Figure 3.12 Inductor current input.

Assumptions: iL (t = 0) ≤ 0.

Analysis: The voltage across the inductor is obtained by differentiating the
current and multiplying by the inductance L.Page 155

Piecewise differentiating the expression for the inductor current, we obtain

The inductor voltage is plotted in Figure 3.13.

Figure 3.13 Inductor voltage response.

Comments: Note how the inductor voltage has the ability to change
instantaneously!

EXAMPLE 3.6 Calculating Inductor Current From Voltage   

Problem



Use a time plot of the voltage across an inductor and its initial current to
calculate the current through it as a function of time.

Solution
Known Quantities: Inductor voltage; initial condition (current at t = 0);
inductance value.
Find: Inductor current.
Schematics, Diagrams, Circuits, and Given Data:

The voltage across the inductor is plotted in Figure 3.14(a).

Figure 3.14 Inductor voltage input and current response.

Analysis: Use the integral i-υ relationship for an inductor to obtain the
current through it:

Page 156The inductor current is plotted in Figure 3.14b.



Comments: Note that the inductor voltage can change instantaneously!

          EXAMPLE 3.7 Energy Storage in an Ignition Coil
Problem

Determine the energy stored in an automotive ignition coil.

Solution
Known Quantities: Inductor current initial condition (current at t = 0);
inductance value.
Find: Energy stored in inductor.
Schematics, Diagrams, Circuits, and Given Data: L = 10 mH; iL = I0 = 8 A.

Analysis:

Comments: A more detailed analysis of an automotive ignition coil is
presented in Chapter 4 to accompany the discussion of transient voltages
and currents.

CHECK YOUR UNDERSTANDING
The waveform below shows the current through a 50-mH inductor. Plot the
inductor voltage υL(t).
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CHECK YOUR UNDERSTANDING
Find the maximum voltage across a 10-mH inductor when the inductor
current is iL (t) = −2t(t − 2) A for 0 ≤ t ≤ 2 s and zero otherwise.

CHECK YOUR UNDERSTANDING
Calculate and plot the inductor energy and power for a 50-mH inductor
subject to the current waveform shown below. What is the energy stored at t
= 3 ms?

Answer: 40 mV



(3.17)

3.2 TIME-DEPENDENT SOURCES
Time-dependent periodic waveforms appear frequently in practical
applications and are a useful approximation of many physical phenomena.
For example, electric power worldwide is generated and delivered to
industrial and household users in the form Page 158of periodic (i.e., 50- or
60-Hz sinusoidal) voltages and currents. The methods developed in this
chapter apply to many engineering systems, not just to electric circuits, and
will be encountered again in the study of dynamic systems and control
systems.

In general, a periodic waveform x(t) satisfies the equation

where T is the period of x(t). Figure 3.15 illustrates a number of periodic
waveforms that are typically encountered in the study of electric circuits.
Waveforms such as the sine, triangle, square, pulse, and sawtooth waves are

Answer: 



provided in the form of voltages (or, less frequently, currents) by
commercially available signal generators.

Figure 3.15 Periodic waveforms

In this chapter, time-varying voltages and currents and, in particular,
sinusoidal (AC) sources are introduced. Figure 3.16 illustrates the
convention employed to denote time-dependent sources.

Figure 3.16 Time-dependent sources

Sinusoids constitute the most important class of time-dependent
waveforms. A generalized sinusoid is defined as



(3.18)

(3.19)

(3.20)

where A is the peak amplitude, ω the angular frequency, and ϕ the phase
angle. Figure 3.17 summarizes the definitions of A, ω, and ϕ for the
waveforms

Figure 3.17 Sinusoidal waveforms

where

The value of the phase shift ϕ is a measure of the time shift of a sinusoid
relative to a reference sinusoid, typically a cosine waveform. For example, a
sine wave can be represented in terms of a cosine wave by introducing a
phase shift of π⁄2 radians:

Notice that a negative phase angle represents a time shift to the right.



(3.21)

(3.22)

(3.23)

Although angular frequency ω, in units of radians per second, is
commonly used to denote sinusoidal frequency, it is also common to employ
the cyclical Page 159frequency f in units of cycles per second, or hertz (Hz).
In music theory, a sinusoid is a pure tone; an A-440, for example, is a tone at
a frequency of 440 Hz. The cyclical frequency is related to the angular
frequency by the factor 2π.

Average (Mean) Value
Various measures exist for quantifying the amplitude of a time-varying
electric signal. One of these measures is the average or mean value (also
called the DC value). The average value of a waveform is computed by
integrating it over a suitably chosen period, as shown below.

    

where T is the period of integration. Figure 3.18 illustrates the average
amplitude of x(t) over a period of T seconds. It can be shown that the
average or mean value of a sinusoid is zero.

Figure 3.18 Average of a waveform

This result might be perplexing at first: If any sinusoidal voltage or current
has zero average value, is its average power equal to zero? Clearly, the
answer must be no. Otherwise, it would be impossible to illuminate
households and streets and power industrial machinery with 60-Hz
sinusoidal current!



(3.24)

(3.25)

Effective or RMS Value
A more useful measure of the amplitude of an AC waveform x(t) is the root-
mean-square (or rms) value, which takes into account fluctuations of a
waveform about its mean, and which is defined as:

    

Notice that the argument of the square root is the mean value of x2(t).
Thus, the RMS value is literally the square root of the mean of the square.
Also note that the unit of the “mean of the square” is the unit of x2(t). Thus,
the unit of the “root of the mean of the square” xrms is the unit of x(t).

Why are rms values useful? Consider two similar circuits, each with a
resistor R connected to a source: one with a DC source, and one with an AC
source, as shown in Figure 3.19. The effective value of the AC source is the
DC source value such that the average power dissipated by the resistor R is
the same in both circuits. Thus, the effective value of an AC source provides
a clear Page 160measure of the power associated with the source, which can
now be simply expressed as:

Figure 3.19 AC and DC circuits used to illustrate the concept of
effective and rms values

But how is this discussion of effective values related to rms values? It can be
shown that the effective value of an AC source is equivalent to its rms



(3.26)

value! That is,

MAKE THE CONNECTION

Why Do We Use Units of Radians for the Phase
Angle ϕ?
The engineer finds it frequently more intuitive to refer to the phase angle in
units of degrees; however, to use consistent units in the argument (the
quantity in the parentheses) of the expression x(t) = A sin(ωt + ϕ), we must
express ϕ in units of radians, since the units of ωt are [ω] · [t] = (rad/s) · s =
rad. Thus, we will consistently use units of radians for the phase angle ϕ in
all expressions of the form x(t) = A sin(ωt + ϕ). To be consistent is
especially important when one is performing numerical calculations; if one
used units of degrees for ϕ in calculating the value of  at a
given t, the answer would be incorrect

The rms, or effective, value of an AC source is the DC value that
produces the same average power to be dissipated by a common

resistor.   



The effective (or rms) value of a voltage or current is indicated by the
notation Vrms, or  Example 3.9 shows that the ratio of the rms
value of a sinusoid to its peak value is  In general, the same ratio
for a different type of waveform, such as a square wave, triangle wave, or
sawtooth wave, will yield a different value. Table 3.4 lists the value of this
ratio for these waveforms. The table also lists a Fourier sine series for each
waveform to demonstrate that each is a summation of sine waves.

Table 3.4 Ratio of RMS value to peak value
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EXAMPLE 3.8 Average Value of Sinusoidal Waveform   
Problem

Compute the average value of the signal x(t) = 10 cos(100t).

Solution
Known Quantities: Functional form of the periodic signal x(t).
Find: Average value of x(t).
Analysis: The signal is periodic with period T = 2π⁄ω = 2π⁄100; thus we need
to integrate over only one period to compute the average value:



Comments: The mean value of a sinusoidal is zero, independent of its
amplitude and frequency.

EXAMPLE 3.9 RMS Value of Sinusoidal Waveform   
Problem

Compute the rms value of the sinusoidal current i(t) = I cos(ωt).

Solution
Known Quantities: Functional form of the periodic signal i(t).
Find: RMS value of i(t).
Analysis: Applying the definition of rms value in equations 3.26, we
compute

At this point, we recognize that the integral under the square root sign is
equal to zero (see Example 3.8), because we are integrating a sinusoidal
waveform over two periods. Hence,



Page 162where I is the peak value of the waveform i(t).

Comments: The rms value of a sinusoidal signal is independent of its
amplitude and frequency.

CHECK YOUR UNDERSTANDING
Express the voltage υ(t) = 155.6 sin(377t + π⁄6) in cosine form. Note that the
angular frequency ω = 377 rad/s is equivalent to the cyclical frequency 60
Hz, which is the frequency of the electric power generated in North
America.
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CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the sawtooth waveform
shown below.

Answer: υ(t) = 155.6 cos(377t − π⁄3)

Answers: υavg = 2.5 V; υrms = 2.89 V



CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the triangle waveform
shown below.

CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the clipped cosine waveform
shown below.

3.3 CIRCUITS CONTAINING ENERGY
STORAGE ELEMENTS

Answers: 

Answers: xavg = 1/π; xrms = 0.5



The resistive circuits studied in Chapters 1 and 2 had no dependence on
time. The sources had constant (DC) values and the i-υ relationship for
resistors (Ohm’s law) had no time dependence. As a result, all the equations
obtained in those chapters were algebraic and the voltages and currents were
all constants. If a sinusoidal source is present in a resistive circuit, the
voltages and currents in the circuit will no longer be constant but instead
will vary sinusoidally in time with the same frequency and phase angle as
the source. Also, just as with DC circuits, the amplitudes of the voltages and
currents will depend upon the resistive network. A circuit with a sinusoidal
source is known as an AC circuit.

    Purely resistive AC circuits offer no new challenges compared to
DC circuits. However, when capacitors and/or inductors are introduced into
an AC circuit, the resulting behavior is significantly more interesting and
challenging. The reason is that the i-υ relationships for capacitors and
inductors are time dependent. The result, in general, is that the amplitudes
and phase angles of voltages and currents in the circuit can be different from
those of the source. Consequently, in the solution of AC circuits it is
necessary to keep track of two variables (amplitude and phase) for each
voltage and current. By contrast, when solving DC circuits, it was necessary
to keep track of only one variable (amplitude). Note that the frequency of all
voltages and currents in an AC circuit equals the source frequency.

To clarify this discussion, consider the simple series loop shown in
Figure 3.20, which consists of a known sinusoidal voltage source, a resistor,
and a capacitor. Apply KVL around the loop to obtain the governing
equation:



(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Figure 3.20 Circuit containing energy storage element

The so-called state variable for this circuit is the voltage υC across the
capacitor. The state variables in a circuit are the voltages across capacitors
and the currents Page 164through inductors. Note that capacitors in parallel
share the same state variable. The same is true for inductors in series.
Capacitors in series and inductors in parallel can also be reduced to a single
equivalent capacitance and inductance, respectively, with a single state
variable for each equivalent capacitance and inductance. As a result, the
number of state variables in a circuit is equal to the number of irreducible
capacitors and inductors. In general, it is a good idea to learn to solve for
state variables first because they play an important role in the complete
solution of time-dependent circuits (see Chapter 4). It is also true that the
state variables completely describe the behavior of a circuit. All other
variables can be found readily from them.

To find υC , it is necessary to employ the constitutive i-υ relationships for
the resistor and the capacitor, which are, respectively:

Notice that the resistor current and the capacitor current are the same for this
simple loop. Thus:

Plug this result into equations 3.27 to obtain:

Divide both sides of equations 3.30 to find the standard form:



(3.32)

•

The result is a first-order, linear, ordinary differential equation. The solution
for υC has two parts, as usual: (1) a transient solution, and (2) a steady-state
solution. The complete solution of the differential equation is the sum of
these two parts. It is important to note that once the complete solution for υC
is found, it is a simple matter to find i(t) and υR(t) from equations 3.28 and
3.29, respectively.

It is also possible to find similar differential equations in the variables
i(t) and υR(t). For i(t), the result is:

Notice that the left-hand side of this equation is identical to that found in
equations 3.31. Only the right-hand side is different. The differential
equation for υR(t) follows the same rule. The constant RC has units of time
and is a common example of an important class of parameters known as
time constants.

For more complicated circuits, the process is largely the same except
that KVL and KCL may have to be applied multiple times and the circuit
may contain multiple resistors, capacitors, and inductors. The result will be
multiple first- and perhaps second-order linear, ordinary differential
equations. It is not difficult to imagine that for even modest circuits the
procedure and results may become quite complicated and cumbersome. In
fact, in some cases the above procedure would effectively require that all
state variables in a circuit be solved simultaneously, when only one
particular voltage or current may be sought.Page 165

To avoid these complications, an alternative approach is to dispense with
time derivatives as often as possible and solve for the steady-state
(particular) and transient (homogeneous) solutions separately using the
following two methods:

Steady-state solution. To solve for the steady-state solution, Euler’s
formula is employed to represent sinusoids as complex exponentials and
to eliminate the time derivatives in the constitutive i-υ relations for
capacitors and inductors. The result is algebraic equations with complex
constants and variables. These equations can be solved using standard



•

algebra techniques. The only complication is that the arithmetic involves
complex numbers rather than real numbers. As an added bonus, many of
the intermediate details of this approach need only be understood but not
actually executed during the solution of a circuit problem.

Transient solution. Whenever possible, Thévenin’s and Norton’s
theorems are used to simplify complicated circuits and to focus on
solving for the state variables. The result will often be simple first- or
second-order circuit archetypes with previously established solutions,
such that no formal solving of differential equations is necessary. This
approach is beneficial whenever all capacitors and inductors can be
isolated within a relatively simple load. The remainder of the circuit will
then be comprised of resistors and independent sources and can be
simplified using techniques explored in Chapter 2. The transient solution
is explored in greater detail in Chapter 4.
The remainder of this chapter is focused on steady-state solutions of

circuits like the one in Figure 3.20 and others more complicated. Although
these steady-state solutions do not contain sinusoidal functions explicitly, it
is important to keep in mind that they nonetheless represent sinusoids and
can be converted to explicit sinusoids using Euler’s formula in the end. A
typical depiction of these sinusoidal solutions is shown in Figure 3.21. The
dark black curve represents the sinusoidal voltage source that is driving the
circuit in Figure 3.20. The gray curve represents the sinusoidal voltage
across the capacitor responding to the driving source. Notice that the
capacitor voltage is a scaled version of the source and is time shifted (i.e.,
phase shifted) with respect to it. The driving source acts as the reference
against which all other voltages and currents are compared. The results
shown in Figure 3.21 are typical of a steady-state solution and can be
summarized as follows:

Figure 3.21 Waveforms for the AC circuit of Figure 3.20



In a linear circuit with a sinusoidal source, all voltages and currents
are sinusoids at the same frequency as the source. These voltages and
currents are scaled versions of the source and may be shifted in time

(i.e., phase shifted) with respect to it.   

CHECK YOUR UNDERSTANDING
Find the differential equation for υR(t) for the circuit in Figure 3.20.
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3.4 PHASOR SOLUTION OF CIRCUITS WITH
SINUSOIDAL SOURCES
In this section, an efficient notation is introduced to represent sinusoidal
signals as complex numbers and to eliminate the need for solving
differential equations. (A reasonably complete treatment of complex algebra
is presented in Appendix A, including examples and exercises.) The
remainder of the chapter assumes that the reader is familiar with both
rectangular and polar forms of complex numbers; with the conversion
between these two forms; and with the basic operations of addition,
subtraction, multiplication, and division of complex numbers.

Any sinusoidal signal may be represented either in the time domain:

or in the frequency domain (also known as the phasor) form:

Answer: 



The argument jω indicates the ejωt time dependence of the phasor.

A phasor is a complex number consisting of a magnitude equal to the
peak amplitude of a sinusoid and a phase angle equal to the phase shift of
the same sinusoid with respect to a reference sinusoid, usually a source. A
phase shift in the frequency domain is equivalent to a time delay in the time
domain.

Since the sinusoidal source frequency ω is common to all phasors in an
AC circuit, the complex exponential e jωt is not expressed explicitly. Thus,
it is important to note the specific frequency ω of each sinusoidal source in a
circuit.

Leonhard Euler (1707–1783) (Oxford Science Archive/Heritage Images/The
Print Collector/Alamy Stock Photo)

Euler’s Formula
Named after the famous Swiss mathematician Leonhard Euler, this formula
is the basis of phasor notation. A phasor is similar to a vector in that it has
an amplitude and direction in the complex plane. Also, just as a vector can
be decomposed into x and y components, a phasor can be decomposed into
real and imaginary components. Euler’s formula defines a complex



(3.33)

(3.34)

exponential ejθ as a unit phasor in the complex plane, with real and
imaginary components given by:

where  is the imaginary unit. The symbol θ is simply a place holder
in Euler’s formula. Any quantity or expression can be substituted for θ in the
formula. In the next section on phasors, θ takes on the physical meaning of
the phase shift of a sinusoid.

The dark black arrow in Figure 3.22 represents the complex exponential
in the complex plane. The real and imaginary components of the complex
exponential are shown as cos θ and sin θ, respectively. These two
components and the complex exponential itself form the three legs of a right
triangle. The Pythagorean theorem requires:

Figure 3.22 Euler’s formula

Thus, the magnitude of ejθ is unity, which is why it is also known as a unit
phasor. The angle of inclination of the unit phasor is θ. As θ increases or
decreases the unit phasor rotates counterclockwise or clockwise,
respectively, about the origin of the complex plane.Page 167

It is difficult to overstate the power of the visualization presented in
Figure 3.22. For example, when θ = π⁄2, the unit phasor points straight up
along the imaginary axis. Thus:



(3.35)

(3.36)

(3.37)

(3.38)

where the notation  indicates a magnitude of 1 and a phase angle θ = π⁄2.
When θ = π, the unit phasor points to the left along the negative real axis.
Thus:

Likewise:

Each of these expressions equates the two polar forms on the left to the
rectangular form on the far right side. In polar form, a phasor is represented
by a magnitude (or amplitude) and a phase angle, whether as Aejθ or . In
rectangular form, a phasor is represented by real and imaginary components.
Table 3.5 lists a few other commonly encountered phasors in polar and
rectangular forms.

Table 3.5 Polar and rectangular forms of common phasors

In general, the polar and rectangular forms are related by:

In effect, Euler’s identity is simply a trigonometric relationship in the
complex plane.

Phasors



(3.39)

(3.40)

(3.41)

1.

2.

3.

To see how complex numbers can be used to represent sinusoidal signals,
rewrite the expression for a generalized sinusoid in light of Euler’s equation:

Notice that it is possible to express any sinusoid as the real part of a
complex exponential with an argument of ωt + θ and a magnitude or
amplitude of A. The expression can be further simplified by remembering
that the angular frequency ω is common to all voltages and currents. Thus,
the ejωt portion of the complex exponential is understood to be present in
every phasor, but not written explicitly. The same perspective is taken with
regard to the real part operator Re so that the complex exponential is
simplified as shown below.

In this expression, the relational operator ⇒ indicates equality but with the
real part operator Re and the sinusoidal portion ejωt of the complex
exponential hidden Page 168but understood implicitly. In general, this
simplification will be used to express a phasor in polar and rectangular form
as:

The reason for this simplification is convenience, as will become
apparent in the examples. It is imperative to remember that the ejωt term is
still present implicitly.

In Sections 3.5, a new quantity known as impedance is introduced.
Impedance is defined as the ratio of a voltage phasor to a current phasor. At
this point, it is worth mentioning five key rules of complex arithmetic that
will be used to resolve complex multiplication and division:

The magnitude of the ratio of two phasors is the ratio of the individual
magnitudes. For example, |V⁄I| = |V|⁄|I|.
The phase angle of the ratio of two phasors is the difference of the
individual phase angles. For example, .
The complex conjugate  of a phasor A is found by changing the sign
of the imaginary unit, j, everywhere in the phasor. The magnitude of the



4.

5.

(3.42)

(3.43)

complex conjugate of a phasor equals the magnitude of the phasor
itself. The angle of the complex conjugate of a phasor equals the
negative of the angle of the phasor itself.
The product of a phasor and its complex conjugate is a real number
equal to the square of the magnitude of the phasor, which is equal to the
sum of the square of the real part of the phasor and the square of the
imaginary part of the phasor.
The angle of a phasor is the inverse tangent of the ratio of the imaginary
part to the real part. That is, 

A bold uppercase font indicates a phasor quantity.

Superposition of AC Signals
As explained later, Example 3.10 explores the effect of having two
sinusoidal sources of different phase and amplitude, but of the same
frequency, in a circuit. It is important to realize that the approach used there
does not apply to the superposition of two (or more) sinusoidal sources that
are not at the same frequency. The more general case of two sinusoidal
sources of two different frequencies is explored here.

Consider the circuit depicted in Figure 3.23 with a load excited by two
current sources in parallel.

Figure 3.23 Superposition of AC

By KCL, the load current is equal to the sum of the two source currents; that
is,



(3.44)

(3.45)

So far, so good. However, the expression in equations 3.43 cannot be
expressed in phasor form without masking the fact that i1 has a different
frequency than that of i2. For example, it may be tempting to write:

Page 169However, it is imperative to remember that the  and  terms
are present implicitly in I1 and I2, respectively, as shown below.

The two phasors of equations 3.44 cannot be added, but must be kept
separate; the only unambiguous expression for the load current is equations
3.43. To analyze a circuit with multiple sinusoidal sources at different
frequencies, it is necessary to solve the circuit separately for each source and
add the individual answers. Example 3.11, later in the Examples section,
illustrates the use of AC superposition to determine the response of a circuit
with two sources of different frequencies.

3.5 IMPEDANCE
The i-υ relationships of resistors, capacitors, and inductors can be expressed
in phasor notation. As phasors, each i-υ relationship takes the form of a
generalized Ohm’s law:

V = IZ

where the phasor quantity Z is known as impedance. For a resistor, inductor,
and capacitor, the impedances are, respectively:

Combinations of resistors, inductors, and capacitance can be represented by
a single equivalent impedance of the form:



where R(jω) and X(jω) are known as the “resistance” and “reactance”
portions, respectively, of the equivalent impedance Z. Both terms are, in
general, functions of frequency ω.

The admittance is defined as the inverse of impedance.

Consequently, all the DC circuit relations and techniques introduced in
Chapter 2 can be extended to AC circuits. Thus, it is not necessary to learn
new techniques and formulas to solve AC circuits; it is only necessary to
learn to use the same techniques and formulas with phasors.

Generalized Ohm’s Law
The impedance concept reflects the fact that capacitors and inductors act as
frequency-dependent resistors. Figure 3.24 depicts a generic AC load. If this
load impedance is excited by a sinusoidal voltage source VS phasor and the
load impedance is Z, which represents the effect of a generic network of
resistors, capacitors, and inductors. The resulting current I is a phasor
determined by:



(3.47)

(3.46)   

Figure 3.24 The impedance concept

Page 170A specific expression for the impedance Z is found for each
specific network of resistors, capacitors, and inductors attached to the
source. To determine Z it is first necessary to determine the impedance of
resistors, capacitors, and inductors using the definition of impedance:

   

Once the impedance of each resistor, capacitor, and inductor in a network is
known, they can be combined in series and parallel (using the usual rules for
resistors) to form an equivalent impedance “seen” by the source.



(3.48)

(3.49)

(3.50)

(3.51)

Impedance of a Resistor
The i-υ relationship for a resistor is, of course, Ohm’s law, which in the case
of sinusoidal sources is written as (see Figure 3.25):

Figure 3.25 For a resistor, υR(t) = iR(t) R

where  and  are phasors.

Both sides of equations 3.48 can be divided by ejωt to yield:

The impedance of a resistor is then determined from the definition of
impedance:

   

The impedance of a resistor is a real number; that is, it has a magnitude R
and a zero phase, as shown in Figure 3.26. The phase of the impedance is
equal to the phase difference between the voltage across an element and the
current through the same element. In the case of a resistor, the voltage is
completely in phase with the current, which means that there is no time



(3.52)

delay or time shift between the voltage waveform and the current waveform
in the time domain.

Figure 3.26 Phasor diagram of the impedance of a resistor.
Remember that Z = V⁄I.

It is important to keep in mind that the phasor voltages and currents in
AC circuits are functions of frequency, V = V(jω) and I = I(jω). This fact is
crucial for determining the impedance of capacitors and inductors, as shown
below.

Impedance of an Inductor
The i-υ relationship for an inductor is (see Figure 3.27):

Figure 3.27 For an inductor, 

Page 171At this point, it is important to proceed carefully. The time-domain
expression for the current through the inductor is:

such that



(3.53)

(3.54)

(3.55)

(3.56)   

Notice that the net effect of the time derivative is to produce an extra (jω)
term along with the complex exponential expression of iL(t). That is:

Therefore, the phasor equivalent of the i-υ relationship for an inductor is:

The impedance of an inductor is then determined from the definition of
impedance:

Thus:

The impedance of an inductor is a positive, purely imaginary number; that
is, it has a magnitude of ωL and a phase of π⁄2 radians or 90°, as shown in
Figure 3.28. As before, the phase of the impedance is equal to the phase
difference between the voltage across an element and the current through the
same element. In the case of an inductor, the voltage leads the current by π⁄2
radians, which means that a feature (e.g., a zero crossing point) of the
voltage waveform occurs T⁄4 seconds earlier than the same feature of the
current waveform. T is the common period.



(3.57)

Figure 3.28 Phasor diagram of the impedance of an inductor.
Remember that Z = V⁄I.

Note that the inductor behaves as a complex frequency-dependent
resistor and that its magnitude ωL is proportional to the angular frequency
ω. Thus, an inductor will “impede” current flow in proportion to the
frequency of the source signal. At low frequencies, an inductor acts like a
short-circuit; at high frequencies, it acts like an open-circuit.Page 172

Impedance of a Capacitor
The principle of duality suggests that the procedure to derive the impedance
of a capacitor should be a mirror image of the procedure shown earlier for
an inductor. The i-υ relationship for a capacitor is (see Figure 3.29):

Figure 3.29 For a capacitor, 

The time-domain expression for the voltage across the capacitor is:

such that



(3.58)

(3.59)

(3.60)

(3.61)

Notice that the net effect of the time derivative is to produce an extra (jω)
term along with the complex exponential expression of υC(t). Therefore, the
phasor equivalent of the i-υ relationship for a capacitor is:

The impedance of an inductor is then determined from the definition of
impedance:

Thus:

   

The impedance of a capacitor is a negative, purely imaginary number; that
is, it has a magnitude of 1⁄ωC and a phase of −π⁄2 radians or −90°, as shown
in Figure 3.30. As before, the phase of the impedance is equal to the phase
difference between the voltage across an element and the current through the
same element. In the case of a capacitor, the voltage lags the current by π⁄2
radians, which means that a feature (e.g., a zero crossing point) of the
voltage waveform occurs T⁄4 seconds later than the same feature of the
current waveform. T is the common period of each waveform.



Figure 3.30 Phasor diagram of the impedance of a capacitor.
Remember that Z = V⁄I.

Note that the capacitor also behaves as a complex frequency-dependent
resistor, except that its magnitude 1⁄ωC is inversely proportional to the
angular frequency ω. Page 173Thus, a capacitor will “impede” current flow
in inverse proportion to the frequency of the source. At low frequencies, a
capacitor acts like an open-circuit; at high frequencies, it acts like a short-
circuit.

Generalized Impedance
The impedance concept is very useful in solving AC circuit analysis
problems. It allows network theorems developed for DC circuits to be
applied to AC circuits. Examples 3.12 to 3.14, in the Examples section,
illustrate how circuits with impedance elements in series and parallel are
reduced to a single equivalent impedance, in much the same way as was
done in resistive circuits. The only difference is that complex arithmetic,
rather than scalar arithmetic, must be employed to find the equivalent
impedance.

Figure 3.31 depicts ZR(jω), ZL(jω), and ZC (jω) in the complex plane. It
is important to emphasize that although the impedance of resistors is purely
real and the impedance of capacitors and inductors is purely imaginary, the
equivalent impedance seen by a source in an arbitrary circuit can be
complex.



(3.62)

(3.63)

Figure 3.31 The impedances of R, L, and C are shown in the
complex plane. Impedances in the upper right quadrant are
inductive while those in the lower right quadrant are capacitive.

Here, R is resistance and X is reactance. The unit of R, X, and Z is the ohm.

Admittance
In Chapter 2, it was suggested that the solution of certain circuit analysis
problems was handled more easily in terms of conductances than
resistances. This is true, for example, when one is using node analysis, or in
circuits with many parallel elements, since conductances in parallel add as
resistors in series do. In AC circuit analysis, an analogous quantity may be
defined—the reciprocal of complex impedance. Just as conductance G was
defined as the inverse of resistance, admittance Y is defined as the inverse of
impedance.

Whenever the impedance Z is purely real, the admittance Y is identical to
the conductance G. In general, however, Y is complex.



(3.64)

(3.65)

(3.66)

(3.67)

where G is the AC conductance and B is the susceptance, which is
analogous to reactance. Clearly, G and B are related to R and X; however,
the relationship is not a simple inverse. If Z = R + jX, then the admittance is:

Multiply the numerator and denominator by the complex conjugate 

Page 174and conclude that

Notice in particular that G is not the reciprocal of R in the general case!
Example 3.15, in the Examples section, illustrates the determination of Y for
some common circuits.

FOCUS ON MEASUREMENTS



Capacitive Displacement Transducer
As introduced in the previous Focus on Measurements section, a capacitive
displacement transducer consists of a parallel-plate capacitor with a variable
separation distance x. The capacitance was shown to be:

where C is the capacitance in picofarads, A is the area of the plates in square
millimeters, and x is the (variable) distance in millimeters. The impedance
of the capacitor is:

Thus, at a given frequency ω, the impedance of the capacitor varies linearly
with the separation distance. This result can be exploited in a bridge circuit,
as shown in Figure 3.5 where half of the bridge is a differential pressure
transducer in which a thin diaphragm (plate) is situated between two fixed
plates and subject to variations in pressure across the diaphragm. The result
is that when the capacitance of one leg of the bridge, shown here again as
Figure 3.32, increases, the capacitance of the other leg decreases. Assume
the bridge is excited by a sinusoidal source.



Figure 3.32 Bridge circuit for capacitive displacement transducer

Apply voltage division and KVL to express the output voltage in phasor
notation as:

Page 175When the diaphragm is not displaced from its center position, the
nominal capacitance of each half of the transducer is given by:

where d is the nominal separation distance between the diaphragm and the
fixed surfaces (in millimeters). Thus, when the diaphragm is displaced an
effective distance x, the capacitance of each leg of the bridge is given by:

Therefore, the corresponding impedance of each leg is:

such that the phasor output voltage is:



Thus, the output voltage will vary as a scaled version of the input voltage in
proportion to the displacement. A typical υout(t) is displayed in Figure 3.33
for a 0.05-mm “triangular” diaphragm displacement, with d = 0.5 mm and
VS a 25-Hz sinusoid with 1-V amplitude.

Figure 3.33 Displacement input and bridge output voltage for
capacitive displacement transducer
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   EXAMPLE 3.10 Addition of Two Sinusoidal Sources
Using Phasor Notation



Problem

Compute the phasor voltage across a series connection of two sinusoidal
voltage sources (Figure 3.34).

Figure 3.34 Circuit with two sinusoidal sources.

Solution
Known Quantities:

Find: Equivalent phasor voltage υS(t).

Analysis: Write the two voltages in phasor form:

The phasor diagram of Figure 3.35 shows V1 and V2 in the complex plane.
Convert the phasor voltages from polar to rectangular form:



Figure 3.35 Phasor diagram showing the addition of two voltage
phasors

Then, by KVL:

Finally, convert VS (jω) to its time-domain form:

Comments: The same result could have been obtained by adding the two
sinusoids in the time domain, using trigonometric identities:

Page 177Combine like terms to obtain:

The above expression is, of course, identical to the one obtained using
phasor notation, but it required more computation. Phasor analysis often



simplifies calculations.

EXAMPLE 3.11 AC Superposition   
Problem

Compute the voltages υ1(t) and υ2(t) in the circuit of Figure 3.36.

Figure 3.36 Circuit for Example 3.11.

Solution
Known Quantities:

Find: υ1(t) and υ2(t).

Analysis: Since the two sources are at different frequencies, we must
compute a separate solution for each. Consider the current source first, with
the voltage source set to zero (short-circuit) as shown in Figure 3.37. The
circuit thus obtained is a simple current divider. Write the source current in
phasor notation:



Figure 3.37 Circuit for Example 3.11 with voltage source set to
zero.

Then

Next, consider the voltage source, with the current source set to zero
(equivalent to an open-circuit), as shown in Figure 3.38. First, write the
source voltage in phasor notation:

Figure 3.38 Circuit for Example 3.11 with current source set to
zero.

Page 178Then, apply the voltage divider law, to obtain:

ω = 2π(1, 000) rad/s



The voltage across each resistor is obtained by adding the contributions
from each source and converting the equivalent phasor to the time domain:

and

Comment: It is impossible to further simplify the final expression because
the two components are at different frequencies.

   EXAMPLE 3.12 Impedance of a Practical Capacitor
Problem

A practical capacitor can be modeled by an ideal capacitor in parallel with a
resistor. The parallel resistance represents leakage losses in the capacitor
that can be quite significant. Find the impedance of a practical capacitor at
the radian frequency ω = 377 rad/s (60 Hz). How will the impedance change
if the capacitor is used at a much higher frequency, say, 800 kHz?

Solution
Known Quantities: Figure 3.39; 



Figure 3.39 Impedance of a practical capacitor.

Find: The equivalent impedance Z1 across the parallel elements.

Analysis: Combine the two impedances in parallel to determine the
equivalent impedance.

Substitute numerical values to find:

Page 179The impedance of the capacitor alone at this frequency is:

When the frequency is increased to 800 kHz, or 1600π × 103 rad/s—a
radio frequency in the AM range—the impedance changes to:



The impedance of the capacitor alone at this frequency would be

Now, the impedances Z1 and ZC1 are virtually identical. Thus, the effect of
the parallel resistance is negligible at high frequencies.

Comments: For elements in parallel, the element with the smallest
impedance tends to dominate the equivalent impedance across two nodes. At
the lower frequency (corresponding to the well-known 60-Hz AC power
frequency) the impedance of the resistor is roughly 38 percent smaller than
that of the ideal capacitor. Thus, the resistor tends to dominate the equivalent
impedance; in fact, the equivalent impedance is only 6.5 percent smaller
than the resistance and so the practical and ideal capacitors are substantially
different. At the higher frequency, the impedance of the ideal capacitor is
much smaller than the resistance, which effectively acts as an open-circuit.
The equivalent impedance is dominated by the ideal capacitor. At
frequencies above and below ω = 1⁄RC, the network is capacitive and
resistive, respectively. This example suggests that the behavior of a network
may depend heavily on frequency.

EXAMPLE 3.13 Impedance of a Practical Inductor   
Problem

Figure 3.40 shows a toroidal (doughnut-shaped) inductor. A practical
inductor can be modeled as an ideal inductor in series with a resistor, as
shown in Figure 3.41. The series resistance represents the resistance of the
wire. Find the range of frequencies over which the impedance of the



practical inductor is largely inductive (i.e., due to the inductance in the
circuit). Consider the impedance to be inductive if it is at least 10 times
larger than the resistance.

Figure 3.40 A practical inductor

Figure 3.41 Equivalent circuit of a practical inductor.

Solution
Known Quantities: L = 0.098 H; lead length = 2 × 10 cm; n = 250 turns;
wire is 30 gauge. Resistance of 30-gauge wire = 0.344 Ω/m.
Find: The range of frequencies over which the practical inductor acts nearly
as an ideal inductor.
Analysis: To determine the equivalent resistance of the practical inductor,
use the cross section of the toroid to estimate the length l𝑤 of the wire coil:

l𝑤 = 250(2 × 0.25 + 2 × 0.5) = 375 cm

Total length = 375 + 20 = 395 cm
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R = 0.344 Ω/m × 3.95 m = 1.36 Ω

To determine the range of frequencies, ω, over which the impedance jωL of
the ideal inductor is 10× greater than 1.36 Ω:

In terms of cyclical frequency, the range is f = ω⁄2π > 22 Hz.

Comments: For elements in series, the element with the largest impedance
tends to dominate the equivalent impedance across two nodes. At
frequencies above 139 rad/s the impedance of the inductor is at least 10×
greater than the resistance and the resistance is insignificant. (Remember the
10:1 rule.) At lower frequencies, the resistance is significant; at very low
frequencies (ωL ≪ R), the impedance of the inductor effectively acts as a
short-circuit and is negligible. At high frequencies, the separation between
the insulated coil wires begins to exhibit significant capacitance and so the
model should be modified accordingly.

   EXAMPLE 3.14 Impedance of a Series-Parallel Network
Problem

Find the equivalent impedance of the circuit shown in Figure 3.42.



Figure 3.42 Circuit for Example 3.14.

Solution
Known Quantities: ω = 104 rad/s; R1 = 100 Ω; L = 10 mH; R2 = 50 Ω; C =
10 μF.
Find: The equivalent impedance of the series-parallel circuit.
Analysis: The equivalent impedance Z|| of R2 in parallel with C is:

To determine the equivalent impedance Zeq across the entire network:

Comment: At ω = 104 rad/s, the impedance across the network is inductive
since the reactance is positive (or, equivalently, the phase angle is positive).
(See Figure 3.31.)
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EXAMPLE 3.15 Admittance   
Problem

Find the equivalent admittance across each of the two networks shown in
Figure 3.43.



Figure 3.43 Circuits for Example 3.15.

Solution
Known Quantities: ω = 2π × 103 rad/s; R1 = 50 Ω; L = 16 mH; R2 = 100 Ω;
C = 3 μF.
Find: The equivalent admittance across each of the two networks.
Analysis: Network (a): First, determine the equivalent impedance across the
network ab:

To obtain the admittance, compute the inverse of Zab by multiplying the
numerator and denominator by the complex conjugate of the denominator:

Substitute numerical values to find:



a.
b.

Network (b): First, determine the equivalent impedance across the
network ab:

Multiply the numerator and denominator by jωC to find:

The inverse of Zab is the admittance:

Comment: The units of admittance, siemens (S), are the same as the units of
conductance.

CHECK YOUR UNDERSTANDING
Add the sinusoidal voltages υ1(t) = A cos(ωt + ϕ) and υ2(t) = B cos(ωt + θ)
using phasor notation, and then convert back to time-domain form.

A = 1.5 V, ϕ = 10°; B = 3.2 V, θ = 25°.
A = 50 V, ϕ = −60°; B = 24 V, θ = 15°.
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Answers: (a) υ1 + υ2 = 4.67 cos(ωt + 0.353 rad); (b) υ1 + υ2 = 60.8
cos(ωt − 0.656 rad)



a.
b.

CHECK YOUR UNDERSTANDING
Add the sinusoidal currents i1(t) = A cos(ωt + ϕ) and i2(t) = B cos(ωt + θ)
for

A = 0.09 A, ϕ = 72°; B = 0.12 A, θ = 20°.
A = 0.82 A, ϕ = −30°; B = 0.5 A, θ = −36°.

CHECK YOUR UNDERSTANDING
Compute the equivalent impedance across the network of Example 3.14 for
ω = 1,000 and 100,000 rad/s.

Find the reactance across the parallel R2C network of Example 3.14 at the
frequency ω = 10 rad/s and calculate its equivalent capacitance.

CHECK YOUR UNDERSTANDING
Compute the equivalent admittance across the network of Example 3.14.

Answers: (a) i1 + i2 = 0.19 cos(ωt + 0.733); (b) i1 + i2 = 1.32
cos(ωt − 0.5633)

Answers: Z(1,000) = 140 − j10; Z(100,000) = 100 + j999; X|| =
0.25; C = 0.4 F



1.

2.

3.

4.

3.1

3.2

a.

Conclusion
This chapter introduced concepts and tools useful in the analysis of AC
circuits. The importance of AC circuit analysis cannot be overemphasized,
for a number of reasons. First, circuits made up of resistors, inductors, and
capacitors constitute reasonable models for more complex devices, such as
transformers, electric motors, and electronic amplifiers. Second, sinusoidal
signals are ever-present in the analysis of many physical systems, not just
circuits. Upon completion of this chapter a student will have learned to:

Compute currents, voltages, and energy stored in capacitors and
inductors.
Calculate the average and root-mean-square value of an arbitrary
(periodic) signal.
Write differential equations for circuits containing inductors and
capacitors.
Convert time-domain sinusoidal voltages and currents to phasor
notation, and vice versa, and represent circuits using impedances.Page
183

HOMEWORK PROBLEMS
Sections 3.1: Capacitors and Inductors

The current through a 0.8-H inductor is given by  Write
the expression for the voltage across the inductor.

For each case shown below, derive the expression for the current
through a 200-μF capacitor. υC(t) is the voltage across the capacitor.

Answer: Yeq = 5.492 × 10−3 − j4.871 × 10−3



b.

c.

d.

3.3

a.

b.

c.

d.

3.4

3.5

3.6

Derive the expression for the voltage across a 200-mH inductor when
its current is:

iL = –2 sin 10t A

iL = 2 cos 3t A

In the circuit shown in Figure P3.4, assume R = 1 Ω and L = 2 H.
Also, let:

Find the energy stored in the inductor for all time.

Figure P3.4

Refer to Problem 3.4 and find the energy delivered by the source for
all time.

In the circuit shown in Figure P3.4, assume R = 2 Ω and L = 4 H.
Also, let:

Find:



a.

b.

3.7

3.8

3.9

a.

b.

3.10

The energy stored in the inductor for all time.

The energy delivered by the source for all time.

In the circuit shown in Figure P3.7, assume R = 2 Ω and C = 0.1 F.
Also, let:

Find the energy stored in the capacitor for all time.

Figure P3.7

Refer to Problem 3.7 and find the energy delivered by the source for
all time.

In the circuit shown in Figure P3.7, assume R = 4 Ω and C = 0.2 F.
Also, let:

Find:

The energy stored in the inductor for all time.

The energy delivered by the source for all time.

The voltage waveform shown in Figure P3.10 is piecewise linear and
continuous. Assume the voltage is across a 20-mH inductor.
Determine the current iL(t) through the inductor, assuming iL(0) = 50
mA.



3.11

3.12

3.13

Figure P3.10
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The voltage waveform shown in Figure P3.10 is piecewise linear and
continuous. Assume the voltage is across a 100-μF capacitor.
Determine the current iC(t) through the capacitor. Explain the concept
of current through a capacitor even when the space between the
capacitor plates is a perfect insulator. How is current through a
capacitor different from leakage current?

The voltage across a 0.5-mH inductor, plotted as a function of time, is
shown in Figure P3.12. Determine the current through the inductor at t
= 6 ms.

Figure P3.12

Figure P3.13 shows the voltage across a capacitor plotted as a
function of time where:



3.14

3.15

a.

b.

c.

Determine and plot the waveform for the current through the capacitor
as a function of time. How is the current affected by the
discontinuities in slope in the voltage waveform?

Figure P3.13

The current through a 16-μH inductor is zero at t = 0, and the voltage
across the inductor (shown in Figure P3.14) is:

Determine the current through the inductor at t = 30 μs.

Figure P3.14

The voltage across a generic element X has the waveform shown in
Figure P3.15. For 0 < t < 10 ms, determine and plot the current
through X when it is a:

7-Ω resistor.

0.5-μF capacitor.

7-mH inductor.



3.16

3.17

Figure P3.15

The plots shown in Figure P3.16 are the voltage across and the current
through an ideal capacitor. Determine its capacitance.

Figure P3.16

The plots shown in Figure P3.17 are the voltage across and the current
through an ideal inductor. Determine its inductance.

Figure P3.17
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3.18

3.19

3.20

The plots shown in Figure P3.18 are the voltage across and the current
through an ideal capacitor. Determine its capacitance.

Figure P3.18

The plots shown in Figure P3.19 are the voltage across and the current
through an ideal capacitor. Determine its capacitance.

Figure P3.19

The voltage υL(t) across a 10-mH inductor is shown in Figure P3.20.
Find the current iL(t) through the inductor. Assume iL(0) = 0 A.

Figure P3.20



3.21

3.22

3.23

The current through a 2-H inductor is plotted in Figure P3.21. Plot the
inductor voltage υL(t).

Figure P3.21

The voltage across a 100-mH inductor and a 500-μF capacitor is
shown in Figure P3.22. Plot the inductor and capacitor currents, iL(t)
and iC(t), for 0 < t < 6 s, assuming iL(0) = 0 A.

Figure P3.22

In the circuit shown in Figure P3.4, assume R = 1 Ω and L = 2 H.
Also, let:



3.24

3.25

3.26

Find the energy stored in the inductor for all time.Page 186

In the circuit shown in Figure P3.7, assume R = 2 Ω and C = 0.1 F.
Also, let:

Find the energy stored in the capacitor for all time.

The voltage υC(t) across a capacitor is shown in Figure P3.25.
Determine and sketch the current iC(t) through the capacitor.

Figure P3.25

The voltage υL(t) across an inductor is shown in Figure P3.26.
Determine and sketch the current iL(t) through the inductor. Assume
iL(0) = 0 A.

Sections 3.2: Time-Dependent Sources



3.27

3.28

3.29

3.30

Figure P3.26

Find the average and rms values of x(t) when:

The output voltage waveform of a controlled rectifier is shown in
Figure P3.28. The input voltage waveform was a sinusoid of
amplitude 110 V rms. Find the average and rms voltages of the output
waveform in terms of the firing angle θ.

Figure P3.28

Refer to Problem 3.28 and find the angle θ that would cause the
rectified waveform to deliver to a resistive load exactly one-half of the
total power delivered to the same load by the input waveform.

Find the ratio between the average and rms value of the waveform
shown in Figure P3.30.



3.31

3.32

3.33

Figure P3.30

The current through a 1-Ω resistor is shown in Figure P3.31. Find the
power dissipated by the resistor.

Figure P3.31

Derive the ratio between the average and rms value of the voltage
waveform of Figure P3.32.Page 187

Figure P3.32

Find the rms value of the current waveform shown in Figure P3.33.



3.34

3.35

3.36

Figure P3.33

Determine the rms (or effective) value of 

Sections 3.3: Circuits Containing Energy Storage
Elements

Assume steady-state conditions and find the energy stored in each
capacitor and inductor shown in Figure P3.35.

Figure P3.35

Assume steady-state conditions and find the energy stored in each
capacitor and inductor shown in Figure P3.36.

Sections 3.4: Phasor Solution of Circuits with
Sinusoidal Sources



3.37
a.

b.

c.

d.

3.38
a.

b.

c.

3.39

a.

b.

3.40
a.

b.

Figure P3.36

Find the phasor form of the following functions:

υ(t) = 155 cos (377t − 25°) V

υ(t) = 5 sin (1,000t − 40°) V

i(t) = 10 cos (10t + 63°) + 15 cos (10t − 42°) A

i(t) = 460 cos (500πt − 25°) − 220 sin (500πt + 15°) A

Convert the following complex numbers to polar form:

7 + j9
−2 + j7

Convert the rectangular factors to polar form and compute the
product. Also compute the product directly using the rectangular
factors. Compare the results.

(50 + j10) (4 + j8)

(j2 − 2) (4 + j5) (2 + j7)

Complete the following exercises in complex arithmetic.

Find the complex conjugate of (4 + j4), (2 − j8), (−5 + j2).

Multiply the numerator and denominator of each ratio by the
complex conjugate of the denominator. Use the result to express
each ratio in polar form.



c.

3.41

3.42

a.

b.

3.43

a.

b.

3.44

Convert the numerator and denominator of each ratio in part b to
polar form. Use the result to express each ratio in polar form.

Convert the following expressions to rectangular form:
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Find υ(t) = υ1(t) + υ2(t) where

υ 1 (t) = 10 cos (ωt + 30°)

υ 2 (t) = 20 cos (ωt + 60°)

using:

Trigonometric identities.

Phasors.

The current through and the voltage across a circuit element are,
respectively,

where ω = 600 rad/s. Determine:

Whether the element is a resistor, capacitor, or inductor.

The value of the element in ohms, farads, or henrys.

Express the sinusoidal waveform shown in Figure P3.44 using time-
dependent and phasor notation.



3.45

3.46

a.

b.

c.

3.47

Figure P3.44

Express the sinusoidal waveform shown in Figure P3.45 using time-
dependent and phasor notation.

Sections 3.5: Impedance

Figure P3.45

Convert the following pairs of voltage and current waveforms to
phasor form. Each pair of waveforms corresponds to an unknown
element. Determine whether each element is a resistor, a capacitor, or
an inductor, and compute the value of the corresponding parameter R,
C, or L.

υ(t) = 20 cos(400t + 1.2), i(t) = 4 sin(400t + 1.2)

Determine the equivalent impedance seen by the source υS in Figure
P3.47 when:



3.48

3.49

a.

b.

c.

3.50

Figure P3.47

Determine the equivalent impedance seen by the source υS in Figure
P3.47 when:

The generalized version of Ohm’s law for impedance elements is:

V = IZ
Assume the current through a 0.5-μF capacitor is given by:

Express the source current in phasor notation.

Determine the impedance of the capacitor.

Determine the voltage across the capacitor, in phasor
notation.Page 189

Determine i2(t) in the circuit shown in Figure P3.50. Assume:



3.51

3.52

3.53

Figure P3.50

Determine the voltage υ2(t) across R2 in the circuit of Figure P3.51.

Figure P3.51

Determine the frequency so that the current Ii and the voltage Vo
in Figure P3.52 are in phase.

Figure P3.52

A common model for a practical inductor is a coil resistance in series
with an inductance L. The coil resistance accounts for the internal
losses of an inductor. Figure P3.53 shows an ideal capacitor in parallel



3.54

3.55

3.56

with a practical inductor. Determine the current supplied by the source
υS. Assume:

Figure P3.53

Use phasor techniques to solve for the current i(t) shown in Figure
P3.54.

Figure P3.54

Use phasor techniques to solve for the voltage υ(t) shown in
Figure P3.55.

Figure P3.55

Solve for I1 in the circuit shown in Figure P3.56.



3.57

3.58

3.59

3.60

Figure P3.56

Solve for VR shown in Figure P3.57. Assume:
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Figure P3.57

With reference to Problem 3.55, find the value of ω for which the
current through the resistor is maximum.

Find the current iR(t) through the resistor shown in Figure P3.59.

Figure P3.59

Find υout(t) shown in Figure P3.60.



3.61

3.62

Figure P3.60

Find the impedance Z shown in Figure P3.61, assuming ω = 2 rad/s,
R1 = R2 = 2 Ω, C = 0.25 F, and L = 1 H.

Figure P3.61

Find the sinusoidal steady-state output υout(t) for each circuit shown in
Figure P3.62.



3.63

3.64

Figure P3.62

Determine the voltage υL(t) across the inductor shown in Figure
P3.63.

Figure P3.63

Determine the current iR(t) through the resistor shown in Figure
P3.64.



3.65

a.

b.

c.

3.66

Figure P3.64

Find the frequency that causes the equivalent impedance Zeq in Figure
P3.65 to be purely resistive.Page 191

Figure P3.65

Find the equivalent impedance Zo seen by the source in Figure
P3.66(a). Assume the frequency is 377 rad/s.

What capacitance should be placed between terminals a and b, as
shown in Figure P3.66(b), to make the equivalent impedance Zo
purely resistive? [Hint: Find C so that the phase angle of Zo is
zero.]

What is the amplitude of Zo when the capacitor is included?



3.67

Figure P3.66

A common model for a practical capacitor has a “leakage” resistance,
RC, in parallel with an ideal capacitor, as shown in Figure P3.67. The
effects of lead wires are also represented by resistances R1 and R2 and
inductances L1 and L2.



a.

b.

Figure P3.67

Assume C = 1 μF, RC = 100 MΩ, R1 = R2 = 1 μΩ, and L1 = L2 =
0.1 μH, and find the equivalent impedance Zab seen across
terminals a and b as a function of frequency ω.
Find the range of frequencies for which Zab is capacitive.

[Hint: Assume that RC is much greater than 1⁄ωC such that RC can be
ignored in part b.]

 

 

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy
Stock Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements”
weighing scales: Media Bakery.



1 A dielectric material is a material that is not an electrical conductor but
contains a large number of electric dipoles, which become polarized in the
presence of an electric field.Page 192
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C H A P T E R
4

TRANSIENT ANALYSIS

hapter 4 focuses on the transient portion of the complete response of a time-
dependent circuit. Recall from Chapter 3 that the complete response is
composed of two parts: (1) the transient response and (2) the steady-state
response. These parts can also be rearranged as natural and forced responses,

respectively. Chapter 3 explored the latter part for circuits with AC sources; Chapter
4 explores the former for circuits that experience a transient event, such as the
throwing of a switch. The general qualities of a transient response are independent of
the type of event. For simplicity, this chapter explores transient responses due to
switching.

The fundamental quality of any transient response is that it eventually vanishes to
zero. Once this occurs, only a steady-state solution remains. The role of the transient
solution is to provide a transition over time from one state (i.e., an “old” or “initial”
steady state) to another (i.e., a “new” or “final” steady state). The Latin root of the
adjective transient is trans, meaning “across.” Literally, the transient solution is a
bridge across time from one steady state to another. In most of the examples
presented in this chapter, both the “old” and the “new” are DC steady states.
However, transient analysis is applicable to a transition between two AC steady
states or any other pair of states, which need not be steady.

When a switch opens or closes in an electric circuit, the voltages and currents in
that circuit will, in general, transition to a new state. The throwing of a switch is a
transient event because it causes a short-circuit (a closed switch) to be replaced by an



1.

2.

3.

4.
5.

open-circuit (an open switch), or vice versa. These two switch positions Page
194produce two distinctly different circuits. The abrupt change from one to the other
provokes a transient response.

The transition from the “old” state to the “new” state does not happen
instantaneously because capacitors and inductors store energy. Sometimes a finite
time is required to charge and discharge the energy storage elements to reach the
“new” steady state. The transition may take place quickly, but it cannot take place
instantaneously.

The objectives of transient analysis can be expressed by the following questions:
What are the initial conditions on the state variables at the moment of the
transient event?
How are the initial conditions on the state variables related to the initial
conditions on other variables?
What is the manner of the transition from the initial conditions to the final steady
state of any variable?
How fast or slow is that transition?
What is the final steady state of any variable?

Two types of circuits are examined in this chapter: first-order RC and RL circuits,
which contain a single storage element, and second-order circuits, which contain two
irreducible storage elements. The simplest of the second-order circuits to analyze are
the series RLC and parallel RLC circuits. Other more complicated second-order
circuits exist, as do higher-order circuits; however, since all the fundamental
behaviors of transient circuits are revealed in the types just mentioned, they are the
focus of this chapter.   

A first-order circuit contains a single storage element. A second-order circuit
contains two irreducible storage elements.

Throughout this chapter, practical applications of first- and second-order circuits
are introduced. Numerous analogies are presented to emphasize the general nature of
the solution methods and their applicability to a wide range of physical systems,
including hydraulics, mechanical systems, and thermal systems.

 Learning Objectives



1.
2.

3.

4.

5.

6.

Students will learn to...
Understand the fundamental qualities of transient responses. Section 4.1
Write differential equations in standard form for circuits containing inductors
and capacitors. Sections 4.2
Determine the steady state of DC circuits containing inductors and capacitors
Sections 4.2
Determine the complete solution of first-order circuits excited by switched DC
sources. Section 4.3
Determine the complete solution of second-order circuits excited by switched
DC sources. Sections 4.4
Understand analogies between electric circuits and hydraulic, thermal, and
mechanical systems. Sections 4.1–4.4
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4.1 TRANSIENT ANALYSIS
Figure 4.1 shows two typical results due to a transient event at t = 0.2 s in a DC
circuit [Figure 4.1(a)] and an AC circuit [Figure 4.1(b)], respectively. Each waveform
has three parts:

Figure 4.1 First- and second-order transient responses



•

•

•

The initial steady state for 0 ≤ t ≤ 0.2 s.

The transient response for 0.2 ≤ t ≤ 1.8 s (approximately).

The final steady state for t > 1.8 s.

The objective of transient analysis is to determine the manner and speed with which
voltages and currents transition from one steady state to another.

Figure 4.2 shows a typical circuit used to explore transient responses. The single-
pole, single-throw (SPST) switch connects the battery to the RLC network suddenly
at t = 0 initiating a transient response. The complexity of transient analysis increases
with the number of irreducible energy storage elements in the circuit; the analysis can
be quite involved for higher-order circuits. In this chapter, only first- and second-
order circuits are analyzed. Luckily, these two cases exhibit all the fundamental
aspects of transient analysis.

Figure 4.2 Circuit with switched DC excitation

The discussion and analysis in this chapter is focused on circuits that conform to
the general circuit models shown in Figure 4.3, where the network in the box acts as
the load and consists of either one or two storage elements and possibly various
resistors. In Figure 4.3(a), RT is the Thévenin equivalent resistance seen by the load
and VT is the open-circuit voltage across terminals a and b. In Figure 4.3(b), RN is the
Norton (i.e., Thévenin) equivalent resistance RN seen by the load and IN is the short-
circuit current from terminal a to terminal b.Page 196



Figure 4.3 General models of the transient analysis problem. The load may
contain RLC combinations while the source is either a (a) Thévenin or (b)
Norton equivalent network.

When the load is first order, containing either an inductor or capacitor, the
transient response will be either a rising or falling exponential waveform, such as
those shown in Figure 4.4. Both of these waveforms decay over time; that is, the
transient response goes to zero leaving only the new steady-state response.

Figure 4.4 Falling and rising exponential responses

In the case of two storage elements, series and parallel RLC networks are
considered in detail although a method for solving more complicated arrangements is
also presented. The analysis of second-order circuits is complicated because there are
three distinctly different transient responses possible, depending upon the magnitude
of a dimensionless damping ratio ζ. When ζ > 1, the transient response is
overdamped and is represented by the sum of two exponentially decaying
waveforms, either rising or falling. When ζ < 1, the transient response is
underdamped and is represented by a decaying sinusoid. When ζ = 1, the transient
response is critically damped and is represented by a waveform that has aspects of
both the overdamped and underdamped waveforms. The impact of ζ is exemplified in



the transient response to the sudden switching of a DC source, as shown in Figure
4.5.Page 197

Figure 4.5 Typical second-order transient responses for various values of
the dimensionless damping ratio ζ (zeta)

4.2 ELEMENTS OF TRANSIENT PROBLEM
SOLVING
The key elements involved in the solution of a first- or second-order transient
problem are outlined below. Keep in mind that circuits containing DC sources are
considered in this chapter only. The mathematics for circuits containing AC sources
is somewhat more complicated; however, the fundamental ideas are the same.
Examples of transient circuit problems are found in Sections 4.3 and 4.4.

Time Intervals
The moment of a transient event is defined as t = 0. The moments immediately
before and after the event are denoted as t = 0− and t = 0+, respectively. The initial
steady state is the behavior of the circuit for the time interval t < 0. The final steady
state is the behavior of the circuit as t → ∞, which should be understood to mean “t
gets very large.” In between the initial and final steady states is the transient
response.

In practice, the final steady state is reached when t ≥ t∞, where t∞ marks the
effective end of the transient response. The most common choice for t∞ is 5τ, where τ
is a time constant associated with the circuit. Further discussion of time constants is
found below and in later sections.



(4.1)

Initial Steady State (t < 0)
During the initial steady state the voltages and currents in the circuit may be constant
(DC), sinusoidal (AC), or some other waveform. In the case of an initial DC steady
state, capacitors and inductors are equivalent to open- and short-circuits, respectively,
and the circuit can be solved using the methods of Chapter 2. In the case of an initial
AC steady state, the circuit can be solved using the impedance methods of Chapter 3.

In a DC steady state, a capacitor acts as an open-circuit and an inductor acts as
a short-circuit.

    State Variables
The state variables in electric circuits are the currents through inductors and the
voltages across capacitors. The number of state variables equals the number of
irreducible storage elements. Thus, first- and second-order circuits have one and two
state variables, respectively. It is often convenient to first solve for the transient
response of the state variables and then solve for other variables through their
relationships to the state variables. Regardless of the solution method employed, it is
always necessary to know the values of the state variables at t = 0−, as explained
next.

Initial Conditions
The initial conditions on the transient response of a circuit are determined by its
stored energy at the instant of the transient event. Recall that energy is stored in
capacitors, as expressed by their voltages, and in inductors, as expressed by their
currents. Consequently, since it is not physically possible for the energy stored in a
capacitor or inductor to change instantaneously, the voltage across a capacitor and
Page 198the current through an inductor also cannot change instantaneously. In other
words, the state variables are continuous functions of time.

The continuity requirement on the state variables is evident in the υ-i
relationships for capacitors and inductors.



(4.2)

(4.3)

A discontinuity in υC or iL would require iC or υL, respectively, to be infinite. Since it
is not physically possible to achieve an infinite current or voltage, υC and iL must
always be continuous.

The same is not guaranteed for other nonstate variables in a circuit. The current
through a resistor or capacitor, and the voltage across a resistor or inductor, may be
discontinuous. An important implication of these results is that only the state

variables are guaranteed to be continuous across a transient event.   

Only the current through an inductor and the voltage across a capacitor are
always continuous. Consequently, these two state variables are also continuous
across a transient event. In mathematical terms:

Nonstate variables may or may not be continuous across a transient event and
are therefore unreliable as initial conditions. Only state variables should be
used to develop initial conditions on a transient event.

Energy and the Transient Response
During a transient response, energy is, in general, continually supplied, exchanged,
and dissipated within a circuit until a new steady state is reached. Independent
voltage and current sources, if present, will supply energy; storage elements, if more
than one are present, may exchange energy; and resistors will dissipate energy. These
processes will continue until a new steady state is reached, in which the time-
averaged energy supplied continually equals the time-averaged energy dissipated. It
is instructive to consider the interaction between these processes during a transient
response.

Consider the circuit shown in Figure 4.6. For t < 0, assume that the capacitor has
been connected to the battery for a long time so that the capacitor voltage υC equals
the battery voltage VB and the energy stored in the capacitor is  (see
Chapter 3). Also notice that the current through each resistor is zero.



(4.4)

(4.5)

(4.6)

Figure 4.6 Energy stored in a capacitor is dissipated by a resistor.

At t = 0 the two switches are thrown such that the capacitor is disconnected from
the battery loop but simultaneously connected to R2 in a simple series loop. Since the
energy stored by the capacitor must be continuous with time,  at t = 0+. At
the same moment, the voltage across the resistor has changed from zero to υC and,
therefore, the current through R2 has also changed from zero to some finite nonzero
value. Since KCL requires  for the series loop, the capacitor current is:

Page 199where the expression for  is simply Ohm’s law. Recall from Chapter 3 that
the capacitor current is defined as the time rate of change of the stored charge, which,
in turn, is proportional to the voltage across the capacitor. That is:

Substitution of these expressions into equations 4.4 results in:

Equation 4.6 indicates that the rate of change of the voltage across the capacitor is
proportional to the voltage across the capacitor itself. That is, at t = 0+ the capacitor
is discharging at its maximum rate because υC itself and, thus,  are both maximums
at that moment. As the capacitor continues to discharge, υC and  continue to
decrease such that the rate of decrease in υC decreases as well. In theory, the



(4.7)

capacitor never quite discharges fully because the rate of discharge becomes smaller
and smaller as time goes by. Note that the energy in the R2C series loop can only
decrease because there is no independent source present to offset the energy
dissipated by the resistor.

The graph of Figure 4.6 shows the normalized transient response of . One can
easily check that the slope at any point on the curve is proportional to the value at the
same point. This type of relationship wherein the rate of change of a variable is
proportional to the value of the variable itself is the fundamental feature of the
exponential function. Thus, the transient response of the R2C series loop shown in
Figure 4.6 is characterized by:

The constant s is commonly expressed as 1⁄τ, where τ is known as a time constant.
Such decaying exponentials, whether rising or falling, are ubiquitous in the
mathematical representations of transient responses of physical systems. The
exponential rate of decay is determined by the time constant.

Notice that the normalized transient response of  is shown in Figure 4.6 up to t
= 5τ, at which time υC and  are less than 1 percent of their original values. For most
practical purposes, the capacitor can be considered fully discharged for t ≥ 5τ.

Now consider what happens if the switches in the circuit of Figure 4.6 are
returned to their original positions at some moment after t = 5τ. The capacitor will
then be disconnected from R2 and reconnected in a series loop with the battery VB
and the resistor R1. At that moment, the capacitor is now charging at its maximum
rate because the voltage (VB − υC) across R1 and, thus,  are maximums. As the
capacitor continues to charge, (VB − υC) and  continue to decrease such that the
rate of increase in υC decreases as well. The result is another decaying, but rising,
exponential, such as that shown on the right in Figure 4.4. The time constant τ for the
VBR1C series loop is R1C.

These fundamental behaviors also occur for circuits containing an inductor and
one or more resistors and independent sources.

It is also worth noting that the currents  and  in this illustrative example were
discontinuous across the transient events. As emphasized earlier in this Page
200section, only state variables (e.g., υC) are guaranteed to be continuous across a
transient event.



Finally, for circuits with two or more storage elements it is possible that those
elements will exchange energy back and forth with each other during the transient
response. When this phenomenon occurs, the result is oscillating voltages and
currents in the circuit even as the average values of the oscillations decay
exponentially over time.

Keep in mind that the purpose of this discussion is to reveal the physical basis for
the fundamental behaviors observed in transient responses. Sections 4.3 and 4.4
contain numerous detailed examples of transient responses with mathematical
derivations of the governing differential equations and associated problem-solving
methods. Two examples of writing differential equations of first-order circuits are
included at the end of this section for those interested in having a look ahead.

MAKE THE CONNECTION

Thermal Capacitance
Just as an electric capacitor can store energy and a hydraulic capacitor can store fluid
(see the Make the Connection sidebar, “Fluid Capacitance” in Chapter 3), the thermal
capacitance Ct of an object is related to two physical properties: mass and specific
heat:

Physically, thermal capacitance is related to the ability of a mass to store heat and
describes how much the temperature of the mass will rise for a given addition of
heat. If we add heat at the rate q (in Watts) for time Δt and the resulting temperature
rise is ΔT, then we can define the thermal capacitance to be



(4.8)

If the temperature rises from value T0 at time t0 to T1 at time t1, then we can write

or, in differential form,

Time Constants
First-order circuits have one time constant τ, which is a measure of the speed of
response of the circuit to a transient event. A small or large time constant indicates a
fast or slow response, respectively. The time constant τ of a first-order circuit is
either:

depending upon whether the storage element is a capacitor or an inductor. Here, RT
and RN are the Thévenin and Norton equivalent resistances seen by the capacitor and
inductor, respectively.

Figure 4.7 shows a typical first-order decaying exponential. The time constant τ
can be found graphically by two methods. The simplest and most common method is
to determine τ as the time required for the exponential curve to fall (e − 1)⁄e (or
approximately 63 percent) of the difference between its initial value x(0) and its long-
term steady state x(∞). An alternate method is to determine τ as the time marked by
the intersection of the tangent to the exponential curve at t = 0 and the horizontal
asymptote x(∞).Page 201



Figure 4.7 Generic first-order response x(t) suggesting two graphical
methods for finding a time constant

Second-order circuit response is more complex and described by one of three
possible cases, each of which is determined by a parameter ζ known as the
dimensionless damping ratio, as explained in detail in Sections 4.4. When ζ > 1, the
response is said to be overdamped and is the sum of two first-order decaying
exponentials, each with its own distinct time constant. When ζ = 1, the response is
said to be critically damped. When ζ < 1, the response is said to be underdamped. As
shown in Figure 4.5, the responses in these latter two cases cannot be simply
described by two decaying exponentials.

MAKE THE CONNECTION

Thermal System Dynamics
To describe the dynamics of a thermal system, we write a differential equation based
on energy balance. The difference between the heat added to the mass by an external
source and the heat leaving the same mass (by convection or conduction) must be
equal to the heat stored in the mass:



An object is internally heated at the rate qin in ambient temperature T = Ta; the
thermal capacitance and thermal resistance are Ct and Rt. From energy balance:

This first-order system is identical in its form to an electric RC circuit, as shown
below.

Thermal system

Equivalent electric circuit

Long-Term Steady State
The long-term steady state is that which remains after the transient response has
decayed completely. For the first-order decaying exponential shown in Figure 4.7 the
long-term steady state is x(∞). The long-term steady state depends upon the
independent sources present in the t > 0 circuit and is commonly expressed in terms
of a gain K multiplied by a forcing function F (t) that represents the contributions of
those sources. For simplicity, only circuits with DC independent sources are
considered in this chapter, with the result that only DC long-term steady states occur.

Complete Response
The complete response is simply the sum of the transient response and the long-term
steady state. In general, the transient response will contain one unknown constant for
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(4.10)

each state variable in the circuit. Thus, the complete response will also contain the
same number of unknown constants. The values of these unknown constants are
determined by the initial conditions on the circuit at t = 0+.

A common mistake when learning to solve transient circuit problems is to apply
the initial conditions to the transient response alone rather than to the complete
solution. Forewarned, forearmed; don’t make this error!

Natural and Forced Responses
Often, it is useful to express the complete response as the sum of natural and forced
responses instead of the sum of a transient response and long-term steady state.
Either way the complete response is unchanged. The natural response is that part of
the complete system response due to the initial energy stored in the system at t = 0.
The forced response is that part due to independent sources present in the t > 0
circuit.

As will be shown in the following section, equations 4.9 expresses the complete
response x (t) of an arbitrary first-order circuit variable as the sum of a transient
response, with its characteristic exponential decay, and a long-term steady state x(∞).

The transient response portion includes the difference between the initial condition
x(0+) and the long-term steady state. This expression can be reconstructed as:

The first and second terms in equations 4.10 are known as the natural and forced
responses, xN(t) and xF (t), respectively. A similar construction can be made for the
complete response of a second-order circuit.Page 202   

EXAMPLE 4.1 Initial Conditions
Problem

For the circuit shown in Figure 4.8(a), determine the current through the inductor just
before the switch is opened.



Figure 4.8 (a) Circuit for Example 4.1; (b) the same circuit just before the
switch is opened

Solution
Known Quantities: R1 = 1 kΩ; R2 = 5 kΩ; R3 = 3.33 kΩ; L = 0.1 H; V1 = 12 V; V3 =
4 V.
Find: The current iL through the inductor.

Assumptions: Assume the switch has been closed for a long time prior to t = 0.
Analysis: Because the switch has been closed for a long time prior to t = 0, the circuit
is in a DC steady-state condition, and the inductor acts as a short-circuit, as shown in
Figure 4.8(b). The current iL through the inductor can be found quickly by applying
KCL at node 2:

Collect the coefficients of V1, V2, and V3 to find:

Finally, rearrange the terms to find:

To determine the current through the inductor, observe that

Comments: The current iL(0) is the initial condition for the circuit in Figure 4.8(a).
Only the state variables (i.e., the current through an inductor and the voltage across a



capacitor) are guaranteed to be continuous across a transient event, such as the
opening or closing of a switch.Page 203

EXAMPLE 4.2 Continuity of Inductor Current and Capacitor Voltage
Problem

Find the initial conditions at t = 0 on the current through the inductor and the voltage
across

the capacitor in the circuit in Figure 4.9.

Figure 4.9 Circuit for Example 4.2.

Solution
Known Quantities: υS; R1; R2; L; C

Find: The current through the inductor and the voltage across the capacitor at t = 0+.
Assumptions: The switch has been closed for a very long time prior to t = 0.
Analysis: In a DC steady state, the inductor acts as a short-circuit while the capacitor
acts as an open-circuit. Then, the circuit is effectively a single loop with a current i
equal to the inductor short-circuit current and given by:

The voltage across the capacitor open-circuit is given by voltage division.



Since neither the current through an inductor nor the voltage across a capacitor
can change instantaneously, the initial conditions on the inductor current and
capacitor voltage are:

EXAMPLE 4.3 Continuity of Inductor Current
Problem

Find the initial condition and final value of the inductor current in the circuit in
Figure 4.10.

Figure 4.10 Circuit for Example 4.3.

Solution
Known Quantities: Source current IS; inductor and resistor values.

Find: Inductor current at t = 0+ and as t → ∞.
Schematics, Diagrams, Circuits, and Given Data: IS = 10 mA.

Assumptions: The current source has been connected to the circuit for a very long
time.
Analysis: For t < 0, the inductor acts as a short-circuit, and iL = IS. Since all the
current flows through the inductor short-circuit, the voltage across the resistor R must
be zero. At t = 0+, the switch opens and since the inductor current must be continuous



Page 204For t > 0, the current source is in its own isolated loop, cut off from the
inductor and resistor. The inductor and resistor are in series in a separate isolated
loop. Since this loop has no source, the loop current will eventually decay to zero
(the long-term steady state) due to the energy dissipation of the resistor. A qualitative
sketch of the current as a function of time is shown in Figure 4.11.

Figure 4.11 Inductor current response.

Comments: Note that the direction of the current in the circuit in Figure 4.11 is
dictated by the initial condition since the inductor current cannot change
instantaneously.

EXAMPLE 4.4 Long-Term DC Steady State
Problem

Determine the capacitor voltage in the circuit in Figure 4.12(a) a long time after the
switch has been closed.

Figure 4.12 (a) Circuit for Example 4.4; (b) same circuit a long time after
the switch is closed

Solution



Known Quantities: The values of the circuit elements are R1 = 100 Ω; R2 = 75 Ω;R3
= 250 Ω; C = 1 μF; VB = 12 V.

Analysis: After the switch has been closed for a long time (t → ∞), the transient
response has decayed away and the circuit has reached a new DC steady state. In a
DC state the capacitor acts as an open-circuit, as shown in Figure 4.12(b). As a
result, no current flows through resistor R2, and so resistors R1 and R3 are in series.
Apply voltage division to find:

Since the current through R2 is zero, the voltage across R2 is also zero. Then, υC
equals the voltage drop from the upper right node to the bottom node, which is, of
course, also equal to υ3. Thus:

Comments: The voltage υC(∞) is the long-term steady-state value of the voltage
across the capacitor.Page 205

EXAMPLE 4.5 Writing the Differential Equation of an RC Circuit
Problem

Derive a differential equation for the voltage across the capacitor shown in Figure
4.13.

Figure 4.13 Circuit for Example 4.5.

Solution



Known Quantities: R; C; υS(t).

Find: The differential equations in υC(t) and i(t).

Assumptions: None.
Analysis: Apply KVL around the loop to obtain:

Use the i-υ relationship for a capacitor

to substitute for i, where i = iC for the series loop:

After dividing both sides of this equation by RC and rearranging terms, the result is:

Notice that the first term in the differential equation has dimensions of voltage per
time. Since the other terms in the sum must also have the same dimensions, we can
infer that the dimension of RC must be time!

A differential equation in the loop current i can also be found by differentiating
both sides of the KVL equation above to obtain:

Again, use the i-υ relationship for a capacitor to substitute for the derivative of υC to
obtain:

Divide both sides of the equation by R and rearrange to obtain:

Keep in mind that both the current i and the voltage υC are functions of time as they
transition from an old to a new steady state.



Note the similarity between the differential equations for υC(t) and i(t). The left-
hand sides have the same form and same coefficients while the right-hand side
depends upon the voltage source υS. The solution of either equation is sufficient to
determine any other variable in the circuit.
Comments: First-order RC circuits have one state variable, υC, the voltage across the
capacitor.
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EXAMPLE 4.6 Writing the Differential Equation of an RL Circuit
Problem

Derive differential equations from the circuit shown in Figure 4.14.

Figure 4.14 Circuit for Example 4.6.

Solution
Known Quantities: R1 = 10 Ω; R2 = 5 Ω; L = 0.4 H.

Find: The differential equations for iL and υL.

Assumptions: None.
Analysis: Apply KCL at the top right node to obtain:

Apply KVL around the left mesh to obtain:

Use the KCL to substitute for i1 in the KVL equation and rearrange terms to obtain:



Use the Ohm’s law expression υL = i2R2 to substitute for i2 to find:

To obtain a differential equation for iL simply use the differential i-υ relationship
for an inductor

to substitute for υL. The result is:

Collect terms and divide both sides of the equation by R1 to find:

Divide both sides of the equation by the coefficient of the first derivative term to
yield:

or

where RT is the Thévenin equivalent resistance seen by the inductor. Notice that the
first term in the differential equation has dimensions of current per time. Since the
other terms in the sum must also have the same dimensions, we can infer that the
dimension of L⁄R must be time!Page 207

Substitute numerical values to obtain:

To obtain a differential equation for υL take the derivative of both sides of



and use the differential i-υ relation for an inductor to substitute for the derivative of
iL. The result is:

Collect terms and divide both sides of the equation by R1 to find:

Notice that the coefficient of the first-derivative term is the inverse of the Thévenin
equivalent resistance RT seen by the inductor. Multiply both sides of the equation by
RT to obtain:

Comments: First-order RL circuits have one state variable, iL, the current through the
inductor.

EXAMPLE 4.7 Charging a Camera Flash—Capacitor Energy
andTime Constants
Problem

A capacitor is used to store energy in a camera flash light. The camera operates on a
6-V battery. Determine the time required for the energy stored to reach 90 percent of
its maximum. Compute the time in seconds and as a multiple of the time constant.



Figure 4.15 Equivalent circuit of camera flash charging circuit

Solution
Known Quantities: VB; R; C.

Find: Time required to reach 90 percent of the total energy storage.
Schematics, Diagrams, Circuits, and Given Data: VB = 6 V; C = 1,000 μF; R = 1
kΩ.
Assumptions: The capacitor is completely discharged prior to t = 0.
Analysis: In the long-term steady state (t → ∞) the total energy stored in the
capacitor would be:

Thus, 90 percent of the total energy will be reached when

Page 208The corresponding capacitor voltage is calculated as follows:

The Thévenin equivalent resistance seen by the capacitor for t > 0 is simply R, and,
thus, the time constant of the circuit is τ = RTC = 103 × 10−3 = 1 s. The time constant
is a standard measure of the speed of a transient response. In this example, the
transient response of the charging circuit is:

Notice that this expression satisfies the initial condition υC(0) = 0 and also satisfies
the long-term DC steady-state value υC(t → ∞) = VB. The time required to reach 90
percent of the energy is found by solving the previous expression when υC = 5.692 V.
Thus:



This period is approximately 3τ.

Comments: The fact that the capacitor charges to 90 percent of its total energy in a
period of roughly 3τ is not limited to this example. All first-order systems have the
same functional form and, therefore, have the same result. What percentage of the
voltage change has occurred in this same 3τ period? How many time constants are
required for the voltage to reach 99 percent of its ultimate value? Answers: 95
percent and 4.6τ

CHECK YOUR UNDERSTANDING
The single-pole, single-throw (SPST) switch in part (a) of Example 4.1 is opened at t
= 0. What is the inductor current after a long time has passed?

CHECK YOUR UNDERSTANDING
Use the principle of superposition to find the initial condition  in Example 4.1.
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CHECK YOUR UNDERSTANDING
The single-pole, double-throw (SPDT) switch in the circuit of Example 4.3 is thrown
at t = 0. Suppose that after a long time t = t∞ the switch is thrown again, back to its
original position. What is the initial current through the inductor at t = t∞? What is
the eventual long-term steady state current through the inductor for t > t∞?

Answer: 

Answer: 



CHECK YOUR UNDERSTANDING
Suppose that the single-pole, single-throw (SPST) switch in part (b) of Example 4.4
is eventually opened again. What is the capacitor voltage after an additional long
time has passed?

CHECK YOUR UNDERSTANDING
Use the differential i-υ relations for capacitors and inductors along with KVL or KCL
to write the differential equation for each of the circuits shown below.

CHECK YOUR UNDERSTANDING
Apply KVL twice to derive a differential equation for υC for t > 0 in the circuit of
Example 4.5.

Answer: 

Answer: υC(t → ∞) = 0 V. The capacitor will discharge through R2 and R3.

Answer: 
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CHECK YOUR UNDERSTANDING
If another identical capacitor is placed in parallel with the capacitor in Example 4.7,
how would the charging time change? How would the total stored energy change?

4.3 FIRST-ORDER TRANSIENT ANALYSIS
First-order systems are important in all engineering disciplines and occur frequently
in nature. Such systems are characterized by a single state variable, where the system
energy is proportional to the square of the state variable. That energy is dissipated by
the system such that the rate of change of the state variable is proportional to the state
variable itself. The fundamental result is that the transient response of a first-order
system is a decaying exponential function of time. Ideal first-order electrical systems
possess either capacitance or inductance (but not both) along with resistance and
(perhaps) energy sources. Ideal first-order mechanical systems possess mass and
damping (e.g., sliding or viscous friction) but no elasticity or compliance. An ideal
first-order fluid system possesses fluid capacitance and viscous dissipation, such as a
hydraulic system with a liquid-filled tank and a variable orifice. Many conductive
and convective thermal systems also exhibit first-order behavior.

In general, when solving transient circuit problems it is necessary to determine
three elements: (1) the steady-state response prior to a transient event, (2) the
transient response immediately following the transient event, and (3) the long-term
steady-state response remaining after the transient response has decayed away. The
steps involved in computing the complete response of a first-order circuit with

Answer: 

Answer: Both would double, as Ceq would be twice as large, thus doubling
τ and Etotal.



1.

2.

constant sources are outlined below. The methodology is straightforward and can be
mastered with only modest practice.

MAKE THE CONNECTION

First-OrderThermal System
An automotive transmission generates heat, when engaged, at the rate qin = 2,125 W.
The thermal capacitance of the transmission is Ct = mc = 12 kJ/°C. The effective
convection resistance through which heat is dissipated is Rt = 0.04°C/W.

What is the steady-state temperature the transmission will reach when the initial
(ambient) temperature is 5°C?

With reference to the Make the Connection sidebar “Thermal Capacitance,” we write
the differential equation based on energy balance:

At steady state, the rate of change of temperature is zero; hence,  Using the
numbers given, 

How long will it take the transmission to reach 90 percent of the final
temperature?

The general form of the solution is



Thus, the transmission temperature starts out at5°C and increases to its final value of
85°C, as shown in the plot in Figure 4.19.

Given the final value of 85°C, we calculate 90 percent of the final temperature to be
76.5°C.To determine the time required to reach this temperature, we solve the
following equation for the argument t:

Circuit Simplification for t > 0
The first step to solve for the response after the transient event (t > 0) is to partition
the circuit into a source network and load, with the energy storage element as the
load, as shown in Figure 4.16. If the source network is linear, it can be replaced by its
Thévenin or Norton equivalent network.

Figure 4.16 Generalized first-order circuit seen as a source network
attached to an energy storage element as the load

Consider the case when the load is a capacitor and the source network is replaced
by its Thévenin equivalent network, as shown in Figure 4.17. KVL can be applied
around the loop to yield:

Figure 4.17 Generalized firstorder circuit with a capacitor load and a
Thévenin source



(4.11)
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Of course, i = iC and for a capacitor iC = CdυC⁄dt. After substituting and rearranging
the terms, the result is:

For a DC source network, the long-term steady-state solution is simply υC = VT.

Likewise, consider the case when the load is an inductor and the source network
is replaced by its Norton equivalent network, as shown in Figure 4.18. KCL can be
applied at either node to yield:

Figure 4.18 Generalized firstorder circuit with an inductor load and a
Norton source

Figure 4.19 Temperature response of automotive transmission

Of course, υ = υL and for an inductor υL = L d iL⁄dt. After substituting and rearranging
the terms, the result is:



(4.12)

(4.13)

(4.14)

For a DC source network, the long-term steady-state solution is simply iL = IN. It is
also possible to use a Norton or Thévenin source when the load is a capacitor or
inductor, respectively. The results can be shown to be identical to those found above
by substituting the source transformation expressions VT = IN RT and RT = RN.

It is important to keep in mind that these solutions are for t > 0, that is, the
transient response. It is possible that the equivalent source network seen by the load
after the transient event is different from that seen by the load before the event.
Equivalent network methods can be used for both domains but do not assume that the
equivalent network seen by the load is unchanged by the event.

First-Order Differential Equation
Both equations 4.11 and 4.12 have the same general form:

Page 212where the constants τ and KS are the time constant and the DC gain,
respectively. In this chapter, f (t) is assumed equal to a constant F, which represents
the contribution of one or more DC sources. With that assumption in mind, the
general first-order differential equation is:

The solution for x(t) has two parts: the transient response and the long-term
steady-state response. These two parts can also be rearranged in terms of natural and
forced responses, as shown in Sections 4.2. The sum of both parts is known as the
complete response. One initial condition x(0+) is needed to specify the complete
response.

MAKE THE CONNECTION



Hydraulic Tank
The analogy between electric and hydraulic circuits illustrated in earlier chapters can
be applied to the hydraulic tank shown in Figure 4.21. The tank is cylindrical with
cross-sectional area A, and the liquid contained in the tank exits the tank through a
valve, which is modeled by a fluid resistance R. Initially, the level, or head, of the
liquid is h0. The principle of conservation of mass can be applied to the liquid in the
tank in Figure 4.21 to determine the rate at which the tank will empty. For mass to be
conserved, the following equation must apply:

Figure 4.21 Analogy between electrical and fluid capacitance

In this equation, the variable q represents a volumetric flow rate in cubic meters per
second. The flow rate into the tank is zero in this particular case, and the flow rate
out is given by the pressure difference across the valve, divided by the resistance:

The expression  is obtained from basic fluid mechanics:  is the static
pressure at the bottom of the tank, where ρ is the density of the liquid, g is the
acceleration of gravity, and h is the (changing)liquid level.

The flow rate stored is related to the rate of change of the fluid volume contained in
the tank (the tank stores energy in the mass of the fluid):



(4.15)

(4.16)

(4.17)

(4.18)

Thus, we can describe the emptying of the tank by means of the first-order linear
ordinary differential equation

We know from the content of the present section that the solution of the first-order
equation with zero input and initial condition h0 is

Thus, the tank will empty exponentially, with the time constant determined by the
fluid properties, that is, by the resistance of the valve and by the area of the tank.

First-Order Transient Response
The transient response xTR is found by setting F = 0 in equations 4.14 such that:

The solution for x is found by assuming a solution of the form:

Substitution of this assumed solution into equations 4.15 results in a characteristic
equation.

The solution for s is simply:



(4.19)

(4.20)

(4.21)

which is known as the root of the characteristic equation. Plugging in for s in
equations 4.16 yields a decaying exponential.

    

The constant α in equations 4.19 cannot be evaluated until the complete response has
been found. If the system does not have an external forcing function, the transient
response is also the complete response, and the constant α is equal to the initial
condition x(0+). The Make the Connection sidebar “Hydraulic Tank” illustrates this
case by considering a fluid tank emptying through an orifice. Once the valve is open,
the volume of liquid in the tank decreases exponentially with a time constant τ
determined by the physical properties of the system.Page 213

The amplitude of  at t = n τ for n = 0, 1, . . . , 5 is shown in Figure 4.20. The
data show that xTR has decayed by roughly 95 percent at three time constants and by
over 99 percent at five time constants.

Figure 4.20 Normalized first-order exponential decay

Long-Term Steady-State Response
Still assuming that the first-order circuit contains only DC sources, such that f (t) is a
constant F, the long-term steady-state response of a first-order system is the solution
to:

For constant F, xSS = kS F is the solution. It is a worthwhile exercise to show that this
solution satisfies equations 4.20. Thus:



(4.22)

(4.23)

(4.24)

1.

2.

3.

·

·

4.

Complete First-Order Response
The complete response is the sum of the transient and long-term steady-state
responses:

Apply the one initial condition x(0+) to solve for the unknown constant α:

Substitute for α in equations 4.22 to find the complete response:
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F O C U S  O N  P R O B L E M  S O LV I N G

FIRST-ORDER TRANSIENT CIRCUIT ANALYSIS
Find the value of the state variable just before the transient event at t = 0 −. T
is, find  and 
Set the value of the state variable just after the transient event equal to the v
just before it. That is, set  as the initial condition
the transient response.
Note: Only the state variable is guaranteed to be continuous across the trans
event. The initial condition on an arbitrary variable x(t) must be found from
initial condition on the state variable.
For t > 0, treat the storage element as the load and simplify the remaining so
network. Assuming the source network is linear, when the storage element is

a capacitor, replace the source network with its Thévenin equivalent 
and RT), as shown in Figure 4.17.

an inductor, replace the source network with its Norton equivalent (IN 
RN), as shown in Figure 4.18.

For t > 0, the governing differential equation for the state variable is found
applying either KVL or KCL.



·

·

5.

·

·

When the load is a capacitor, apply KVL to find:

When the load is an inductor, apply KCL to find:

For t > 0, the complete solution for the state variable is found by solving
governing differential equation and applying its initial condition.

When the load is a capacitor, the complete solution for the state variable 

For an arbitrary variable the complete solution is:

When the load is an inductor, the complete solution for the state variable

For an arbitrary variable the complete solution is:

Note: The left side of the governing differential equation for an arbitrary vari
x(t) is the same as that for the state variable. The right side of the govern
differential equation for an arbitrary variable x(t) is simply the long-term ste
state value for x(t), which can be found by applying methods from Chapters 
3. One particularly important observation is the time constant is the same fo
variables; that is, the time constant is a characteristic of the entire orig
circuit.
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EXAMPLE 4.8 Simplifying a First-Order Transient Circuit
Problem

Determine a symbolic solution for the first-order circuit shown in Figure 4.22.

Figure 4.22 Circuit for Example 4.8.

Solution
Known Quantities: V1; V2; R1; R2; R3; C.

Find: Capacitor voltage as a function of time υC(t) for all t.

Schematics, Diagrams, Circuits, and Given Data: Figure 4.22.
Assumptions: Assume the switch was open for a very long time prior to closing,
such that the circuit is in a DC steady state prior to the transient event at t = 0.
Analysis:
Step 1: Find υC for t <0. For t < 0, the circuit is in a DC steady state such that the
capacitor acts as an open-circuit. Thus, there is no current through R2 and its voltage
drop is zero. Consequently, the voltage across the capacitor is V2, as required by
KVL.

Remember that it is always necessary to solve for the value of the state variable prior
to the transient event even if the state variable is not the variable of ultimate interest.

Step 2: Find the initial condition on υC. Since the variable of interest is also the
state variable υC, its initial condition is already known from step 1; that is, the initial
condition on υC at t = 0 is V2.

Step 3: Simplify the circuit for t > 0. After the switch is closed, the resulting circuit
is as shown in Figure 4.23, which was drawn to emphasize the two Thévenin sources



(V1, R1) and (V2, R2) present. The approach is to select the capacitor as the load and
then simplify the rest of the network to its Thévenin equivalent network.

Figure 4.23 The circuit in Figure 4.22 for t > 0

Each Thévenin source in Figure 4.23 can be transformed to its equivalent Norton
source as shown in Figure 4.24. The result is a network of resistors and independent
current sources all in parallel. The current sources are combined (summed) to a
single equivalent current source, and the resistors are combined to form a single
equivalent resistance RT. The resulting Norton source is then transformed to a
Thévenin source, to which the load is reattached as shown in Figure 4.25.

Figure 4.24 Simplification of the source network in Figure 4.23 to its
Thévenin equivalent



Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.25
to yield the differential equation for t > 0:

Figure 4.25 The circuit in Figure 4.23 simplified using Thévenin’s theorem
for t > 0
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The time constant associated with this first-order differential equation is τ = RTC.

Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for υC. The solution is
always:

It is important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.

Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for υC is found after the switch has been closed for a very long time
(practically t ≥ 5τ). The capacitor acts like an open-circuit such that 
Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.

The unknown constant α is found by applying the initial condition  The
result is:



Finally, the complete solution is:

   

EXAMPLE 4.9 Starting Transient of DC Motor
Problem

A DC motor can be modeled approximately as an equivalent first-order series RL
circuit, as shown in Figure 4.26. Find the complete solution for iL.

Figure 4.26 Circuit for Example 4.9

Solution
Known Quantities: Battery voltage VB; resistance R; and inductance L.

Find: The inductor current as a function of time iL (t) for all t.

Schematics, Diagrams, Circuits, and Given Data:  Figure
4.26.
Assumptions: None.
Analysis:
Step 1: Find υC for t < 0. The current through the inductor prior to the closing of the
switch must be zero; thus,

Page 217When the switch has been closed for a long time, the current through the
inductor is constant and can be calculated by replacing the inductor with a short-



circuit.

Step 2: Find the initial condition on iL. Since the variable of interest is also the
state variable iL, its initial condition is already known from step 1; that is, the initial
condition on iL at t = 0 is 0.

Step 3: Simplify the circuit for t > 0. For t > 0, the network attached to the inductor
is already in the form of a Thévenin source, so no further simplification is possible.
Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.26
to find the differential equation for t > 0:

After moving the forcing function VB to the right side:

The time constant τ is the coefficient of the first-derivative term:

Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for iL. The solution is
always of the form:

It is important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.

Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for iL is found after the switch has been closed for a very long time
(practically t ≥ 5τ). In this state, the inductor acts like a short-circuit such that

Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.



The unknown constant α is found by applying the initial condition iL (0+) = 0. The
result is:

Finally, the complete solution is:

The complete solution can also be expressed in terms of natural and forced
responses:

Page 218The complete response and its decomposition into (a) transient plus steady-
state responses, and (b) natural plus forced responses are shown in Figure 4.27.

Figure 4.27 Complete response iL(t) of electric motor: (a) steady-state iLSS
(t) plus transient iLT (t) responses;(b) forced iLF (t) plus natural iLN (t)
responses

Comments: Note that in practice it is not a good idea to place a switch in series with
an inductor. As the switch opens, the inductor current is forced to change suddenly,
with the result that diL⁄dt, and therefore υL(t), gets very large. The large voltage
transient resulting from this inductive kick can damage circuit components. A
practical solution to this problem, the freewheeling diode, is presented in Chapter 12.



EXAMPLE 4.10 Turnoff Transient of DC Motor
Problem

Determine the motor voltage for all time in the simplified electric motor circuit
model shown in Figure 4.28. The motor is represented by the series RL circuit in the
shaded box.

Figure 4.28 Circuit for Example 4.10.

Solution
Known Quantities: VB; RB; RS; Rm; Lm.

Find: The voltage across the motor as a function of time.
Schematics, Diagrams, Circuits, and Given Data: 
VB = 100 V.

Assumptions: The switch has been closed for a long time.
Analysis: With the switch closed for a long time, the inductor in the circuit in Figure
4.28 behaves as a short-circuit. The current through the motor can then be calculated
by the current divider rule in the modified circuit of Figure 4.29, where the inductor
has been Page 219replaced with a short-circuit and the Thévenin circuit on the left
has been replaced by its Norton equivalent:

Figure 4.29 Equivalent circuit at steady state.



This current is the initial condition for the inductor current: iL (0) = 34.72 A. Since
the motor inductance is effectively a short-circuit, the motor voltage for t < 0 is equal
to

When the switch opens and the motor voltage supply is turned off, the motor sees
only the shunt (parallel) resistance RS, as depicted in Figure 4.30. Remember now
that the inductor current cannot change instantaneously; thus, the motor (inductor)
current im must continue to flow in the same direction. Since all that is left is a series
RL circuit, with resistance  the inductor current will decay
exponentially with time constant 

Figure 4.30 Circuit with switch open.

The motor voltage is then computed by adding the voltage drop across the motor
resistance and inductance:

The motor voltage is plotted in Figure 4.31.



Figure 4.31 Motor voltage transient response

Comments: Notice how the motor voltage rapidly changes from the steady-state
value of 27.8 V for t < 0 to a large negative value due to the turnoff transient. This
inductive kick is typical of RL circuits and results from the fact that although the
inductor current cannot change instantaneously, the inductor voltage can and does, as
it is proportional to the derivative of iL. This example is based on a simplified
representation of an electric motor but illustrates effectively the need for special
starting and stopping circuits in electric motors. Some of these ideas are explored in
Chapter 12.
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EXAMPLE 4.11 First-Order Response due to a Pulsed Source
Problem

The circuit in Figure 4.32 includes a switch that can be used to connect and
disconnect a battery. The switch has been open for a very long time. At t = 0 the
switch closes, and then at t = 50 ms the switch opens again. Determine the capacitor
voltage as a function of time.

Figure 4.32 Circuit for Example 4.11.



Solution
Known Quantities: VB; R1; R2; R3; C.

Find: Capacitor voltage as a function of time υC(t) for all t.

Schematics, Diagrams, Circuits, and Given Data: VB = 15 V, R1 = R2 = 1,000 Ω, R3
= 500 Ω, and C = 25 μF. Figure 4.32.
Assumptions: None.
Analysis:

Part 1 (0 ≤ t < 50 ms)

Step 1: Steady-state response. We first observe that any charge stored in the
capacitor has had a discharge path through resistors R3 and R2. Thus, the capacitor
must be completely discharged. Hence,

To determine the steady-state response, we look at the circuit a long time after the
switch has been closed. At steady state, the capacitor behaves as an open-circuit, and
we can calculate the equivalent open-circuit (Thévenin) voltage and equivalent
resistance to be

Step 2: Initial condition. We can determine the initial condition for the variable
υC(t) by virtue of the continuity of capacitor voltage:

Step 3: Writing the differential equation. To write the differential equation, we use
the Thévenin equivalent circuit for t ≥ 0, with VT = υC(∞) and we write the resulting
differential equation

Step 4: Time constant. In the above equation we recognize the following variables
and parameters:
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1.

2.
3.

Step 5: Complete solution. The complete solution is

Part 2 (t ≥ 50 ms)

As mentioned in the problem statement, at t = 50 ms the switch opens again, and the
capacitor now discharges through the series combination of resistors R3 and R2. Since
there is no forcing function after the switch is opened, the long-term steady-state
solution υC(∞) is zero, the transient and natural responses are identical, and the
complete response has the form  where t 1 = 50 ms.

The voltage υC across the capacitor (a state variable) is continuous at t = 50 ms
when the switch is opened.
The constant α is the initial condition on υC at t = 50 ms.
The time constant for t ≥ 50 ms is τ = (R2 + R3) C = 0.0375 s.

Use the solution for 0 ≤ t ≤ 50 ms to calculate υC(t = t1 = 50 ms) and determine α.

Thus, the capacitor voltage for t ≥ 50 ms is:

The composite response is plotted below.

Comments: Note that the two parts of the response are based on two different time
constants and that the rising portion of the response changes faster (shorter time
constant) than the falling part. Also notice that the transient solution of part 2 was
expressed in terms of a time shift (t − 0.05) ms, which accounts for the fact that the
switch opened at t = 50 ms.
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EXAMPLE 4.12 First-Order Natural and Forced Responses
Problem

Determine an expression for the capacitor voltage in the circuit of Figure 4.33.

Figure 4.33

Solution
Known Quantities: υC (t = 0−); VB; R; C.

Find: Capacitor voltage as a function of time υC(t) for all t.

Schematics, Diagrams, Circuits, and Given Data: υC (t = 0−) = 5 V; R = 1 kΩ; C =
470 μF;VB = 12 V. Figure 4.33.

Assumptions: None.
Analysis:
Step 1: Find υC for t < 0. For t < 0, the capacitor is not part of a closed loop;
therefore, the current through the capacitor must be zero for t < 0. In other words, its
charge (and consequently, its energy) was constant. In this example, it is assumed
that the capacitor has an initial charge  Thus:

When the switch has been closed for a long time, the circuit reaches its new DC
steady state and the capacitor can be replaced by an open-circuit. Thus, the current in
the loop eventually reaches zero.

Step 2: Find the initial condition on υC. Since the variable of interest is also the
state variable υC, its initial condition is already known from step 1; that is, the initial
condition on υC at t = 0 is 5 V.

Step 3: Simplify the circuit for t > 0. For t > 0, the network attached to the capacitor
is already in the form of a Thévenin source, so no further simplification is possible.



Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.33
to yield the differential equation for t > 0:

The time constant τ is the coefficient of the first-derivative term:
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Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for υC. The solution is
always of the form:

It is important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.

Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for υC is found after the switch has been closed for a very long time
(practically t ≥ 5τ). In this state, the capacitor acts like an open-circuit such that 

Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.

The unknown constant α is found by applying the initial condition υC(0+) = 5 V. The
result is:

Finally, the complete solution is:

The complete solution can also be expressed in terms of natural and forced
responses:



The complete response and its decomposition into (a) transient plus steady-state
responses, and (b) natural plus forced responses are shown in Figure 4.34.

Figure 4.34 (a) Complete, transient, and steady-state responses of the
circuit in Figure 4.33; (b) complete, natural, and forced responses of the
same circuit

Comments: Note how in Figure 4.34(a) the long-term steady-state response υC SS
equals the battery voltage while the transient response υC TR (t) rises from −7 to 0 V
exponentially. In Figure 4.34(b), on the other hand, the energy initially stored in the
capacitor decays to zero via its natural response υCN while the external forcing
function causes the capacitor voltage to rise exponentially to 12 V, as shown in the
forced response υCF.
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CHECK YOUR UNDERSTANDING
What happens if the initial condition (capacitor voltage for t < 0) is zero in Example
4.12?

Answer: The complete solution is equal to the forced solution.



(4.25)

4.4 SECOND-ORDER TRANSIENT ANALYSIS
In general, a second-order circuit has two irreducible storage elements: two
capacitors, two inductors, or one capacitor and one inductor. The latter case is the
most important in terms of new fundamentals; however, the important aspects of all
second-order system responses are discussed in this section. Since second-order
circuits have two irreducible storage elements, such circuits have two state variables
and their behavior is described by a second-order differential equation.

The simplest, yet arguably the most crucial, second-order circuits are those in
which the capacitor and inductor are either in parallel or in series, as shown later in
Figures 4.48 and 4.49. The circuits in these figures are drawn to suggest that the
capacitor and inductor should be treated as a unified load. The rest of each circuit is
either the Thévenin or Norton equivalent of the source network. The analysis of these
circuits is somewhat less complicated than for other second-order circuits, which is
appealing for anyone learning to analyze such circuits for the first time. The analysis
of more complicated second-order circuits is treated in an example later in this
section.

It is important to adopt a patient but determined attitude toward the material in
this section, as it is notoriously challenging to students. Every effort has been made
to walk you through the material in a systematic and progressive manner. Hold on to
your hat! And don’t panic.

General Characteristics
Before diving into the analysis of particular second-order circuits it is worthwhile to
introduce the generalized differential equation for any second-order circuit.

The constants ωn and ζ are the natural frequency and the dimensionless damping
ratio, respectively. These parameters are characteristics of a second-order circuit and
determine its response. Their values will be determined by direct comparison of
equations 4.25 with the differential equation for a specific RLC circuit. As will be
shown, second-order circuits have three distinct possible responses: overdamped,
critically damped, and underdamped. The response for any particular second-order
circuit is determined entirely by ζ.

Page 225In equations 4.25, f (t) is a forcing function. KS is the DC gain of a
particular variable x(t). Different variables in the same circuit may have different DC



gains. However, all variables share the same natural frequency ωn, the same
dimensionless damping ratio ζ, and therefore also the same type of response. This
fact can be an important time saver when problem solving.

Parallel LC Circuits
Consider the circuit shown in Figure 4.35. The two state variables are iL and υC,
where υC is the primary state variable because it is shared by all four circuit elements.
In general, at the moment of a transient event the energy of the storage elements may
be nonzero; that is, the voltage υC(0) across the capacitor and the current iL(0)
through the inductor may be nonzero. As always, the two state variables are
continuous such that:

Figure 4.35 Second-order circuit with the inductor and capacitor in parallel
acting as a unified load attached to a Norton equivalent network

Apply KCL to either node to find a first-order differential equation in terms of both
state variables.

The KCL equation can be transformed into a second-order differential equation in
iL by recognizing that:

Substitute for υC and iC in the KCL equation to find:

Rearrange the order of terms to yield:



(4.26)

(4.27)

(4.28)

Page 226Alternatively, one can differentiate both sides of the KCL equation and
substitute:

The result is:

Multiply both sides of the equation by L, and if the source IN is a constant such that
its time derivative is zero, the resulting second-order differential equation is:

Equations 4.27 contains no forcing function (its right side is zero), which
indicates that the long-term steady-state solution for υC will be zero. In other words,
the transient solution for υC is also its complete solution.

To solve equations 4.26 and 4.27 it is first necessary to identify the dimensionless
damping ratio ζ and the natural frequency ωn. Notice that the left sides of both
equations are identical, as they are for any variable in the circuit. Thus, ωn and ζ can
be found from either differential equation by comparing it to equations 4.25. The
result is:

These two equations can be solved to yield:

The type of transient response for iL and υC depends upon ζ only. When ζ is
greater than, equal to, or less than 1, the transient responses (iL)TR and (υC)TR are
overdamped, critically damped, or underdamped, respectively. These three types of
responses are described in detail later in this section. The complete solutions are:



and

Note that when IN is a constant, (υC)SS = 0 and υC(t) = (υC)TR(t).
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Series LC Circuits
The development of the general solution for series LC circuits follows the same basic
steps used above for parallel LC circuits. Consider the circuit in Figure 4.36 and note
the duality between what follows and what was done above for the parallel LC
circuit. In fact, the equations that follow can be found simply by starting with the
equations developed above and swapping L with C, iL with υC, RN with 1⁄RT, and IN
with VT.

Figure 4.36 Second-order circuit with the inductor and capacitor in series
acting as a unified load attached to a Thévenin equivalent network

Again, the two state variables are iL and υC, where iL is the primary state variable
because it is shared by all four circuit elements. Again, at the moment of a transient
event the energy of the storage elements may be nonzero; that is, the voltage υC(0)
across the capacitor and the current iL(0) through the inductor may be nonzero. As
always, the two state variables are continuous such that:

Apply KVL around the series loop to find a first-order differential equation in terms
of both state variables.



The KVL equation can be transformed into a second-order differential equation
in υC by recognizing that:

Substitute for υL and iL in the KVL equation to find:

MAKE THE CONNECTION

Automotive Suspension
The mechanical model shown below can be analyzed using Newton’s second law, 

 to obtain the equation

This equation can be written in the standard form:

The analogous LC series circuit shown below can be analyzed using KVL:



Notice the similar structure of these two second-order differential equations.

Analogy between electricaland mechanical systems

If we now compare both second-order differential equations to the standard form of
equations 4.25, we can make the following observations:

Comparing the expressions for the natural frequency and damping ratio in the two
differential equations, we arrive at the following analogies:

Mechanical systemElectrical system
Damping
coefficient b
Mass m
Compliance 1⁄k

Resistance R
Inductance L
Capacitance C

Page 228



(4.29)

(4.30)

(4.31)

Rearrange the order of terms to yield:

Alternatively, one can differentiate both sides of the KVL equation and
substitute:

The result is:

Multiply both sides of the equation by C, and if the source VT is a constant such that
its time derivative is zero, the resulting second-order differential equation is:

Equations 4.30 contains no forcing function (its right side is zero), which indicates
that the long-term steady-state solution for iL will be zero. In other words, the
transient solution for iL is also its complete solution.

To solve equations 4.29 and 4.30 it is first necessary to identify the dimensionless
damping ratio ζ and the natural frequency ωn. Notice that the left sides of both
equations are identical, as they are for any variable in the circuit. Thus, ωn and ζ can
be found from either differential equation by comparing it to equations 4.25. The
result is:

These two equations can be solved to yield:

The type of transient response for iL and υC depends upon ζ only. As always,
when ζ is greater than, equal to, or less than 1, the transient responses (iL)TR and



(4.32)

(4.33)

(4.34)

(4.35)

(υC)TR are overdamped, critically damped, or underdamped, respectively. These Page
229three types of responses are described in detail later in this section. The complete
solutions are:

and

Note that when VT is a constant, (iL)SS = 0 and iL(t) = (iL) TR(t).

Transient Response
The transient response xTR(t) is found by setting the right side of the governing
differential equation equal to zero. That is:

Just as in first-order systems, the solution of this equation has an exponential form:

Substitution into the differential equation yields the characteristic equation:

which, in turn, yields two characteristic roots s1 and s2. Specific values of s1 and s2
are found from the quadratic formula applied to the characteristic equation.

The roots s1 and s2 are associated with the three distinct possible responses:
overdamped (ζ > 1), critically damped (ζ = 1), and underdamped (ζ < 1). The details
of each of these responses are presented below.

1. Overdamped Response (ζ > 1)



(4.36)

(4.37)

Two distinct, negative, and real roots: (s1, s2). The transient response is
overdamped when ζ > 1 and the roots are  The general form of
the solution is

Thus, an overdamped response is the sum of two first-order responses, as shown in
Figure 4.37.Page 230

Figure 4.37 Transient response of overdamped second-order system for α1
= α2 = 1; ζ = 1.5; ωn = 1

2. Critically Damped Response (ζ = 1)

Two identical, negative, and real roots: (s1, s2). The transient response is critically
damped when ζ = 1. The argument of the square root in equations 4.35 is zero, such
that  The general form of the solution is:

Note that a critically damped response is the sum of a first-order exponential term
plus a similar term multiplied by t. These two components and the complete response



(4.38)

(4.39)

are shown in Figure 4.38.

Figure 4.38 Transient response of a critically damped second-order system
for 

3. Underdamped Response (ζ < 1)

Two complex conjugate roots: (s1, s2). The transient response is underdamped when
ζ < 1. The argument of the square root in equations 4.35 is negative, Page 231such
that  The following complex exponentials appear in the general
form of the response:

Euler’s formula can be used to express the complex exponentials in terms of
sinusoids. The result is:



(4.40)

(4.41)

Figure 4.39 Transient response of an underdamped second-order system
for α1 = α2 = 1; ζ = 0.2; ωn = 1

where  is the damped natural frequency. Note that ωd is the frequency
of oscillation and is related to the period T of oscillation by ωdT = 2π. Also note that
ωd approaches the natural frequency ωn as ζ approaches zero. The oscillation is
damped by the decaying exponential  which has a time constant τ = 1⁄ζ ωn, as
shown in Figure 4.39. As ζ increases toward 1 (more damping), τ decreases and the
oscillations decay more quickly. In the limit ζ → 0, the response is a pure sinusoid.

Long-Term Steady-State Response
For switched DC sources, the forcing function F in equations 4.40 is a constant. The
result is a constant long-term (t → ∞) steady-state response xSS.

Since xSS must also be a constant the solution for xSS is:

Complete Response
As with first-order systems, the complete response is the sum of the transient and
long-term steady-state responses. The complete mathematical solutions for the
overdamped, critically damped, and underdamped cases are shown in the highlighted
Focus on Problem Solving section. In each of these cases, the initial conditions on
the storage elements must be used to solve for the unknown constants α1 and α2. The



required procedure uses the two initial conditions to evaluate x(t) and Page 232dx⁄dt
at t = 0+. The details of the procedure vary slightly in each of the three cases and are
illustrated in the example problems.

One particularly useful complete solution is the unit-step response brought about
by letting kSf(t) (see equations 4.25) be a unit step, which equals 0 for t < 0 and 1 for
t > 0. To illustrate, assume a dimensionless damping coefficient ζ = 0.1 and an
underdamped period of oscillation T = 2π, such that the damped natural frequency is
ωd = 1. The corresponding unit-step response, shown in Figure 4.40, asymptotically
approaches the long-term DC steady-state value of 1 dictated by the unit-step input.

Figure 4.40 Second-order unit-step response withKS = 1, ωd = 1, and ζ =
0.1

Also, as seen in the underdamped transient response, the magnitude of the
oscillations decays exponentially over time. The time constant for the surrounding
envelope (see dashed lines in Figure 4.40) is  such that by ωdt =
5τ the oscillations are within 1 percent of the long-term DC steady-state value.

Note that the rate of decay of the oscillations is governed by ζ. Figure 4.41 shows
that as ζ increases the overshoot of the long-term DC steady-state response decreases
until, when ζ = 1 (critically damped), the response no longer oscillates and the
overshoot is zero. The response for ζ > 1 (overdamped) has no oscillations and zero
overshoot.



1.

2.

3.

4.

5.

Figure 4.41 Second-order unit-step response withKS = 1, ωd = 1, and ζ
ranging from 0.2 to 4.0
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F O C U S  O N  P R O B L E M  S O LV I N G

SECOND-ORDER TRANSIENT RESPONSE
Solve for the DC steady-state responses of x(t) before and long after the sw
is thrown at (t = 0). These responses are designated x(0−) and x(∞).
Use the continuity requirements for capacitor voltage and inductor cur

 and  to identify the in
conditions x(0+) and dx(0+)⁄dt.
Apply KVL and/or KCL to find two first-order differential equations, on
which may be the constitutive i-υ relation for one of the state variab
Manipulate these equations to find a second-order differential equation
standard form (equations 4.25) and in one state variable.
Compare the coefficients of the differential equation to the standard form
write two equations involving the natural frequency ωn and the dimension
damping ratio ζ. Solve for ωn and ζ.
Use the value of ζ to determine whether the transient response for x(t
overdamped, critically damped, or underdamped.
Overdamped case (ζ > 1):



6.

•

•

•

Case 1:

Critically damped case (ζ = 1):

Underdamped case (ζ < 1):

Use the initial conditions on the state variables to solve for the constants α1
α2.

Set t = 0+ in the complete solution to find x(0+) in terms of α1 and α2.

Differentiate the complete solution, and set t = 0+ to find dx(0+)⁄dt in te
of α1 and α2.

Use the results from step 3 to relate x(t) and dx⁄dt at t = 0+ to the s
variables υC(0+) and iL(0+).

Compare the two pairs of equations for x(0+) and dx(0+)⁄dt in step 6. Solve fo
and α2. Whew! Voila!! Done!!!
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F O C U S  O N  P R O B L E M  S O LV I N G

ROOTS OF SECOND-ORDER SYSTEMS
The general form of the roots s1 and s2 is

The nature of these roots depends upon the argument of the square root.

Distinct, negative, real roots. This case occurs when ζ > 1 since
term under the square root sign is positive. The result is 
and a second-order overdamped response.



Case 2: Identical, negative, real roots. This case occurs when ζ = 1 since the t
under the square root is zero. The result is a repeated root  an
second-order critically damped response.

Case 3: Complex conjugate roots. This case holds when ζ < 1 since the term un
the square root is negative. The result is a pair of complex conjugate r

 and a second-order underdamped response.

EXAMPLE 4.13 Transient Response of Second-Order Circuit
Problem

Find the transient response of iL(t) in the circuit shown in Figure 4.42.

Figure 4.42 Circuit for Example 4.13

Solution
Known Quantities: υS; R1; R2; C; L.

Find: The transient response of iL(t) for the circuit in Figure 4.42.

Schematics, Diagrams, Circuits, and Given Data: R1 = 8 kΩ; R2 = 8 kΩ; C = 10 μF;
L = 1 H.
Assumptions: None
Analysis: To compute the transient response of the circuit, set the source equal to
zero (short-circuit) and observe that the two resistors are in parallel and can be
replaced by a single resistor R = R1‖R2. Apply KCL to the resulting parallel RLC
circuit, observing that the capacitor voltage is the top node voltage in the circuit:



This equation is a first-order differential equation in the two state variables. To obtain
a second-order differential equation in one state variable use:

Page 235to substitute for υC and find:

This equation has the form of equations 4.25, with  The
roots of the differential equation can be computed from equations 4.35

It is always instructive to calculate the values of the three parameters first. By
inspection,  and  the response is
underdamped, and the roots have the form:  Substituting
numerical values, find  such that the transient response of any
variable in the circuit has the form:

The constants α1 and α2 can only be determined once the complete response is
known and the initial conditions have been determined.

Comments: Note that once the second-order differential equation is expressed in
standard form and the values of the three parameters are identified, the task of
writing the transient solution with the aid of the Focus on Problem Solving box is
straightforward.



EXAMPLE 4.14 Complete Response of OverdampedSecond-Order
Circuit
Problem

Determine the complete response for the loop current i shown in Figure 4.43.

Figure 4.43 Circuit for Example 4.14.

Solution
Known Quantities: VS; R; C; L.

Find: The complete response for the loop current i in the circuit of Figure 4.43.
Schematics, Diagrams, Circuits, and Given Data: VS = 25 V; R = 5 kΩ; C = 1 μF; L
= 1 H.
Assumptions: The capacitor has been charged (through a separate circuit, not shown)
prior to the switch closing, such that υC(0) = 5 V.

Analysis:
Step 1: Steady-state response. While the switch is open, the current i in the circuit
must be zero. Thus, the initial condition on the inductor current is also zero; that is,
iL(0) = 0. The initial voltage υC(0) across the capacitor cannot be deduced from the
circuit itself. Instead, it must be given. In this problem, υC(0) = 5 V.

After the switch has been closed for a long time and the transient response has
decayed away, the remaining long-term DC steady-state value i(∞) can be found by
treating the capacitor as an open-circuit and the inductor as a short-circuit. By
observation, i(∞) = 0 because the capacitor acts as an open-circuit in the single-loop
circuit.
Step 2: Initial conditions. Two initial conditions are needed to solve a second-order
circuit. These two initial conditions always rely on the two continuity conditions on
the current through Page 236an inductor and the voltage across a capacitor, which
must be continuous at all times. That is,  To solve
for the two unknown constants in the complete solution it is necessary to apply the
initial conditions on the two state variables to two equations involving those



constants. Those two equations are  and  The latter
equation can be evaluated by applying KVL at t = 0+:

Step 3: Differential equation. Apply KVL around the loop to find a first-order
differential equation in the two state variables υC and iL:

To obtain a second-order differential equation in iL alone requires two additional
steps. First, differentiate both sides of the first-order equation to find:

Next, note that iL is also the current through the capacitor and write the constitutive i-
υ relation for the capacitor as:

Plug this result into the second-order differential equation, multiply both sides by C,
and rearrange terms to obtain:

Note that the right-hand side (forcing function) of this differential equation is zero
when VS is a DC source. This result is expected because the capacitor acts as a DC
open-circuit, thus forcing the long-term DC steady-state value of iL to be zero.

It is worthwhile to note that finding the second-order differential equation for any
other variable x is now a simple matter because its right-hand side will be identical to
that for iL. The result is:

where the forcing function f (t) depends upon the independent sources in the circuit
and the DC gain KS depends upon the specific variable x. For circuits where all
independent sources are direct current, the left-hand side is the long-term DC steady-
state value x(∞). Thus:



Step 4: Solve for ωn and ζ. Compare the second-order differential equation to the
standard form of equations 4.25 to find:

Thus, this second-order circuit response is overdamped.Page 237

Step 5: Write the complete solution. We know the circuit is overdamped, so the
complete solution has the form:

and since xSS = x(∞) = 0, the complete solution is identical to the transient solution:

Step 6: Solve for the constants α1 and α2. Finally, use the initial conditions to
evaluate the constants α1 and α2. The first initial condition yields

The second initial condition is evaluated as follows:

Substituting α1 = −α2, we get

We can finally write the complete solution:



A plot of the complete solution and of its components is given in Figure 4.44.

Figure 4.44 Complete response of overdamped second-order circuit
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EXAMPLE 4.15 Complete Response of Critically DampedSecond-
Order Circuit
Problem

Determine the complete response for the voltage υC shown in Figure 4.45.

Figure 4.45 Circuit for Example 4.15.

Solution
Known Quantities: IS; R; RS; C; L.

Find: The complete response of the differential equation in υC describing the circuit
in Figure 4.45.



Schematics, Diagrams, Circuits, and Given Data: IS = 5 A; R = RS = 500 Ω; C = 2
μF; L = 500 mH.
Assumptions: None.
Analysis:
Step 1: Steady-state response. With the switch open for a long time, any energy
stored in the capacitor and inductor has had time to be dissipated by the resistor; thus,
the currents and voltages in the circuit are zero: iL (0 −) = 0, υC (0−) = υ (0 −) = 0.

After the switch has been closed for a long time and all the transients have died,
the capacitor becomes an open-circuit, and the inductor behaves as a short-circuit.
With the inductor behaving as a short-circuit, all the source current will flow through
the inductor, and iL (∞) = IS = 5 A. On the other hand, the current through the resistor
is zero, and therefore 
Step 2: Initial conditions. Two initial conditions are needed to solve a second-order
circuit. These two initial conditions always rely on two continuity conditions: the
current through an inductor and the voltage across a capacitor are continuous. That
is,  Since the differential equation is in the
variable υC, the two needed initial conditions are υC (0+) and d υC (0 +)⁄dt. These can
be found by applying KCL at t = 0+:

Since υC (0+) = 0 and iL (0+) = 0, the result is: d υC (0+)⁄dt:

Step 3: Differential equation. Apply KCL at the upper node to find a first-order
differential equation in the two state variables υC and iL:

Differentiate both sides to obtain a second-order differential equation. Then, note that
υC is also the voltage across the inductor such that the constitutive i-υ relation for the
inductor can be written as:

Page 239Use this relation to substitute for d iL⁄dt to obtain a second-order differential
equation involving υC only. Finally, multiply both sides by L and rearrange terms to
find:



Note that the right-hand side (the forcing function) of this differential equation is
zero when IS is a DC source. This result is expected because the inductor acts as a
DC short-circuit, thus forcing the long-term DC steady-state value of υC to be zero.

It is worthwhile to note that finding the second-order differential equation for any
other variable x is now a simple matter because its right-hand side will be identical to
that for iL. The result is:

where the forcing function f (t) depends upon the independent sources in the circuit
and the DC gain KS depends upon the specific variable x. For circuits where all
independent sources are direct current, the left-hand side is the long-term DC steady-
state value x(∞). Thus:

Step 4: Solve for ωn and ζ. Compare the second-order differential equation to the
standard form and observe:

Thus, the second-order circuit is critically damped.

Step 5: Write the complete solution. The complete solution for the critically
damped (ζ = 1) case is:

and, since  the complete solution is identical to the transient solution:

Step 6: Solve for the constants α1 and α2. Solve for the initial conditions to
evaluate the constants α1 and α2. The first initial condition yields:



The second initial condition is:

Finally, the complete solution is:

Page 240A plot of the complete solution and of its components is given in Figure
5.46.

Figure 4.46 Complete response of critically damped second-order circuit

EXAMPLE 4.16 Complete Response of UnderdampedSecond-Order
Circuit
Problem

Determine the complete response for the current iL shown in Figure 4.47.



Figure 4.47 Circuit for Example 4.16.

Solution
Known Quantities: VS; R; C; L.

Find: The complete response for the current iL shown in Figure 4.47.

Schematics, Diagrams, Circuits, and Given Data: VS = 12 V; R = 200 Ω; C = 10
μF;L = 0.5 H.
Assumptions: The capacitor has an initial charge such that υC (0−) = υC (0+) = 2 V.

Analysis:
Step 1: Steady-state response. The inductor current must be zero when the switch is
open, so iL (0−) = 0. Also, the initial charge on the capacitor is υC (0−) = 2 V. After
the switch has been closed for a long time, the capacitor and inductor act as open-
and short-circuits, respectively, such that the loop current is zero and the battery
voltage appears across the capacitor: 
Step 2: Initial conditions. Two initial conditions are needed to solve a second-order
circuit. These two initial conditions always rely on two continuity conditions: the
current through an inductor and the voltage across a capacitor are continuous. That
is,  Since the differential equation is in the
variable iL, the two needed initial conditions are iL (0+) and d iL (0+)⁄dt. The second
initial condition Page 241can be found by applying KVL at t = 0+:

Step 3: Differential equation. Apply KVL around the loop to find a first-order
differential equation in the two state variables υC and iL:

To obtain a second-order differential equation in iL alone requires two additional
steps. First, differentiate both sides of the first-order equation to find:



Next, note that iL is also the current through the capacitor and write the constitutive i-
υ relation for the capacitor as:

Plug this result into the second-order differential equation, and multiply both sides by
C to obtain:

Note that the right-hand side (the forcing function) of this differential equation is
zero when VS is a DC source. This result is expected because the capacitor acts as a
DC open-circuit, thus forcing the long-term DC steady-state value of iL to be zero.

It is worthwhile to note that finding the second-order differential equation for any
other variable x is now a simple matter because its right-hand side will be identical to
that for iL. The result is:

where the forcing function f (t) depends upon the independent sources in the circuit
and the DC gain KS depends upon the specific variable x. For circuits where all
independent sources are direct current, the left-hand side is the long-term DC steady-
state value x(∞). Thus:

Step 4: Solve for ωn and ζ. If we now compare the second-order differential
equations to the standard form of equations 4.50, we can make the following
observations:

Thus, the second-order circuit is underdamped.

Step 5: Write the complete solution. Knowing that the circuit is underdamped (ζ <
1), we write the complete solution for this case as



Page 242and since xSS = iL(∞) = 0, the complete solution is identical to the transient
solution:

Step 6: Solve for the constants α1 and α2. Finally, we solve for the initial conditions
to evaluate the constants α1 and α2. The first initial condition yields

The second initial condition is evaluated as follows:

Substituting α1 = −α2, we get

We can finally write the complete solution:

In the above equation, we have used Euler’s formula to obtain the final expression. A
plot of the complete solution and of its components is given in Figure 4.48.



Figure 4.48 Complete response of underdamped secondorder circuit
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EXAMPLE 4.17 Analysis of Nonseries, Nonparallel RLC Circuit
Problem

Assume the circuit shown in Figure 4.49 is in DC steady state for t < 0. The switch
closes at t = 0. Find the differential equations for the voltage υC across the capacitor
and the current iL through the inductor for t > 0.

Figure 4.49 Circuit for Example 4.17.

Solution
Known Quantities: VS1; RS1; VS2; RS2; R1; R2; L; C.

Find: For t > 0, find the differential equations for the voltage υC across the capacitor
and the current iL through the inductor shown in Figure 4.49.

Assumptions: DC steady state for t < 0.



Analysis: The critical difference between the circuit in this example and those in the
previous examples is that the capacitor and inductor are neither in series nor in
parallel. As will be shown below, it will first be necessary to find two first-order
differential equations in the state variables υC and iL to find the second-order
differential equations in each state variable.
Step 1: Steady-state response for t < 0. With the switch open VS1 and RS1 are
disconnected from the rest of the circuit. Assuming a DC steady state the inductor
acts as a short-circuit and the capacitor acts as an open-circuit. The result is that the
voltage across R1 is zero and the current through R2 is zero. Thus, the voltage across
RS2 is VS2. Apply KCL at the top node and KVL around a loop containing the
inductor and capacitor to find the following values for iL and υC:

Step 2: Initial conditions at t = 0. The initial conditions on the state variables iL and
υC are found by applying the continuity requirement.

Step 3: Simplification of t > 0 circuit. With the switch closed, the first step to
simplify the circuit is to divide it into a source and load. Choose the least
complicated two-terminal network that contains the inductor and the capacitor as the
load. As always, everything else is the source network. Figure 4.50 shows the circuit
rearranged into a source and load.

Figure 4.50 Circuit simplification, step 1.

The two Thévenin sources on the left can be transformed into Norton sources as
shown in Figure 4.51. The resulting parallel current sources can be replaced by a
single equivalent Page 244current source. Likewise, the parallel resistors can be
replaced by a single equivalent resistor. The resulting simplified circuit is shown in
Figure 4.52, where:



Figure 4.51 Circuit simplification, step 2.

Figure 4.52 Simplified equivalent circuit

Step 4: Derivation of the differential equations. In general, when the inductor and
capacitor are neither in parallel nor in series, it is necessary to apply KVL and/or
KCL twice to obtain two first-order differential equations in iL and υC. When doing
so, be careful that all the circuit elements are accounted for in the two equations. For
the circuit shown in Figure 4.52, apply KCL at the top node to find:

Also apply KVL around the right-most loop containing the inductor and capacitor to
find:

The next step is to eliminate the nonstate variables υL and iC by substitution using the
inductor and capacitor constitutive i-υ relations.

The result is two first-order differential equations in the state variables.

The next step is to combine these two first-order differential equations so as to-  
eliminate one of the state variables. The result will be a second-order differential



equation in the remaining state variable. This step may require some patience and
clever manipulations.

For example, multiply the first equation above by R2 and add the result to the
second equation to yield:

Differentiate both sides of this equation to find:

Substitute that result into the first of the two original first-order differential equations
above to yield:

The resulting second-order differential equation in iL is reasonable in that the long-
term DC steady-state value for iL is I0, as can be seen by observation of Figure 4.52.
The second-order differential equation for υC must have the same left side. Again, by
observation of Figure 4.52, the long-term DC steady-state value for υC is zero. Thus:
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Step 5: Solution for ωn and ζ. Compare either of the two second-order differential
equations to equations 4.25 to write:

These two equations can be solved for ωn and ζ to yield:

Step 6: The complete solution. The form (overdamped, critically damped,
underdamped) of the transient solution depends upon the value of ζ, which itself
depends upon the values of the various circuit elements. The complete solution is the
sum of the transient solution and the long-term DC steady-state value. Regardless of



the form of the transient solution, the complete solution will contain two unknown
constants.
Step 7: The unknown constants. To demonstrate the process of solving for the
unknown constants consider the generic complete solution for the inductor current iL.

The two unknown constants are part of the transient solution (iL)TR(t). To solve for
the unknown constants it is necessary to derive two linearly independent algebraic
equations for them. The first such equation is found directly from the initial condition
on iL. That is:

The second equation for the unknown constants is found by evaluating the derivative
of iL at t = 0+. That is:

The derivative of iL at t = 0+ can be evaluated using the initial conditions on both
state variables iL and υC. In general, to do so requires the use of one or both of the
two first-order differential equations found by applying KVL and/or KCL. From
before, those two first-order differential equations were combined to produce:

After rearranging terms and evaluating at t = 0+ yields:

The initial conditions on the two state variables for this example were found above.
Solve the two linearly independent algebraic equations for the two unknown
constants. Done!

Comments: Recall that the values of the unknown constants and the long-term steady
state are, in general, different for different variables. However, all variables in a
circuit share the same natural frequency ωn and dimensionless damping coefficient ζ.
That is, the left side of the second-order differential equation is the same for all
variables. Also, keep in mind that the initial conditions for any variable and its



derivative must be related to the initial conditions on the state variables since they are
the only variables guaranteed to be continuous across the transient event.
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CHECK YOUR UNDERSTANDING
For what value of R in Example 4.13 will the circuit response become critically
damped?

CHECK YOUR UNDERSTANDING
Obtain a differential equation for υC in the circuit of Example 4.14.

CHECK YOUR UNDERSTANDING
Obtain a differential equation for iL in the circuit of Example 4.15.

CHECK YOUR UNDERSTANDING

Answer: R = 158.1 Ω

Answer: 

Answer: 



1.

2.

3.

4.

If the inductance in Example 4.16 is reduced to one-half of its original value (from
0.5 to 0.25 H), for what range of values of R will the circuit be underdamped?

Conclusion
Chapter 4 has focused on the solution of first- and second-order differential equations
for the case of DC switched transients, and it has presented a number of analogies
between electric circuits and other physical systems, such as thermal, hydraulic, and
mechanical.

While many other forms of excitation exist, turning a DC supply on and off is a very
common occurrence in electrical, electronic, and electromechanical systems. Further,
the methods discussed in this chapter can be readily extended to the solution of more
general problems.

A thorough study of this chapter should result in the acquisition of the following
learning objectives:

Write differential equations for circuits containing inductors and capacitors.
This process involves the application of KVL and/or KCL to produce first-order
differential equations and the use of constitutive i-υ relationships for inductors
and capacitors to produce differential equations in the state variables.Page 247
Determine the DC steady-state solution of circuits containing inductors and
capacitors. The DC steady-state solution of any differential equation can be
easily obtained by setting the derivative terms equal to zero. Alternatively, the
DC steady-state response for any circuit variable can be acquired directly from
the circuit since an inductor acts as a short-circuit and a capacitor acts as an
open-circuit under DC conditions.
Write the differential equation of first-order circuits in standard form, and
determine the complete solution of first-order circuits excited by switched DC
sources. First-order systems are most commonly described by way of two
constants: the DC gain and the time constant. You have learned how to recognize
these constants, how to compute the initial and final conditions, and how to write
the complete solution of all first-order circuits almost by inspection.
Write the differential equation of second-order circuits in standard form, and
determine the complete solution of second-order circuits excited by switched DC

Answer: R ≤ 316 Ω
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4.1

4.2

4.3

4.4

4.5

4.6
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4.8

4.9

4.10

4.11

4.12

4.13

4.14

sources. Second-order circuits are described by three constants: the DC gain, the
natural frequency, and the dimensionless damping coefficient. While the method
for obtaining the complete solution for a second-order circuit is logically the
same as that used for a first-order circuit, the details are more involved.
Understand analogies between electric circuits and hydraulic, thermal, and
mechanical systems. Many physical systems in nature exhibit the same first- and
second-order characteristics as the electric circuits studied in this chapter. This
chapter introduced thermal, hydraulic, and mechanical system analogies.

HOMEWORK PROBLEMS
Sections 4.2: Elements of Transient Problem Solving

Write the differential equations for t > 0 for iL and υ3 in Figure P4.21. How are
they related?

Write the differential equation for t > 0 for υC in Figure P4.23.

Write the differential equation for t > 0 for iC in Figure P4.27.

Write the differential equation for t > 0 for iL in Figure P4.29.

Write the differential equation for t > 0 for υC in Figure P4.32.

Write the differential equations for t > 0 for iC and υ3 in Figure P4.34. How are
they related?

Write the differential equation for t > 0 for υC in Figure P4.41. Assume R1 = 5
Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Write the differential equation for t > 0 for iC in Figure P4.47. Assume VS = 9
V, RS = 5 kΩ, R1 = 10 kΩ, and R2 = R3 = 20 kΩ.

Write the differential equation for t > 0 for iL in Figure P4.49.

Write the differential equations for t > 0 for iL and υ1 in Figure P4.52. How are
they related? AssumeL1 = 1 H and L2 = 5 H.

Determine the initial and final conditions on iL and υ3 in Figure P4.21.

Determine the initial and final conditions on υC in Figure P4.23.

Determine the initial and final conditions on iC in Figure P4.27.

Determine the initial and final conditions on iL in Figure P4.29.



4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Determine the initial and final conditions on υC in Figure P4.32.

Determine the initial and final conditions on iC and υ3 in Figure P4.34.

Determine the initial and final conditions on υC in Figure P4.41.

Determine the initial and final conditions on iC in Figure P4.47. Assume VS = 9
V, RS = 5 kΩ, R1 = 10 kΩ, and R2 = R3 = 20 kΩ.

Determine the initial and final conditions on iL in Figure P4.49. Assume L1 = 1
H and L2 = 5 H.Page 248

Determine the initial and final conditions oniL and υ1 in Figure P4.52.

Sections 4.3: First-Order Transient Analysis
At t = 0−, just before the switch is opened, the current through the inductor in
Figure P4.21 is iL = 140 mA. Is this value the same as that for DC steady state?
Was the circuit in steady state just before the switch was opened? Assume Vs =
10 V, R1 = 1 kΩ,R2 = 5 kΩ, R3 = 2 kΩ, and L = 1 mH.

Figure P4.21

For t < 0, the circuit shown in Figure P4.22 is at DC steady state. The switch is
thrown at t = 0.

VS1 = 35 V VS2 = 130 V

C = 11 μF R1 = 17 kΩ

R2 = 7 kΩ R3 = 23 kΩ

Determine the initial current through R3 just after the switch is thrown at t =
0+.



4.23

4.24

4.25

4.26

Figure P4.22

Determine the current iC through the capacitor just before and just after the
switch is closed in Figure P4.23. Assume steady-state conditions for t < 0. V1 =
15 V, R1 = 0.5 kΩ, R2 = 2 kΩ, and C = 0.4 μF.

Figure P4.23

Determine the current iC through the capacitor just before and just after the
switch is closed in Figure P4.23. Assume steady-state conditions for t < 0. V1 =
10 V, R1 = 200 mΩ, R2 = 5 kΩ, and C = 300 μF.

Just before the switch is opened at t = 0 in Figure P4.21, the current through
the inductor is iL = 1.5 mA. Determine the voltage υ3 across R3 immediately
after the switch is opened. Assume VS = 12 V, R1 = 6 kΩ, R2 = 6 kΩ, R3 = 3
kΩ, and L = 0.9 mH.

Assume that steady-state conditions exist in the circuit shown in Figure P4.26
for t < 0. Determine the current through the inductor immediately before and
immediately after the switch is thrown, that is, at t = 0− and at t = 0+. Assume L
= 0.5 H, R1 = 100 kΩ, RS = 5 Ω, and VS = 24 V.



4.27

4.28

4.29

Figure P4.26

Assume that steady-state conditions exist in the circuit shown in Figure P4.27
for t < 0 and that V1 = 15 V, R1 = 100 Ω, R2 = 1.2 kΩ, R3 = 400 Ω, C = 4.0 μF.
Determine the current iC through the capacitor at t = 0+, just after the switch is
closed.

Figure P4.27

Assume that steady-state conditions exist in the circuit shown in Figure P4.28
at t < 0. Also assume:

Find the Norton equivalent network seen by the inductor. Use it to determine
the time constant of the circuit for t > 0.Page 249

Figure P4.28

Assume that steady-state conditions exist in the circuit shown in Figure P4.29
at t < 0. Also assume:

Find the Norton equivalent network seen by the inductor. Use it to determine
the time constant of the circuit for t > 0.



4.30

4.31

4.32

Figure P4.29

Find the Thévenin equivalent network seen by the capacitor in Figure P4.30
for t > 0. Use it to determine the time constant of the circuit for t > 0. R1 = 3 Ω,
R2 = 1 Ω, R3 = 4 Ω, C = 0.2 F,IS = 3 A, Vc(0) = 0.

Figure P4.30

The switch shown in Figure P4.31 is closed at t = 0. Find the Thévenin
equivalent network seen by the capacitor for t > 0, and use it to determine the
time constant of the circuit for t > 0. RS = 8 kΩ, VS = 40 V, C = 350 μF, and R =
24 kΩ.

Figure P4.31

Determine the voltage υC across the capacitor shown in Figure P4.32 for t > 0.
The voltage across the capacitor just before the switch is thrown is υC(0−) = −7
V. Assume:



4.33

4.34

a.

b.

c.

4.35

Figure P4.32

For t < 0, the circuit shown in Figure P4.29 is at steady state. The switch is
thrown at t = 0. Determine the current iL through the inductor for t > 0.
Assume:

For t < 0, the circuit shown in Figure P4.34 is at steady state. The switch is
thrown at t = 0. Assume:

Determine the

Current iC through the capacitor for t > 0.

Voltage υ3 across R3 for t > 0.

Time required for iC and υ3 to change by 98 percent of their initial values
at t = 0+.

Figure P4.34
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The circuit in Figure P4.35 is a simple model of an automotive ignition system.
The switch models the “points” that switch electric power to the cylinder when



4.36

4.37

the fuel-air mixture is compressed. R is the resistance across the gap between
the electrodes of the spark plug.

Determine the value of L and R1 so that the voltage across the spark plug gap
just after the switch is changed is 23 kV and so that this voltage will change
exponentially with a time constant τ = 13 ms.

Figure P4.35

The inductor L in the circuit shown in Figure P4.36 is the coil of a relay. When
the currentiL through the coil is equal to or greater than 2 mA, the relay is
activated. Assume steady-state conditions at t < 0. If

Determine R2 so that the relay activates 2.3 after the switch is thrown.

Figure P4.36

Determine the current iC through the capacitor in Figure P4.37 for all time.
Assume DC steady-state conditions for t < 0. Also assume: V1 = 10 V, C = 200
μF, R1 = 300 mΩ, and R2 = R3 = 1.2 kΩ.
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4.39

4.40

Figure P4.37

Determine the voltage υL across the inductor in Figure P4.38 for all time.
Assume DC steady-state conditions for t < 0. Also assume: Vs = 15 V, L = 200
mH, RS = 1 Ω, and R1 = 20 kΩ.

Figure P4.38

For t < 0, the circuit shown in Figure P4.39 is at DC steady state. The switch is
closed at t = 0. Determine the voltage υC for all time. Assume: R1 = R3 = 3 Ω,
R2 = 6 Ω, V1 = 15 V, and C = 0.5 F.

Figure P4.39

For t < 0, the circuit shown in Figure P4.39 is at DC steady state. The switch is
opened at t = 0. Determine the current iL through the inductor for all time.
Assume:
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a.

b.

c.

d.

4.42

a.

b.

c.

d.

4.43

a.

b.

For the circuit shown in Figure P4.41, assume that switch S1 is always held
open and that switch S2 is Page 251open until being closed at t = 0. Assume
DC steady-state conditions for t < 0. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3
Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0+.

Find the time constant τ for t > 0.

Find υC for all time and sketch the function.

Evaluate the ratio υC to υC (∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

Figure P4.41

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have
been held open and closed, respectively, for a long time prior to t = 0. Then,
simultaneously at t = 0, S1 closes and S2 opens. Also assume R1 = 5 Ω, R2 = 4
Ω, R3 = 3 Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0+.

Find the time constant τ for t > 0.

Find υC for all time and sketch the function.

Evaluate the ratio υC to υC (∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

For the circuit shown in Figure P4.41, assume that switch S2 is always held
open and that switch S1 is closed until being opened at t = 0. Subsequently, S1
closes at t = 3τ and remains closed. Also assume DC steady-state conditions
for t < 0 and R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find υC for 0 < t < 3τ.



c.

d.

e.

4.44

a.

b.

c.

d.

4.45

a.

b.

c.

d.

e.

f.

4.46

a.

b.

c.

d.

Use part b to find the capacitor voltage υC at t = 3τ, and use it to find υC
for t > 3τ.
Compare the two time constants for 0 < t < 3τ and t > 3τ.
Sketch υC for all time.

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have
been held open for a long time prior to t = 0 but then close at t = 0. Also
assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find the time constant τ for t > 0.

Find υC and sketch the function.

Evaluate the ratio υC to υC (∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have
been held closed for a long time prior to t = 0. S1 then opens at t = 0; however,
S2 does not open until t = 48 s. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 =
6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find the time constant τ for 0 < t < 48 s.

Find υC for 0 < t < 48 s.

Find τ for t > 48 s.

Find υC for t > 48 s.

Sketch υC for all time.

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have
been held closed for a long time prior to t = 0. S2 then opens at t = 0; however,
S1 does not open until t = 96 s. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 =
6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find the time constant for 0 < t < 96 s.

Find υC for 0 < t < 96 s.

Find the time constant for t > 96 s.



e.

f.

4.47

4.48

4.49

4.50

a.

b.

Use part c to find the capacitor voltage υC at t = 96 s, and use it to find υC
for t > 96 s

Sketch υC for all time.

For the circuit in Figure P4.47, determine the value of resistors R1 and R2,
knowing that the time constant before the switch opens is 1.5 ms, and it is
10 ms after the switch opens. Assume: RS = 15 kΩ,R3 = 30 kΩ, and C = 1 μF.

Figure P4.47

For the circuit in Figure P4.47, assume VS = 100 V, RS = 4 kΩ, R1 = 2 kΩ, R2 =
R3 = 6 kΩ, C = 1 μF, Page 252and the circuit is in a steady-state condition
before the switch opens. Find the value of υC 2.666 ms after the switch opens.

In the circuit in Figure P4.49, how long after the switch is thrown at t = 0 will
iL = 5 A? Plot iL(t).

Figure P4.49

Refer to Figure P4.49 and assume that the switch takes 5 ms to move from one
contact to the other. Also assume that during this time neither switch position
has electrical contact. Find:

iL (t) for 0 < t < 5 ms.

The maximum voltage between the contacts during the 5-ms duration of
the switching.

Hint: This problem requires solving both a turnoff and a turn-on transient
problem.
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4.52

4.53

4.54

The circuit in Figure P4.51 includes a voltage-controlled switch. The switch
closes or opens when the voltage across the capacitor reaches the value 
respectively. If  and the period of the capacitor voltage waveform is 200
ms, find 

Figure P4.51

At t = 0 the switch in the circuit in Figure P4.52 closes. Assume that L1 = 1 H,
L2 = 5 H, and that the circuit is in DC steady state for t < 0. Find iL(t) for
all time.

Figure P4.52

Repeat Problem P4.52, but find υ1(t) for all time, instead of iL(t).

The analogy between electrical and thermal systems can be used to analyze the
behavior of a pot heating on an electric stove. The heating element is modeled
as shown in Figure P4.54. Find the “heat capacity” of the burner, CS, if the
burner reaches 90 percent of the desired temperature in 10 s. Assume RS = 1.5
Ω.

Figure P4.54



4.55

a.

b.

4.56

4.57

The burner and pot of Problem 4.54 can be modeled as shown in Figure P4.55.
R0 models the thermal loss between the burner and the pot. The pot is modeled
by a thermal capacitance CP in parallel with a thermal resistance RP.

Find the final temperature of the water in the pot— that is, find V0 as t →
∞ if IS = 75 A, CP = 80 F,R0 = 0.8 Ω, RP = 2.5 Ω, and the burner is the
same as in Problem 4.54.

How long will it take for the water to reach 80 percent of its final
temperature?

Hint: Neglect CS since CS ≪ CP.

Figure P4.55
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The circuit in Figure P4.56 is used as a variable delay in a burglar alarm. The
alarm is a siren with an internal resistance of 1 kΩ. The alarm will not sound
until the current i0 exceeds 100 μA. Use a graphical or numerical solution to
find the range of the variable resistor R for which the delay is between 1 and 2
s. Assume the capacitor is initially uncharged.

Figure P4.56

For t > 0, find the voltage υ1 across C1 shown in Figure P4.57. Let C1 = 5 μF
and C2 = 10 μF. Assume the capacitors are initially uncharged.



4.58
a.

b.

4.59

a.

b.

c.

Figure P4.57

The switch shown in Figure P4.58 opens at t = 0. It closes at t = 10 s.

What is the time constant for 0 < t < 10 s?

What is the time constant for t > 10 s?

Figure P4.58

The circuit in Figure P4.59 models the charging circuit of an electronic camera
flash. The flash should be charged to υC ≥ 7.425 V for each use. Assume C =
1.5 mF, R1 = 1 kΩ, and R2 = 1 Ω.

How long does it take the flash to recharge after taking a picture?

The shutter button stays closed for 1⁄30 s. How much energy is delivered
to the flash bulb R2 in that interval? Assume the capacitor is fully charged.

If the shutter button is pressed 3 s after a flash, how much energy is
delivered to the bulb R2?



4.60

4.61

Figure P4.59

The ideal current source is(t) in Figure P4.60 switches levels as shown.
Determine and sketch the voltage υo(t) across the inductor for 0 < t < 2 s.
Assume the inductor current is zero before t = 0, R = 500 Ω, and L = 50 H.

Figure P4.60
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Sections 4.4: Second-Order Transient Analysis
In the circuit shown in Figure P4.61:

Assume that DC steady-state conditions exist for t < 0. Determine the voltage
υC across the capacitor and the current iL through the inductor as t → ∞.

Figure P4.61



4.62

4.63

4.64

For t > 0, determine the current iL through the inductor and the voltage υC
across the capacitor in Figure P4.62. Assume υS = −1 V for t < 0 but is
reversed to υS = 1 V for t > 0. Also assume R = 10 Ω, L = 5 mH, C = 100 μF,
and that the circuit was in DC steady state prior to when the source was
reversed.

Figure P4.62

If the switch shown in Figure P4.63 is closed at t = 0 and:

determine the current iL through the inductor and the voltage υC across the
capacitor as t →∞.

Figure P4.63

If the switch in the circuit shown in Figure P4.64 is closed at t = 0 and:

determine the current iL through the inductor and the voltage υC across the
capacitor as t → ∞.



4.65

4.66

4.67

Figure P4.64

If the switch shown in Figure P4.65 is thrown att = 0 and:

determine the current i1 through R1 and the voltage υ2 across R2 as t → ∞.

Figure P4.65

For t < 0, the circuit shown in Figure P4.66 is at DC steady state and the
voltage across the capacitor is +7 V. The switch is thrown at t = 0, and:

Determine the initial current iL through the inductor and the current i2 through
R2 at t = 0+.

Figure P4.66
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For t < 0, the circuit shown in Figure P4.67 is in DC steady state. Determine at
t = 0+, immediately after the switch is opened, the current iL through the
inductor and the voltage υC across the capacitor.



4.68

4.69

4.70

Figure P4.67

For t < 0, the circuit shown in Figure P4.68 is in DC steady state. The switch is
closed at t = 0. Determine the current iL through the inductor for t > 0. Assume
R = 3 kΩ, RS = 600 Ω, VS = 2 V, C = 2 mF, and L = 1 mH.

Figure P4.68

Assume the switch in the circuit in Figure P4.69 has been closed for a very
long time. It is suddenly opened at t = 0 and then reclosed at t = 5 s. Determine
the inductor current iL and the voltage υ across the 2-Ω resistor for t ≥ 0.

Figure P4.69

Determine if the circuit in Figure P4.70 is overdamped or underdamped for t <
0 and t > 0. Also find the capacitance that results in critical damping in both
intervals. Assume VS = 15 V, R = 200 Ω, L = 20 mH, and C = 0.1 μF.
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a.

b.

c.

d.

4.72

4.73

4.74

4.75

4.76

Figure P4.70

For t < 0, assume the capacitor in Figure P4.70 is completely discharged. If the
switch is thrown att = 0, find the:

Initial capacitor voltage υC at t = 0+.

Capacitor voltage υC at t = 20 μs.

Capacitor voltage υC as t → ∞.

Maximum capacitor voltage.

Assume the switch in the circuit in Figure P4.69 has been open for a very long
time. It is suddenly closed at t = 0 and then reopened at t = 5 s. Determine the
inductor current iL, the capacitor voltage υC, and the voltage υ across the 2-Ω
resistor for t ≥ 0.

Assume that the circuit shown in Figure P4.70is underdamped, and for t < 0,
the circuit is in DC steady state with υC = VS. After the switch is thrown at t =
0, the first two zero crossings of the capacitor voltage υC occur at t = 5π⁄3 μs
andt = 5π μs. At t = 20π⁄3 μs, the capacitor voltageυC peaks at 0.6 VS. If C = 1.6
μF, what are the values of R and L?

Given the information provided in Problem 4.73, what are the values of R and
L so that the peak at 20π⁄3 μs is υC = 0.7 VS? Assume C = 1.6 μF.

Determine iL for t > 0 in Figure P4.75, assumingi(0) = 2.5 A and υC(0) = 10 V.

Figure P4.75
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Find the maximum value of υC for t > 0in Figure P4.76, assuming DC steady
state att = 0−.



4.77

4.78

4.79

4.80

Figure P4.76

For t > 0, determine the time t at which i = 2.5 A in Figure P4.77, assuming
DC steady state at t = 0−.

Figure P4.77

For t > 0, determine the time t at which i = 6 A in Figure P4.78, assuming DC
steady stateat t = 0−.

Figure P4.78

For t > 0, determine the time t at which υ = 7.5 V in Figure P4.79, assuming
DC steady state at t = 0−.

Figure P4.79

Assume the circuit in Figure P4.80 is in DC steady state at t = 0− and L = 3 H.
Find the maximum value of υC for t > 0.



4.81

4.82

Figure P4.80

Assume the circuit in Figure P4.80 is in DC steady state at t = 0−. Find the
value of the inductance L that makes the circuit critically damped for t > 0.
Find the maximum value of υ for t > 0.

For t > 0, determine υ in Figure P4.82, assuming DC steady state at t = 0−.

Figure P4.82

 

 

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.
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C H A P T E R
5

FREQUENCY RESPONSE AND
SYSTEM CONCEPTS

requency-dependent phenomena are commonly encountered in engineering
problems. For example, structures vibrate at a characteristic frequency when
excited by wind forces (some high-rise buildings experience perceptible
oscillation!). The propeller on a ship excites the shaft at a vibration frequency

related to the engine’s speed of rotation and to the number of blades on the propeller.
An internal combustion engine is excited periodically by the combustion events in
the individual cylinder, at a frequency determined by the firing of the cylinders. Wind
blowing across a pipe excites a resonant vibration that is perceived as sound (wind
instruments operate on this principle). Filters of all types depend upon frequency. In
this respect, electric circuits are no different from other dynamic systems. A large
body of knowledge has been developed related to the frequency response of electric
circuits, most of it based on the ideas of phasors and impedance. The ideas developed
in this chapter are applied, by analogy, to the analysis of other physical systems to
illustrate the generality of the concepts.

In this chapter, quantities often involve angles. Unless indicated otherwise, angles
are given in units of radians.Page 258



1.

2.

3.

 Learning Objectives
Students will learn to...

Understand the physical significance of frequency domain analysis, and compute
the frequency response of circuits using AC circuit analysis tools. Sections 5.1.
Analyze simple first- and second-order electrical filters, and determine their
frequency response and filtering properties. Sections 5.2.
Compute the frequency response of a circuit and its graphical representation in
the form of a Bode plot. Section 5.3.

5.1 SINUSOIDAL FREQUENCY RESPONSE
The sinusoidal frequency response (or, simply, frequency response) of a circuit
provides a measure of how the circuit responds to sinusoidal inputs of arbitrary
frequency. In other words, for a given input signal with a particular amplitude, phase,
and frequency, the frequency response of a circuit permits the computation of a
particular output signal. For example, suppose you wanted to determine how the load
voltage Vo or current Io varied in response to different frequencies in the circuit
of Figure 5.1. An analogy could be made, for example, with how an earphone
(the load) responds to the audio signal generated by an MP3 player (the source) when
an amplifier (the circuit) is placed between the two.1 In the circuit of Figure 5.1, the
signal source circuitry is represented by a Thévenin source. The impedances are, in
general, a function of frequency. The amplifier circuit is represented by the idealized
connection of two impedances Z1 and Z2, and the load is represented by an
additional impedance Zo. The following statement provides a general definition of
the frequency response of such a system:

Figure 5.1 A circuit model



(5.1)

(5.2)

(5.3)

The frequency response of a circuit is a measure of the variation of a load-
related voltage or current as a function of the frequency of the excitation signal.

Frequency Response Functions
A frequency response function is the ratio of a chosen output to a chosen input. In
circuit analysis, the chosen input is often an independent voltage or current source.
The chosen output can be any voltage or current elsewhere in the circuit. By
convention, frequency response functions are represented by either G or H, where G
is a Page 259dimensionless gain and H is either an impedance or conductance. Four
distinct types of frequency response function are defined as follows:

In many cases the inputs Vin and Iin are chosen to be independent voltage and current
sources, respectively. The outputs Vo and Io are freely chosen and, as such, represent
the load in a circuit.

The above frequency response functions are related. For example, if GV (jω) and
GI (jω) are known, the other two can be derived directly:

Frequency response functions are important because they express the frequency
response as a single function that relates an output (load) voltage or current to a
given input.

Circuit Simplification



(5.4)

(5.5)

In general, the first step in determining the details of a chosen frequency response
function is to divide the circuit into a load (in accord with the chosen output) and a
source. Consider again the circuit shown in Figure 5.1. The network attached to the
load can be replaced by its Thévenin equivalent as shown in Figure 5.2. Once Page
260the load is reattached as in Figure 5.3, voltage division can be applied to express
Vo in terms of VT, and then eventually in terms of Vin.

Figure 5.2 Thévenin equivalent source network

Figure 5.3 Equivalent circuit from the perspective of the load

The gain, GV (jω), is a dimensionless complex quantity, given by:

Thus, the gain is known if the circuit element impedances are known.

Vo(jω) is a phase-shifted and amplitude-scaled version of Vin (jω).



(5.6)

(5.7)

(5.8)

(5.9)

If the phasor source voltage and the frequency response of the circuit are known, the
phasor load voltage can be computed as follows:

such that

and

At any given angular frequency ω, the load voltage is a sinusoid with the same
frequency as the source voltage.

First- and Second-Order Archetypes
Whenever possible, the first step toward deriving a frequency response function is to
use Thévenin’s or Norton’s theorem to simplify the circuit. If the circuit is first-order,
or second-order with the storage elements in series or parallel, it can be simplified to
one of the four archetypes shown in Figures 5.4 to 5.7.

Figure 5.4 Simplified first-order equivalent circuit with one capacitor

Figure 5.5 Simplified first-order circuit with one inductor



(5.10)

(5.11)

(5.12)

Figure 5.6 Simplified second-order circuit with one capacitor and one
inductor in series

Figure 5.7 Simplified second-order circuit with one capacitor and one
inductor in parallel

In the first-order circuit of Figure 5.4, the loop current IC is related to the
Thévenin source voltage VT by the generalized Ohm’s law:

Multiply the numerator and denominator by (jω)C and divide both sides by VT to
find the frequency response function:

where τ = RT C.

Page 261It is now a simple matter to find the frequency response function
relating VC to VT :

where again τ = RT C. Notice that the denominator is the same as in HY. This is a
common result because the denominator expresses the basic dynamics of the circuit.
The numerator expresses differences in the circuit variables. It is a useful exercise to
derive GV directly from voltage division. Try it!



(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

A similar approach can be taken to find the frequency response relating the
voltage VL to the Norton source current IN in the first-order circuit of Figure 5.5.
Apply the generalized Ohm’s law to write:

The frequency response function is found by dividing both sides by IN and then
dividing the numerator and denominator by RN .

where, in this case, τ = L⁄RN .

Again, it is a simple matter to find the frequency response function relating IL to
IN :

where again τ = L⁄RN. Also, once more the denominator is the same as in HZ. It is a
useful exercise to derive GI directly from current division. Try it!

Second-order circuits are handled in much the same way. Consider the series LC
circuit of Figure 5.6. The common loop current IL is related to the Thévenin source
voltage VT by the generalized Ohm’s law:

Divide both sides by IL, invert both sides, and multiply the resulting numerator and
denominator by jωC to find:

where τ = RT C and ω n 2 = 1⁄LC. This latter term is the same natural frequency often
found in second-order transient circuits.



(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

The voltage gain GV for the second-order series LC circuit can be found using the
result for HY .

Of course, IC = IL for the series loop, so:

where again τ = RT C and ω n 2 = 1⁄LC.

Page 262Finally, Figure 5.7 shows a second-order parallel LC circuit. The
common voltage VC is related to the Norton source current IN by the generalized
Ohm’s law:

Divide both sides by IN to obtain:

Multiply the numerator and denominator by jωL to obtain:

where τ = L⁄RN and  is the same natural frequency often found in the
second-order series LC circuit.

The current gain GI for the second-order parallel LC circuit can be found using
the result for HZ.

Of course, V L = V C, so:



1.
2.
3.
4.

where again τ = L⁄RN and 

Poles and Zeros
By definition, a frequency response function is the ratio of an output to an input.
Consequently, the development of any specific frequency response function will, in
general, also result in a ratio. The numerator and denominator of any frequency
response function can always be expressed as the product of four distinct terms. One
of these terms is simply a constant. The other three terms are known as zeros or
poles, depending upon whether they appear in the numerator or denominator,
respectively. Each term has its own name, as indicated in the following list.

K A constant
(jω) Pole or zero at the origin
(1 + jωτ) Simple pole or zero
[1 + jωτ + (jω⁄ωn)2] Quadratic (complex) pole or zero
A simple pole or zero may also take the form (1 + jω⁄ω0), where ω0 = 1/τ.Page
263

The first- and second-order frequency response functions developed in the
previous section are good examples of the standard form in which the numerator and
denominator are expressed as products of these four terms. These same terms will
appear repeatedly later in this chapter when filters and Bode plots are discussed.

EXAMPLE 5.1 Computing the Frequency Response Using Thévenin’s
Theorem
Problem

Compute the frequency response GV (jω) = Vo⁄VS for Figure 5.8.



Figure 5.8 Circuit for Example 5.1.

Solution
Known Quantities: R1 = 10 kΩ; C = 10 μF; Ro = 10 kΩ.

Find: The frequency response GV (jω) = Vo⁄VS .

Assumptions: None.
Analysis: With Ro as the load resistance, the approach is to use Thévenin’s theorem
to determine the equivalent network of the source network; that is, the equivalent
network of everything to the left of terminals a and b. The Thévenin equivalent
impedance ZT of the source network is:

The Thévenin (open-circuit) voltage VT across terminals a and b is found from
voltage division:

After reattaching the load to the Thévenin source, the voltage Vo across the load can
be found by applying voltage division once more:

Thus:

The impedances of the circuit elements are  and Ro = 104

Ω. The resulting frequency response is:



Figure 5.9 Equivalent circuit for Example 5.1.
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Comments: The use of equivalent circuit ideas is often helpful in deriving frequency
response functions because it naturally forces us to identify source and load
quantities. However, it is certainly not the only method of solution. For example,
node analysis would have yielded the same results just as easily, by recognizing that
the top node voltage is equal to the load voltage and by solving directly for Vo as a
function of VS, without going through the intermediate step of computing the
Thévenin equivalent source circuit.

EXAMPLE 5.2 Computing the Frequency Response
Problem

Compute the frequency response HZ (jω) = Vo⁄IS for Figure 5.10.

Figure 5.10 Circuit for Example 5.2.

Solution
Known Quantities: R1 = 1 kΩ; L = 2 mH; Ro = 4 kΩ.

Find: The frequency response HZ (jω) = Vo⁄IS .



Assumptions: None.
Analysis: While it is possible to find the Thévenin or Norton equivalent network of
everything attached to Ro and proceed as in the previous example to find the
frequency response function, it is also possible to apply current division to find Io
and then apply Ohm’s law to find Vo and thus the frequency response function.

Apply current division to write:

Factor out R1 + Ro in the denominator to find:

Then:

Substitute numerical values to obtain:

Comments: The units of HZ (jω) should be ohms. Verify that they are!
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CHECK YOUR UNDERSTANDING
Refer to Example 5.1 and compute the magnitude and phase of GV at the frequencies
ω = 10, 100, and 1,000 rad/s.

Answers: Magnitude = 0.9054, 0.6727, and 0.0994; phase (degrees) =
−5.1944, −42.2737, and −83.7227



(5.25)

CHECK YOUR UNDERSTANDING
Refer to Example 5.2 and compute the magnitude and phase of HZ at the frequencies
ω = 1, 10, and 100 Mrad/s.

5.2 LOW- AND HIGH-PASS FILTERS
There are many practical applications that involve filters of one kind or another.
Modern sunglasses filter out eye-damaging ultraviolet radiation and reduce the
intensity of sunlight reaching the eyes. The suspension system of an automobile
filters out road noise and reduces the impact of potholes on passengers. An analogous
concept applies to electric circuits: It is possible to attenuate (i.e., reduce in
amplitude) or altogether eliminate signals of unwanted frequencies, such as those that
may be caused by electromagnetic interference (EMI).

Low-Pass Filters
Figure 5.11 depicts a simple RC filter and denotes its input and output voltages,
respectively, by Vi and Vo. The frequency response for the filter may be obtained by
considering the function

Figure 5.11 A simple RC filter

and noting that the output voltage may be expressed as a function of the input voltage
by means of a voltage divider, as follows:

Answer: Magnitude = 742.78 Ω, 194.03 Ω, and 19.99 Ω; phase (degrees) =
−21.8°, −75.96°, and −88.57°



(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

Thus, the frequency response of the RC filter is

An immediate observation upon studying this frequency response is that if the
signal frequency ω is zero, the value of the frequency response function Page 266is
1. That is, the filter is passing all the input. Why? To answer this question, we note
that at ω = 0, the impedance of the capacitor, 1⁄jωC, becomes infinite. Thus, the
capacitor acts as an open-circuit, and the output voltage equals the input:

Since a signal at sinusoidal frequency equal to zero is a DC signal, this filter circuit
does not in any way affect DC voltages and currents. As the signal frequency
increases, the magnitude of the frequency response decreases since the denominator
increases with ω. More precisely, equations 5.29 to 5.32 describe the magnitude and
phase of the frequency response of the RC filter:

or

with

and



(5.33)

(5.34)

with

The simplest way to envision the effect of the filter is to think of the phasor voltage 
 scaled by a factor of ∣H∣ and shifted by a phase angle ∠H by the filter

at each frequency, so that the resultant output is given by the phasor  with

and where ∣H∣ and ∠H are functions of frequency. The frequency ω0 is called the
cutoff frequency of the filter and, as will presently be shown, gives an indication of
the filtering characteristics of the circuit.

It is customary to represent H(jω) in two separate plots, representing ∣H∣ and
∠H as functions of ω. These are shown in Figure 5.12 in normalized form, Page
267that is, with ∣H∣ and ∠H plotted versus ω⁄ω0, corresponding to a cutoff
frequency ω0 = 1 rad/s. Note that, in the plot, the frequency axis has been scaled
logarithmically. This is a common practice in electrical engineering because it
enables viewing a very broad range of frequencies on the same plot without
excessively compressing the low-frequency end of the plot. The frequency response
plots of Figure 5.12 are commonly employed to describe the frequency response of a
circuit since they can provide a clear idea at a glance of the effect of a filter on an
excitation signal. This type of filter is called a low-pass filter. The cutoff frequency
ω = 1⁄RC has a special significance in that it represents—approximately—the point
where the filter begins to filter out the higher-frequency signals. The value of
∣H(jω)∣ at the cutoff frequency is  Note how the cutoff frequency
depends exclusively on the values of R and C. Therefore, one can adjust the filter
response as desired simply by selecting appropriate values for C and R, and therefore
one can choose the desired filtering characteristics.



Figure 5.12 Magnitude and phase response plots for RC filter

Practical low-pass filters are often much more complex than simple RC
combinations. The synthesis of such advanced filter networks is beyond the scope of
this book; however, the implementation of some commonly used filters is discussed
in Chapter 7, in connection with the operational amplifier.

High-Pass Filters
Just as a low-pass filter preserves low-frequency signals and attenuates those at
higher frequencies, a high-pass filter attenuates low-frequency signals and preserves
those Page 268at frequencies above a cutoff frequency. Consider the high-pass filter
circuit shown in Figure 5.13. The frequency response is defined as:

Figure 5.13 High-pass filter



(5.35)

(5.36)

(5.37)

(5.38)

Voltage division yields:

Thus, the frequency response of the filter is

which can be expressed in magnitude-and-phase form by

or

with

You can verify by inspection that the amplitude response of the high-pass filter will
be zero at ω = 0 and will asymptotically approach 1 as ω approaches infinity while
the phase shift is π⁄2 at ω = 0 and tends to zero for increasing ω. Amplitude-and-
phase response curves for the high-pass filter are shown in Figure 5.14. These plots
have been normalized to have the filter cutoff frequency ω0 = 1 rad/s. Note that, once
again, it is possible to define a cutoff frequency at ω0 = 1⁄RC in the same way as was
done for the low-pass filter.

Figure 5.14 Frequency response of a high-pass filter
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EXAMPLE 5.3 Frequency Response of RC Low-Pass Filter
Problem

Compute the response of the RC filter of Figure 5.11 to sinusoidal inputs at the
frequencies of 60 and 10,000 Hz.

Solution
Known Quantities: R = 1 kΩ; C = 0.47 μF; υi(t) = 5 cos(ωt) V.

Find: The output voltage υo(t) at each frequency.

Assumptions: None.
Analysis: In this problem, the input signal voltage and the frequency response of the
circuit (equations 5.29) are known, and the output voltage must be found at two
different frequencies. If the voltages are represented in phasor form, the frequency
response can be used for calculation:

The cutoff frequency of the filter is ω0 = 1⁄RC = 2,128 rad/s such that the expression
for the frequency response in the form of equations 5.31 and 5.32 is:

Next, recognize that at ω = 60 Hz = 120π rad/s, the ratio ω⁄ω0 = 0.177. At ω =
10,000 Hz = 20,000π, ω⁄ω0 = 29.5. Thus, the output voltage at each frequency can be
computed as follows:



And finally we write the time-domain response for each frequency:

The magnitude and phase responses of the filter are plotted in Figure 5.15. It should
be evident from these plots that only the low-frequency components of the signal are
passed by the filter. This low-pass filter would pass only the bass range of the audio
spectrum.Page 270

Figure 5.15 Response of RC filter of Example 5.3

EXAMPLE 5.4 A Realistic RC Low-Pass Filter Application
Problem



Determine the frequency response function Vo⁄VS and its frequency response from
the network shown in Figure 5.16.

Figure 5.16 RC filter inserted in a circuit

Solution
Known Quantities: RS = 50 Ω; R1 = 200 Ω; Ro = 500 Ω; C = 10 μF.

Find: The frequency response function Vo⁄VS , its frequency response, and the output
voltage υo(t) at given frequencies.

Assumptions: None.
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Analysis: Figure 5.17 represents a more realistic filtering circuit, in that an RC low-
pass filter is inserted between the source and load circuits. The Thévenin equivalent
impedance see by the load is:

Figure 5.17 Equivalent circuit representation of Figure 5.16

Multiply the numerator and denominator by jωC to obtain:



Apply voltage division to find the Thévenin (open-circuit) voltage VT across
terminals a and b.

Again, multiply the numerator and denominator by jωC to obtain:

Next, apply voltage division to find Vo.

Substitute for VT and ZT, and multiply the numerator and denominator by 
 to obtain:

Finally, divide both sides by VS and factor (Ro + R1 + RS) out of the denominator to
find:

where

and

Plug in values for the resistances and capacitance to find:

Comments: Notice that the time constant τ equals the capacitance times the Thévenin
equivalent resistance seen by the capacitor. Thus, the effect of placing the RC low-
pass filter in the midst of the circuit is to shift the filter’s cutoff frequency from 1⁄R1C
to 1⁄RT C. Also, note that the low-frequency amplitude of the frequency response



function is simply K, which is ∣Vo⁄VS∣ when the capacitor is replaced with an
open-circuit.

EXAMPLE 5.5 Low-Pass Filter Attenuation
Problem

The frequency response of a particular low-pass filter is described by the following
frequency response function. At what frequency has the magnitude of the response
fallen to 10 percent of its maximum?
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Solution
Known Quantities: Frequency response function of a filter.
Find: Frequency ω10% at which the response amplitude equals 10 percent of its
maximum.
Schematics, Diagrams, Circuits, and Given Data: ω1 = 100; ω2 = 1,000.

Assumptions: None.
Analysis: The maximum amplitude of the frequency response function is K, which
occurs as ω → 0. As frequency increases, the magnitude of the frequency response
function decreases monotonically, which explains why the frequency response
function describes a “low-pass” filter. At low frequencies, the input is “passed” to the
output; however, at higher frequencies the output is a filtered (reduced) version of the
input. To solve this problem, set the amplitude of the frequency response function
equal to 0.1K and solve for ω, as follows:



To simplify this expression introduce the dummy variable Ω = ω 2, and then invert
and square both sides to obtain a quadratic equation in Ω:

Plug in values for ω1 and ω2 and use the quadratic formula to solve for the two roots
Ω = −1.6208 × 10 6 and Ω = 0.6108 × 10 6. Only the positive root has a physical
meaning; thus, the solution is  Figure 5.18(a) depicts the magnitude
response of the filter. At a frequency roughly equal to 800 rad/s, the magnitude
response is approximately 0.1. The phase response is shown in Figure 5.18(b).

Figure 5.18 Frequency response of filter of Example 5.5; (a) magnitude
response; (b) phase response
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EXAMPLE 5.6 Frequency Response of RC High-Pass Filter
Problem

Compute the response of the RC high-pass filter depicted in Figure 5.19. Evaluate the
response of the filter at ω 1 = 2π × 100 and ω 2 = 2π × 10,000 rad/s.



Figure 5.19 High-pass RC filter

Solution
Known Quantities: R = 200 Ω; C = 0.199 μF.
Find: The frequency response HV(jω).

Assumptions: None.
Analysis: The cutoff frequency of the high-pass filter is ω 0 = 1⁄RC = 25.126 kHz =
2π × 4,000 rad/s, which is roughly halfway between ω1 and ω2. The frequency
response function for the circuit is given by equations 5.36:

The frequency response function can now be evaluated at ω1 and ω2:

These results indicate that the output is very small (2.5 percent) compared to the
input at ω 1 ≪ ω 0 while at ω 2 ≫ ω 0 the output is comparable (92.9 percent) to the
input. In general, the input is “passed” to the output at high frequencies (ω ≫ ω 0 )
while at low frequencies (ω ≪ ω 0 ) the output is a filtered (reduced) version of the
input. The complete frequency response (amplitude and phase) is shown in Figure
5.20.



Figure 5.20 Response of high-pass RC filter of Example 5.6

Comments: With ω0 = 2π × 4,000 (that is, 4,000 Hz), this filter would pass only the
treble range of the audio frequency spectrum.
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CHECK YOUR UNDERSTANDING
A simple RC low-pass filter is constructed using a 10-μF capacitor and a 2.2-kΩ
resistor. Over what range of frequencies will the output of the filter be within 1
percent of the input signal amplitude (i.e., when will Vo ≥ 0.99VS )?

CHECK YOUR UNDERSTANDING

In Figure 5.16, let ∣VS∣ = 1 V with an internal resistance RS = 50 Ω. Assume R = 1
kΩ and C = 0.47. Determine the cutoff frequency ω0 for a load resistance Ro = 470
Ω.

Answer: 0 ≤ ω ≤ 6.48 rad/s

Answer: ω0 = 6,553.3 rad/s



CHECK YOUR UNDERSTANDING
Use the phase response plot of Figure 5.18(b) to determine at which frequency the
phase shift in the output signal (relative to the input signal) is equal to −90°.

CHECK YOUR UNDERSTANDING
Determine the cutoff frequency for each of the four “prototype” filters shown below.
Which are high pass and which are low pass?

Show that it is possible to obtain a high-pass filter response simply by substituting an
inductor for the capacitor in the circuit of Figure 5.11. Derive the frequency response
for the circuit.
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Answer: ω = 300 rad/s (approximately)

Answers: 



FOCUS ON MEASUREMENTS

Wheatstone Bridge Filter
Problem:
The Wheatstone bridge circuit of Example 1.15 and Focus on Measurements box,
“Wheatstone Bridge and Force Measurements,” in Chapter 1 is used in a number of
instrumentation applications, including the measurement of force. Figure 5.21 depicts
the bridge circuit. When undesired noise and interference are present in a
measurement, it is often appropriate to use a low-pass filter to reduce the effect of the
noise. The capacitor that is connected to the output terminals of the bridge in Figure
5.21 constitutes an effective and simple low-pass filter, in conjunction with the
bridge resistance. Assume that the average resistance of each leg of the bridge is 350
Ω (a standard value for strain gauges) and that we desire to measure a sinusoidal
force at a frequency of 30 Hz. From prior measurements, it has been determined that
a filter with a cutoff frequency of 300 Hz is sufficient to reduce the effects of noise.
Choose a capacitor that matches this filtering requirement.



Figure 5.21 Wheatstone bridge with equivalent circuit and simple
capacitive filter

Solution:
By evaluating the Thévenin equivalent circuit for the Wheatstone bridge, calculating
the desired value for the filter capacitor becomes relatively simple, as illustrated on
the right side of Figure 5.21. The Thévenin resistance for the bridge circuit may be
computed by short-circuiting the two voltage sources and removing the capacitor
placed across the load terminals:

Since the required cutoff frequency is 300 Hz, the capacitor value can be computed
from the expression

or

The frequency response of the bridge circuit is of the same form as equations 5.18:

Page 276This response can be evaluated at the frequency of 30 Hz to verify that the
attenuation and phase shift at the desired signal frequency are minimal:



Figure 5.22 depicts the appearance of a 30-Hz sinusoidal signal before and after the
addition of the capacitor to the circuit.

Figure 5.22 Unfiltered and filtered bridge output

5.3 BANDPASS FILTERS, RESONANCE, AND
QUALITY FACTOR
Using the same principles and procedures as before, it is possible to derive a
bandpass filter response for particular types of circuits. Such a filter passes the input
to the output at frequencies within a certain range. The analysis of a simple second-
order (i.e., two energy storage elements) bandpass filter is similar to that of low- and
highpass filters. Consider the circuit shown in Figure 5.23 and the designated
frequency response function:

Figure 5.23 RLC bandpass filter

Apply voltage division to find:



(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

Page 277Thus, the frequency response function is:

Equations 5.36 can often be factored into the form

where ω1 and ω2 are the two frequencies that determine the passband (or
bandwidth) of the filter—that is, the frequency range over which the filter “passes”
the input signal—and A is a constant that results from the factoring. An immediate
observation we can make is that if the signal frequency ω is zero, the response of the
filter is equal to zero since at ω = 0 the impedance of the capacitor 1⁄jωC becomes
infinite. Thus, the capacitor acts as an open-circuit, and the output voltage equals
zero. Further, we note that the filter output in response to an input signal at sinusoidal
frequency approaching infinity is again equal to zero. This result can be verified by
considering that as ω approaches infinity, the impedance of the inductor becomes
infinite, that is, an open-circuit. Thus, the filter cannot pass signals at very high
frequencies. In an intermediate band of frequencies, the bandpass filter circuit will
provide a variable attenuation of the input signal, dependent on the frequency of the
excitation. This may be verified by taking a closer look at equations 5.39:

Equations 5.36 is of the form  with

and



The magnitude and phase plots for the frequency response of the bandpass filter of
Figure 5.23 are shown in Figure 5.24. These plots have been normalized to have the
filter passband centered at the frequency ω = 1 rad/s.

Figure 5.24 Frequency response of RLC bandpass filter

The frequency response plots of Figure 5.24 suggest that, in some sense, the
bandpass filter acts as a combination of a high-pass and a low-pass filter. As
illustrated in the previous cases, it should be evident that one can adjust the filter
response as desired simply by selecting appropriate values for L, C, and R.

Resonance and Bandwidth
The response of second-order filters can be explained more generally by rewriting
the frequency response function of the second-order bandpass filter of Figure 5.23
Page 278in the following forms:



(5.44)

(5.45)

with the following definitions:2
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Figure 5.25 depicts the normalized frequency response (magnitude and phase) of
the second-order bandpass filter for ωn = 1 and various values of Q (and ζ). The peak
displayed in the frequency response around the frequency ωn is called a resonant
peak, and ωn is the resonant frequency. Note that as the quality factor Q increases,
the sharpness of the resonance increases and the filter becomes increasingly selective
(i.e., it has the ability to filter out most frequency components Page 280of the input
signals except for a narrow band around the resonant frequency). One measure of the
selectivity of a bandpass filter is its bandwidth. The concept of bandwidth can be
easily visualized in the plot of Figure 5.25(a) by drawing a horizontal line across the
plot (we have chosen to draw it at the amplitude ratio value of 0.707 for reasons that
will be explained shortly). The frequency range between (magnitude) frequency
response points intersecting this horizontal line is defined as the half-power
bandwidth of the filter. The name half-power stems from the fact that when the
amplitude response is equal to  the voltage (or current) at the output of
the filter has decreased by the same factor, relative to the maximum value (at the
resonant frequency). Since power in an electric signal is proportional to the square of
the voltage or current, a drop by a factor  in the output voltage or current
corresponds to the power being reduced by a factor of . Thus, we term the
frequencies at which the intersection of the 0.707 line with the frequency response
occurs the half-power frequencies. Another useful definition of bandwidth B is as



follows. We shall make use of this definition in the following examples. Note that a
high-Q filter has a narrow bandwidth and a low-Q filter has a wide bandwidth.

Figure 5.25 (a) Normalized magnitude response of second-order bandpass
filter; (b) normalized phase response of second-order bandpass filter



(5.46)

a.
b.

EXAMPLE 5.7 Frequency Response of Bandpass Filter

Problem

Compute the frequency response of the bandpass filter of Figure 5.23 for two sets of
component values.

Solution
Known Quantities:

R = 1 kΩ; C = 10 μF; L = 5 mH.
R = 10 Ω; C = 10 μF; L = 5 mH.

Find: The frequency response HV (jω).
Assumptions: None.
Analysis: We write the frequency response of the bandpass filter as in equations
5.38:

Page 281We can now evaluate the response for two different values of the series
resistance. The frequency response plots for case a (large series resistance) are shown
in Figure 5.26. Those for case b (small series resistance) are shown in Figure 5.27.
Let us calculate some quantities for each case. Since L and C are the same in both
cases, the resonant frequency of the two circuits will be the same:



Figure 5.26 Frequency response of broadband bandpass filter of Example
5.7

Figure 5.27 Frequency response of narrowband bandpass filter of Example
5.7



a.

a.

On the other hand, the quality factor Q will be substantially different:

From these values of Q we can calculate the approximate bandwidth of the two
filters:

The frequency response plots in Figures 5.26 and 5.27 confirm these observations.

Comments: It should be apparent that while at the higher and lower frequencies most
of the amplitude of the input signal is filtered from the output, at the midband
frequency Page 282(4,500 rad/s) most of the input signal amplitude passes through
the filter. The first bandpass filter analyzed in this example would “pass” the
midband range of the audio spectrum while the second would pass only a very
narrow band of frequencies around the center frequency of 4,500 rad/s. Such
narrowband filters find application in tuning circuits, such as those employed in
conventional AM radios (although at frequencies much higher than that of the
present example). In a tuning circuit, a narrowband filter is used to tune in a
frequency associated with the carrier wave of a radio station (e.g., for a station
found at a setting of AM 820, the carrier wave transmitted by the radio station is at a
frequency of 820 kHz). By using a variable capacitor, it is possible to tune in a range
of carrier frequencies and therefore select the preferred station. Other circuits are
then used to decode the actual speech or music signal modulated on the carrier wave.

CHECK YOUR UNDERSTANDING
Compute the frequencies ω1 and ω2 for the bandpass filter of Example 5.7 (with R =
1 kΩ) by equating the magnitude of the bandpass filter frequency response to 
The result is a quadratic equation in ω, which can be solved for two frequencies,
known as the half-power frequencies.



(5.47)

1.

a.
b.
c.
d.

2.
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5.4 BODE PLOTS
Frequency response plots of linear systems are often displayed in the form of
logarithmic plots, called Bode plots after the mathematician Hendrik W. Bode,
where the horizontal axis represents frequency on a logarithmic scale (base 10) and
the vertical axis represents either the amplitude or phase of the frequency response
function. In Bode plots the amplitude is expressed in units of decibels (dB), where

While logarithmic plots may at first seem a daunting complication, they have two
significant advantages:

The product of terms in a frequency response function becomes a sum of terms
because  The advantage here is that Bode
(logarithmic) plots can be constructed from the sum of individual plots of
individual terms. Moreover, as was discussed in Sections 5.1, there are only four
distinct types of terms present in any frequency response function:

A constant K.
Poles or zeros “at the origin” (jω).
Simple poles or zeros (1 + jωτ) or (1 + jω⁄ω0).

Quadratic poles or zeros [1 + jωτ + (jω⁄ωn)2].
The individual Bode plots of these four distinct terms are all well approximated
by linear segments, which are readily summed to form the overall Bode plot of
more complicated frequency response functions.

RC Low-Pass Filter Bode Plots
Consider, for example, the RC low-pass filter of Example 5.3 (Figure 5.11). The
frequency response function is:

Answer: ω1 = 99.95 rad/s; ω2 = 200.1 krad/s



(5.48)

(5.49)

(5.50)

where the circuit time constant is τ = RC = 1⁄ω0 and ω0 is the cutoff, or half-power,
frequency of the filter. This frequency response function has a constant of value K =
1 and a simple pole with cutoff frequency ω0 = 1⁄τ = 1⁄RC.

Figure 5.28 shows the Bode magnitude and phase plots for the filter. The
normalized frequency on the horizontal axis is ωτ. The magnitude plot is obtained
from the logarithmic form of the absolute value of the frequency response function:

Figure 5.28 Bode plots for a low-pass RC filter; the frequency variable is
normalized to ω⁄ω0. (a) Magnitude response; (b) phase angle response

When ω ≪ ω 0, the imaginary part of the simple pole is much smaller than its real
part, such that  Then:

Page 284Thus, at very low frequencies (ω ≪ ω 0), equations 5.49 is well
approximated by a straight line of zero slope, which is the low-frequency asymptote
of the Bode magnitude plot.

When ω ≫ ω0, the imaginary part of the simple pole is much larger than its real
part, such that  Then:



(5.51)

(5.52)

1.
2.
3.

Thus, at very high frequencies (ω ≫ ω 0 ), equations 5.49 is well approximated by a
straight line of −20 dB per decade slope that intercepts the log ω axis at log ω0. This
line is the high-frequency asymptote of the Bode magnitude plot. A decade represents
a factor of 10 change in frequency. Thus, a one-decade increase in ω is equivalent to
a unity change in log ω.

Finally, when ω = ω0, the real and imaginary parts of the simple pole are equal,
such that  Then equations 5.49 becomes:

Thus, the Bode magnitude plot of a first-order low-pass filter is approximated by
two straight lines intersecting at ω0. Figure 5.28(a) clearly shows the approximation.
The actual Bode magnitude plot is 3 dB lower than the approximate plot at ω = ω0,
the cutoff frequency.

The phase angle of the frequency response function  has the
following properties:

Page 285As a first approximation, the phase angle can be represented by three
straight lines:

For 
For 
For 

These straight-line approximations are illustrated in Figure 5.28(b).Page 286

Table 5.1 lists the differences between the actual and approximate Bode
magnitude and phase plots. Note that the maximum difference in magnitude is 3 dB
at the cutoff frequency; thus, the cutoff is often called the 3-dB frequency or the
half-power frequency.



(5.53)

Table 5.1 Correction factors for asymptotic approximation of first-order
filter

RC High-Pass Filter Bode Plots
The case of an RC high-pass filter (see Figure 5.13) is analyzed in the same manner
as was done for the RC low-pass filter. The frequency response function is:

Figure 5.29 depicts the Bode plots for equations 5.53, where the horizontal axis
indicates the normalized frequency ω⁄ω0. Straight-line asymptotic approximations
may again be determined easily at low and high frequencies. The results are very
similar to those for the first-order low-pass filter. For ω < ω0, the Bode magnitude
approximation intercepts the origin (ω = 1) with a slope of +20 dB/decade. For ω >
ω0, the Bode magnitude approximation is 0 dB with zero slope. The straightline
approximations of the Bode phase plot are:



1.
2.
3.

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

Figure 5.29 Bode plots for RC high-pass filter; (a) magnitude response; (b)
phase response

For 
For 
For 

These straight-line approximations are illustrated in Figure 5.29(b).

Bode Plots of Higher-Order Filters
Bode plots of high-order systems may be obtained by combining Bode plots of
factors of the higher-order frequency response function. Let, for example,

which can be expressed, in logarithmic form, as

and

Consider as an example the frequency response function

The first step in computing the asymptotic approximation consists of factoring each
term in the expression so that it appears in the form  where the frequency
ωi corresponds to the appropriate 3-dB frequency, ω1, ω2, or ω3. For example, the
function of equations 5.57 is rewritten as:

Equations 5.58 can now be expressed in logarithmic form:



(5.59)

Page 287Each of the terms in the logarithmic magnitude expression can be
plotted individually. The constant corresponds to the value −46 dB, plotted in Figure
5.30(a) as a line of zero slope. The numerator term, with a 3-dB frequency ω1 = 5, is
expressed in the form of the first-order Bode plot of Figure 5.28(a), except for the
fact that the slope of the line leaving the zero axis at ω1 = 5 is +20 dB/decade; each
of the two denominator factors is similarly plotted as lines of slope −20 dB/decade,
departing the zero axis at ω2 = 10 and ω3 = 100. You see that the individual factors
are very easy to plot by inspection once the frequency response function has been
normalized in the form of equations 5.55.

Figure 5.30 Bode plot approximation for a second-order frequency
response function; (a) straight-line approximation of magnitude response;
(b) straight-line approximation of phase angle response

If we now consider the phase response portion of equations 5.59, we recognize
that the first term, the phase angle of the constant, is always zero. The numerator
first-order term, on the other hand, can be approximated as shown in Figure 5.28(b),
that is, by drawing a straight line starting at 0.1ω1 = 0.5, with slope +π⁄4 rad/decade
(positive because this is a numerator factor) and ending at 10ω1 = 50, where the
asymptote +π⁄2 is reached. The two denominator terms have similar behavior, except
for the fact that the slope is −π⁄4 and that the straight line with slope −π⁄4 rad/decade
extends between the frequencies 0.1ω2 and 10ω2, and 0.1ω3 and 10ω3, respectively.



Figure 5.30 depicts the asymptotic approximations of the individual factors in
equations 5.59, with the magnitude factors shown in Figure 5.30(a) and the phase
factors in Figure 5.30(b). When all the asymptotic approximations are combined, the
complete frequency response approximation is obtained. Figure 5.31 depicts the
results of the asymptotic Bode approximation when compared with the actual
frequency response functions.

Figure 5.31 Comparison of Bode plot approximation with the actual
frequency response function; (a) magnitude response of second-order
frequency response function; (b) phase angle response of second-order
frequency response function.

You can see that once a frequency response function is factored into the
appropriate form, it is relatively easy to sketch a good approximation of the Bode
plot, even for higher-order frequency response functions. Examples 5.8 and 5.9
illustrate some additional details. The methodology is summarized in the box
below.Page 288

F O C U S  O N  P R O B L E M  S O LV I N G

BODE PLOTS
This box illustrates the Bode plot asymptotic approximation construction proced
The method assumes that there are no complex conjugate factors in the response



1.

2.

3.

4.
5.

that both the numerator and denominator can be factored into first-order terms w
real roots.

Express the frequency response function in factored form, resulting in
expression similar to equations 5.43:

Select the appropriate frequency range for the semilogarithmic plot, extendin
least a decade below the lowest 3-dB frequency and a decade above the hig
3-dB frequency.
Sketch the magnitude and phase response asymptotic approximations for eac
the first-order factors, using the techniques illustrated in Figures 5.28 to 5.31
Add, graphically, the individual terms to obtain a composite response.
If desired, apply the correction factors of Table 5.1.

EXAMPLE 5.8 Bode Plot Approximation
Problem

Sketch the asymptotic approximation of the Bode plot for the frequency response
function
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Solution
Known Quantities: Frequency response function of a circuit.
Find: Bode plot approximation of given frequency response function.
Assumptions: None



Analysis: Following the Focus on Problem Solving box, “Bode Plots,” we first factor
the function into the standard form

After a little algebra, we can obtain the following frequency response function in
standard form:

We immediately notice that there is a factor of jω in the denominator; this term needs
to be treated somewhat differently. The Bode plot of the function 1⁄jω can be
expressed in logarithmic form as follows:

That is, the magnitude of the denominator factor jω is represented by a line with
slope of −20 dB/decade intersecting the frequency (horizontal) axis at ω = 1. Its
phase response is a constant equal to −π⁄2.

Now we can sketch the magnitude and phase response of each of the individual
first-order factors, as shown in Figure 5.32(a) and (b). The composite asymptotic
approximations of the magnitude and phase responses are shown in Figure 5.33(a)
and (b).Page 290

Figure 5.32 Approximate (asymptotic) frequency response of individual
first-order terms; (a) straight-line approximation of magnitude response;



(b) straight-line approximation of phase angle response.

Figure 5.33 Comparison of approximate and exact frequency response; (a)
actual magnitude of frequency response function; (b) actual phase angle of
frequency response function.

Comments: A computer program can be used to generate the Bode plot
approximation shown in Figures 5.32 and 5.33. Note that the only real effort in
generating the asymptotic approximation lies in the factoring of the frequency
response function.

EXAMPLE 5.9 Bode Plot Approximation
Problem

Sketch the asymptotic approximation of the Bode plot for the frequency response
function

Solution
Known Quantities: Frequency response function of a circuit.



Find: Bode plot approximation of given frequency response function.
Assumptions: None
Analysis: Following the Focus on Problem Solving box, “Bode Plots,” factor the
function into standard form.

After a little algebra, frequency response in standard form can be found as:

Page 291Notice the jω factor in the numerator. This factor can be expressed in
logarithmic form as:

That is, the magnitude of jω is represented by a line with slope +20 dB/decade
intersecting the frequency (horizontal) axis at ω = 1. The phase of the factor jω is a
constant and equal to π⁄2.

The magnitude and phase of each individual first-order factor can be sketched as
shown in Figure 5.34(a) and (b). The composite asymptotic approximations of the
magnitude and phase responses are shown in Figure 5.35(a) and (b).

Figure 5.34 Approximate (asymptotic) frequency response of individual
first-order terms; (a) straight-line approximation of magnitude response;
(b) straight-line approximation of phase angle response.



1.

Figure 5.35 Comparison of approximate and exact frequency responses;
(a) actual magnitude of frequency response function; (b) actual phase angle
of frequency response function.

Comments: Bode plots can be generated using MatlabTM. Circuit simulation
programs, such as B2Spice, can also generate Bode plots.
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Conclusion
Chapter 5 focuses on the frequency response of linear circuits, and it is a natural
extension of the material covered in Chapter 3. The concepts of the spectrum of a
signal, obtained through the Fourier series representation for periodic signals, and of
the frequency response of a filter are very useful ideas that extend well beyond
electrical engineering. For example, civil, mechanical, and aeronautical engineering
students who study the vibrations of structures and machinery will find that the same
methods are employed in those fields.

Upon completing this chapter, you should have mastered the following learning
objectives:

Understand the physical significance of frequency domain analysis, and compute
the frequency response of circuits by using AC circuit analysis tools. You had
already acquired the necessary tools (phasor analysis and impedance) to
compute the frequency response of circuits in Chapter 3; in the material
presented in Sections 5.1, these tools are put to use to determine the frequency
response functions of linear circuits.



2.

3.

5.1

b.

c.

d.

5.2

Analyze simple first- and second-order electrical filters, and determine their
frequency response and filtering properties. With the concept of frequency
response firmly in hand, now you can analyze the behavior of electrical filters
and study the frequency response characteristics of the most common types, that
is, low-pass, high-pass, and bandpass filters. Filters are very useful devices and
are explored in greater depth in Chapter 7.
Compute the frequency response of a circuit and its graphical representation in
the form of a Bode plot. Graphical approximations of Bode plots can be very
useful to develop a quick understanding of the frequency response
characteristics of a linear system, almost by inspection. Bode plots find use in
the discipline of automatic control systems, a subject that is likely to be
encountered by most engineering majors.

HOMEWORK PROBLEMS
Sections 5.1: Sinusoidal Frequency Response

a. Determine the frequency response V out (jω)⁄V in (jω) for the circuit of
Figure P5.1. Assume L = 0.5 H and R = 200 kΩ.

Plot the magnitude and phase of the circuit for frequencies between 10 and
107 rad/s on graph paper, with a linear scale for frequency.

Repeat part b, using semilog paper. (Place the frequency on the
logarithmic axis.)

Plot the magnitude response on semilog paper with magnitude in decibels.

Figure P5.1
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Repeat the instructions of Problem 5.1 for the circuit of Figure P5.2.



5.3

5.4

5.5

5.6
a.

Figure P5.2

Repeat the instructions of Problem 5.1 for the circuit of Figure P5.3.

Figure P5.3

Repeat Problem 5.1 for the circuit of Figure P5.4. R1 = 300 Ω, R2 = R3 = 500
Ω, L = 4 H,C1 = 40 μF, C2 = 160 μF.

Figure P5.4

Determine the frequency response of the circuit of Figure P5.5, and generate
frequency response plots. R1 = 20 kΩ, R2 = 100 kΩ, L = 1 H, C = 100 μF.

Figure P5.5

In the circuit shown in Figure P5.6, where C = 0.5 μF and R = 2 kΩ,

Determine how the input impedance Z(jω) = Vi (jω)⁄Ii (jω) behaves at
extremely high and low frequencies.



b.

c.

d.

e.

5.7
a.

b.

c.

d.

e.

5.8

Find an expression for the impedance.

Show that this expression can be manipulated into the form 

Determine the frequency ω = ωC for which the imaginary part of the
expression in part c is equal to 1.

Estimate (without computing it) the magnitude and phase angle of Z(jω)
at ω = 10 rad/s and ω = 105 rad/s.

Figure P5.6

In the circuit shown in Figure P5.7, where L = 2 mH and R = 2 kΩ,

Determine how the input impedance Z(jω) = Vi (jω)⁄Ii (jω) behaves at
extremely high and low frequencies.

Find an expression for the impedance.

Show that this expression can be manipulated into the form 

Determine the frequency ω = ωC for which the imaginary part of the
expression in part c is equal to 1.

Estimate (without computing it) the magnitude and phase angle of Z(jω)
at ω = 105 rad/s, 106 rad/s, and 107 rad/s.

Figure P5.7

In the circuit shown in Figure P5.8, if



a.

b.

c.

d.

5.9

a.

b.

Determine how the input impedance behaves at extremely high or low
frequencies.Page 294

Find an expression for the input impedance in the form

Determine the four frequencies at which f1(ω) = +1 or −1 and f2(ω) = +1
or −1.

Plot the impedance (magnitude and phase) versus frequency.

Figure P5.8

In the circuit of Figure P5.9:

R1 = 1.3 kΩ R2 = 1.9 kΩ

Determine:

How the voltage frequency response function

behaves at extremes of high and low frequencies.

An expression for the voltage frequency response function and show that
it can be manipulated into the form



c.

5.10

a.

b.

c.

d.

5.11

where

The frequency at which f (ω) = 1 and the value of Ho in decibels.

Figure P5.9

The circuit shown in Figure P5.10 is a second-order circuit because it has two
reactive components (L and C). A complete solution will not be attempted.
However, determine:

The behavior of the voltage frequency response at extremely high and low
frequencies.

The output voltage Vo if the input voltage has a frequency where:

The output voltage if the frequency of the input voltage doubles so that

The output voltage if the frequency of the input voltage again doubles so
that

Figure P5.10

In the circuit shown in Figure P5.11, determine the frequency response
function in the form:



5.12

a.

b.

c.

d.

5.13

Figure P5.11
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The circuit shown in Figure P5.12 has

Determine the frequency response Vo (jω)⁄Vin (jω).

Figure P5.12

Determine the frequency response Vout (jω)⁄Vin (jω) for the circuit of
Figure P5.13.

Plot the magnitude and phase of the circuit for frequencies between 1 and
100 rad/s on graph paper, with a linear scale for frequency.

Repeat part b, using semilog paper. (Place the frequency on the
logarithmic axis.)

Plot the magnitude response on semilog paper with magnitude in dB.

Figure P5.13



5.14
a.

b.

c.

5.15

5.16

5.17

5.18
a.

b.

5.19

5.20

Consider the circuit shown in Figure P5.14.

Sketch the amplitude response of Y = I⁄VS .

Sketch the amplitude response of V1⁄VS .

Sketch the amplitude response of V2⁄VS .

Figure P5.14

Sections 5.2: Filters
Using a 15-kΩ resistance, design an RC high-pass filter with a breakpoint at
200 kHz.

Using a 500-Ω resistance, design an RC low-pass filter that would attenuate a
120-Hz sinusoidal voltage by 20 dB with respect to the DC gain.

In an RLC circuit, assume ω1 and ω2 such that  and Δω such
that Δω = ω2 − ω1. In other words, Δω is the width of the current curve where
the current has fallen to  of its maximum value at the resonance
frequency. At these frequencies, the power dissipated in a resistance becomes
one-half of the dissipated power at the resonance frequency (they are called the
half-power points). In an RLC circuit with a high quality factor, show that Q =
ω0⁄Δω.

In an RLC circuit with a high quality factor:

Show that the impedance at the resonance frequency becomes a value of Q
times the inductive resistance at the resonance frequency.

Determine the impedance at the resonance frequency, assuming L = 280
mH, C = 0.1 μF, R = 25 Ω.

At what frequency is the phase shift introduced by the circuit of Example 5.3
equal to −10°?

At what frequency is the output of the circuit of Example 5.3 attenuated by 10
percent (that is, Vo = 0.9VS)?



5.21

5.22

5.23

5.24

5.25

At what frequencies is the output of the circuit of Example 5.7 attenuated by
10 percent (that is, Vo = 0.9VS)?

At what frequencies is the phase shift introduced by the circuit of Example 5.7
equal to 20°?

Consider the circuit shown in Figure P5.23. Determine the resonant frequency
and the bandwidth for the circuit.

Figure P5.23

Are the filters shown in Figure P5.24 low-pass, high-pass, bandpass, or
bandstop (notch) filters?Page 296

Figure P5.24

Determine if each of the circuits shown in Figure P5.25 is a low-pass,
high-pass, bandpass, or bandstop (notch) filter.



5.26
a.

b.

5.27

Figure P5.25

For the filter circuit shown in Figure P5.26:

Determine if this is a low-pass, high-pass, bandpass, or bandstop filter.

Determine the frequency response Vo(jω)⁄Vi(jω) assuming L = 10 mH, C
= 1 nF, R1 = 50 Ω, R2 = 2.5 kΩ.

Figure P5.26

In the filter circuit shown in Figure P5.27: L = 10 H, C = 1 nH, RS = 20 Ω, Rc =
100 Ω, Ro = 5 kΩ. Determine the frequency response Vo(jω)⁄Vi (jω). What
type of filter does this frequency response represent?Page 297



5.28

5.29

a.

b.

c.

d.

5.30

a.

Figure P5.27

In the filter circuit shown in Figure P5.27: L = 0.1 mH, C = 8 nH, RS = 300 Ω,
RC = 10 Ω, Ro = 500 Ω. Determine the frequency response Vo(jω)⁄Vi (jω).
What type of filter does this frequency response represent?

In the filter circuit shown in Figure P5.29:

Determine:

The voltage frequency response

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

Figure P5.29

In the filter circuit shown in Figure P5.29:

Determine:

The voltage frequency response



b.

c.

d.

5.31

5.32

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

In the filter circuit shown in Figure P5.31:

Determine the frequency response H(jω), where:

What type of filter does this frequency response represent?

Figure P5.31

In the notch filter circuit shown in Figure P5.32, derive the voltage frequency
response H(jω) in standard form, where:

Page 298Assume:



5.33

5.34

5.35

a.

b.

c.

d.

Figure P5.32

In the notch filter circuit shown in Figure P5.32, derive the voltage frequency
response H(jω) in standard form, where:

Assume:

Also, determine the half-power frequencies, bandwidth, and Q.

In the notch filter circuit shown in Figure P5.32, derive the voltage frequency
response H(jω) in standard form, where:

Assume:

Also, determine the half-power frequencies, bandwidth, and Q.

In the bandstop (notch) filter shown in Figure P5.35:

Determine:

An expression for the voltage frequency response:

The magnitude of the frequency response at very high and very low
frequencies and at the resonant frequency.

The magnitude of the frequency response at the resonant frequency.

The resonant and half-power frequencies.



5.36

a.

b.

c.

d.

5.37

Figure P5.35

In the filter circuit shown in Figure P5.29, assume:

Determine:

An expression for the voltage frequency response function

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

Many stereo speakers are two-way speaker systems; that is, they have a woofer
for low-frequency sounds and a tweeter for high-frequency sounds. To get the
proper separation of frequencies going to the woofer and to the tweeter,
crossover circuitry is used. A crossover circuit is effectively a bandpass, high-
pass, or low-pass filter. The system model is shown in Figure P5.37. The
function of the crossover circuitry is to channel frequencies below a given
crossover frequency, fc , into the woofer and frequencies higher than fc into the
tweeter. Assume an ideal amplifier such that RS = 0 and that the desired
crossover frequency is 1,200 Hz. Find C and L when R1 = R2 = 8 Ω. [Hint: Set
the break frequency of the network seen by the amplifier equal to the desired
crossover frequency.]



5.38

5.39

a.

b.

Figure P5.37

Sections 5.4: Bode Plots
Determine the frequency response Vout(ω)/VS(ω) for the network in Figure
P5.38. Generate the Bode magnitude and phase plots when RS = Ro = 5 kΩ, L =
10 μH, and C = 0.1 μF.

Figure P5.38
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Refer to Problem 5.37 but assume that L = 2 mH, C = 125 μF, and RS = R1 = R2
= 4 Ω in Figure P5.37.

Determine the impedance seen by the amplifier as a function of frequency.
At what frequency is maximum power transferred by the amplifier?

Generate the Bode magnitude and phase plots of the currents through the
woofer and tweeter.



5.40

a.

b.

5.41

a.

b.

c.

d.

e.

For the notch filter shown in Figure P5.40 assume that RS = R0 = 500 Ω, L = 10
mH, and C = 0.1 μF.

Determine the frequency response Vout(jω)⁄VS(jω).

Generate the associated Bode magnitude and phase plots.

Figure P5.40

It is very common to see interference caused by power lines, at a frequency of
60 Hz. This problem outlines the design of the notch filter shown in Figure
P5.41 to reject a band of frequencies around 60 Hz.

Determine the impedance Zab(jω) between nodes a and b for the filter of
Figure P5.41. rL represents the resistance of a practical inductor.

For what value of C will the center frequency of Zab(jω) equal 60 Hz
when L = 100 mH and rL = 5 Ω?

Would the “sharpness,” or selectivity, of the filter increase or decrease if rL
were increased?

Assume that the filter is used to eliminate the 60-Hz noise from a 1 kHz
sine wave. Evaluate the frequency response Vo⁄Vin(jω) at both frequencies
when:

Assume L = 100 mH and rL = 5 Ω. Use the value of C found in part b.

Generate the Bode magnitude and phase plots for Vo⁄Vin. Mark the plots at
60 Hz and 1,000 Hz.



5.42

a.

b.

5.43
a.

Figure P5.41

The circuit of Figure P5.42 is representative of an amplifier-speaker
connection. The crossover filter allows low-frequency signals to pass to the
woofer. The filter’s topography is known as a π network.

Find the frequency response Vo(jω)⁄VS (jω).

If  generate the Bode
magnitude and phase plots in the range 100 Hz ≤ f ≤ 10 kHz.

Figure P5.42
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For the circuit shown in Figure P5.43:

Determine the frequency response:



b.

c.

5.44

5.45

5.46

Sketch, by hand, the associated Bode magnitude and phase plots. List all
the steps in constructing the plot. Clearly show the break frequencies on
the frequency axis. (Hint: Use the MatlabTM command “roots” or a
calculator to quickly determine the polynomial roots.)

Use the MatlabTM command “Bode” to generate the same plots. Verify
your sketch. Assume R1 = R2 = 2 kΩ, L = 2 H, C1 = C2 = 2 mF.

Repeat all parts of Problem 5.43 for the frequency response:

Use the same component values as in Problem 5.43.

Repeat all parts of Problem 5.43 for the circuit of Figure P5.45 and the
frequency response:

Let R1 = R2 = 1 kΩ, C = 1 μF, L = 1 H.

Figure P5.45

Repeat all parts of Problem 5.43 for the circuit of Figure P5.45 and the
frequency response:

Use the same values as in Problem 5.45.



5.47

5.48

5.49

a.

b.

c.

5.50
a.

b.

5.51

For the circuit of Figure P5.47 determine the frequency response 
Assume R1 = R2 = 2 kΩ, C1 = C2 = 1 mF.

Figure P5.47

Repeat all parts of Problem 5.43 for the circuit of Figure P5.47 and the
frequency response:

Use the same component values as in Problem 5.47.

Refer to Figure P5.4 and assume R1 = 300 Ω, R2 = R3 = 500 Ω, L = 4 H, C1 =
40 μF, C2 = 160 μF.

Determine the frequency response:

Sketch, by hand, the associated Bode magnitude and phase plots. List all
the steps in constructing the plot. Clearly show the break frequencies on
the frequency axis. (Hint: Use the MatlabTM command “roots” or a
calculator to quickly determine the polynomial roots.)

Use the MatlabTM command “Bode” to generate the same plots. Verify
your sketch.

Refer to Figure P5.4 and the parameter values listed in Problem 5.49.

Determine for the frequency response:

Repeat parts b and c of Problem 5.49 for this frequency response.

Refer to Figure P5.5 and repeat the instructions of parts b and c of Problem
5.49. Assume R1 = 20 kΩ, R2 = 100 kΩ, L = 1 H, C = 100 μF.



5.52

5.53

a.

b.

c.

d.

5.54

Assume in a certain frequency range that the ratio of output amplitude to input
amplitude is proportional to 1⁄ω3. What is the slope of the Bode magnitude plot
in this frequency range, expressed in dB/decade?Page 301

Assume that the amplitude of an output voltage depends on frequency
according to:

Find:

The break frequency.

The slope (in dB/decade) of the Bode magnitude plot above the break
frequency.

The slope (in dB/decade) of the Bode plot below the break frequency.

The high-frequency limit of V(jω).

Determine the equivalent impedance Zeq in standard form as defined in Figure
P5.54(a). Choose the Bode plot from Figure P5.54(b) that best describes the
behavior of the impedance as a function of frequency. Describe how to find the
resonant and cutoff frequencies, and the magnitude of the impedance for those
ranges where it is constant. Label the Bode plot to indicate which feature you
are discussing.



Figure P5.54

1The circuitry in a high-fidelity audio system is far more complex than the circuits
discussed in this chapter. However, from the standpoint of intuition and everyday
experience, the audio analogy provides a useful example. The audio spectrum terms
bass, midrange, and treble are well known, but not well understood. The material
presented in this chapter provides a technical basis for understanding these concepts.

2If you have already studied the section on second-order transient response in
Chapter 4, you will recognize the parameters ζ and ωn.
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C H A P T E R
6

AC POWER

he basic concepts underlying simple AC power and the generation and
distribution of electric power are extensions of those previously developed in
Chapter 3, namely, phasors and impedance. Together, they pave the way for
the material on electric machines in Chapter 12. The principal new concepts

introduced in this chapter are average and complex power, and how they are
computed for complex loads. The concept of the power factor is introduced as is the
method for correcting (adjusting) it. A brief discussion of ideal transformers and
maximum power transfer is provided, followed by an introduction to three-phase
power, electrical safety, and finally a discussion of electric power generation and
distribution.

In this chapter, quantities often involve angles. Unless indicated otherwise, angles
are given in units of radians.Page 304

 Learning Objectives
Students will learn to...

Understand the meaning of instantaneous and average power, use AC power
notation, compute average power, and compute the power factor of a complex
load. Sections 6.1.



2.
3.

4.

5.

6.

(6.1)

Use complex power notation; compute apparent, real, and reactive power for
complex loads; and draw a power triangle. Sections 6.2.
Compute the capacitance required to correct the power factor of a complex load
Sections 6.3.
Analyze an ideal transformer; compute primary and secondary currents,
voltages, and turns ratios; calculate reflected sources and impedances across
ideal transformers; and understand maximum power transfer. Section 6.4.
Use three-phase AC power notation; and compute load currents and voltages for
balanced wye and delta loads. Sections 6.5.
Understand the basic principles of residential electrical wiring and of electrical
safety. Sections 6.6 and 6.7.

6.1 INSTANTANEOUS AND AVERAGE POWER
When a linear electric circuit is excited by a sinusoidal source, all voltages and
currents in the circuit are also sinusoids of the same frequency as the source. Figure
6.1 depicts the general form of a linear AC circuit. The most general expressions for
the voltage and current delivered to an arbitrary load are as follows:

Figure 6.1 Time and frequency domain representations of an AC circuit.
The phase angle of the load is θZ = θV − θI.

where V and I are the peak amplitudes of the sinusoidal voltage and current,
respectively, and θV and θI are their phase angles. Two such waveforms are plotted in
Figure 6.2, with unit amplitude, angular frequency 150 rad/s, and phase angles θV = 0



(6.2)

(6.3)

(6.4)

and θI = π⁄3. Notice that the current leads the voltage; or equivalently, the voltage
lags the current. Keep in mind that all phase angles are relative to some reference,
which is usually chosen to be the phase angle of a source. The reference phase angle
is freely chosen and therefore usually set to zero for simplicity. Also keep in mind
that a phase angle represents a time delay of one sinusoid relative to its reference
sinusoid.

Figure 6.2 Current and voltage waveforms with unit amplitude and a phase
shift of 60°

The instantaneous power dissipated by any element is the product of its
instantaneous voltage and current.

This expression is further simplified with the aid of the trigonometric identity:

Let  to yield:

Page 305Equations 6.4 illustrates that the total instantaneous power dissipated by an
element is equal to the sum of a constant  and a sinusoidal 

 which oscillates at twice the frequency of the source. Since the
time average of a sinusoid is zero over one period or over a sufficiently long interval,



(6.5)

(6.6)

(6.7)

the constant  is the time averaged power dissipated by a complex load Z,
where θZ is the phase angle of that load.

Figure 6.3 shows the instantaneous and average power corresponding to the
voltage and current signals of Figure 6.2. These observations can be confirmed
mathematically by noting that the time average of the instantaneous power is defined
by:

Figure 6.3 Instantaneous and average power corresponding to the signals
in Figure 6.2

where T is one period of p(t). Use equations 6.4 to substitute for p(t) and yield:

Page 306The integral of the first part cos (2ωt + θV + θI) is zero while the integral of
the second part (a constant) is T cos(θZ). Thus, the time averaged power Pavg is:

where



(6.8)

(6.9)

(6.10)

(6.11)

Effective Values
In North America, AC power systems operate at a fixed frequency of 60 cycles per
second, or hertz (Hz), which corresponds to an angular (radian) frequency ω given
by:

In Europe and most other parts of the world, the AC power frequency is 50 Hz.

Unless indicated otherwise, the angular (radian) frequency ω is assumed to be
377 rad/s throughout this chapter.

It is customary in AC power analysis to employ the effective or root-mean-square
(rms) amplitude (see Sections 3.2) rather than the peak amplitude for AC voltages
and currents. In the case of a sinusoidal waveform, the effective voltage  is
related to the peak voltage V by:

Likewise, the effective current  is related to the peak current I by:

The rms, or effective, value of an AC source is the DC value that produces the
same average power to be dissipated by a common resistor.

The average power can be expressed in terms of effective voltage and current by
plugging  into equations 6.7 to find:



(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

Page 307Voltage and current phasors are also represented with effective
amplitudes by the notation:

and

It is critical to pay close attention to the mathematical notation that was first
introduced in Chapter 3, namely that complex quantities, such as V, I, and Z are
boldface. On the other hand, scalar quantities, such as  are italic. The
relationship between these quantities is 

Impedance Triangle
Figure 6.4 illustrates the concept of the impedance triangle, which is an important
graphical representation of impedance as a vector in the complex plane. Basic
trigonometry yields:

Figure 6.4 Impedance triangle



(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

where R is the resistance and X is the reactance. Notice that both R and Pavg are
proportional to cos(θZ), which suggests that a triangle similar to (i.e., the same shape
as) the impedance triangle could be constructed with Pavg as one leg of a right
triangle. In fact, such a triangle is known as a power triangle. The similarity of these
two types of triangles is a powerful concept for problem solving, as is shown in
Sections 6.2.

Power Factor
The phase angle θZ of the load impedance plays a very important role in AC power
circuits. From equations 6.12, the average power dissipated by an AC load is
proportional to cos (θZ). For this reason, cos (θZ) is known as the power factor (pf).
For purely resistive loads:

For purely inductive or capacitive loads:

For loads with nonzero resistive (real) and reactive (imaginary) parts:

Using the definition pf = cos (θZ) the average power can be expressed as:

Thus, average power dissipated by a resistor is:

because pfR = 1. By contrast, the average power dissipated by a capacitor or inductor
is:

Page 308because pfX = 0, where the subscript X indicates a reactive element (i.e.,
either a capacitor or inductor). It is important to note that although capacitors and



inductors are lossless (i.e., they store and release energy but do not dissipate energy),
they do influence power dissipation in a circuit by affecting the voltage across and
the current through resistors in the circuit.

When θZ is positive, the load is inductive and the power factor is said to be
lagging; when θZ is negative, the load is capacitive and the power factor is said to be
leading. It is important to keep in mind that pf = cos (θZ) = cos (−θZ) because the
cosine is an even function. Thus, while it may be important to know whether a load is
inductive or capacitive, the value of the power factor only indicates the extent to
which a load is inductive or capacitive. To know whether a load is inductive or
capacitive, one must know whether the power factor is leading or lagging.

EXAMPLE 6.1 Computing Average and Instantaneous AC Power
Problem

Compute the average and instantaneous power dissipated by the load of Figure 6.5.

Figure 6.5 Circuit for Example 6.1.

Solution
Known Quantities: Source voltage and frequency, load resistance and inductance
values.
Find: Pavg and p(t) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: υ(T) = 14.14 sin (377T) V; R = 4
Ω; L = 8 mH.
Assumptions: None.
Analysis: The source voltage is expressed in terms of sin (377t). By convention, all
time-domain sinusoids should be expressed as cosines. To convert sin (377T) to cos



1.

2.

(377t + θV) recall that a sine equals a cosine shifted forward in time (to the right) by
π⁄2 rad; that is, sin (377t) = cos (377t − π⁄2). Thus, at the angular frequency ω = 377
rad/s the source voltage is:

where 14.14 V = 10 V rms.

The equivalent impedance of the load is:
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It is instructive to compute the average power dissipated in the circuit in two
ways:

The most straightforward and brute force approach is to compute:

Another approach is to realize that the average power dissipated by the inductor
is zero. Thus, the total average power dissipated equals the average power
dissipated by the resistor. Thus:

The instantaneous power is given by:

The instantaneous voltage and current waveforms and the instantaneous and average
power are plotted in Figure 6.6.



Figure 6.6 Voltage, current and power waveforms for Example 6.1.

Comment: It is standard procedure in electrical engineering practice to use rms
values in power calculations. Also, note that the instantaneous power can be negative
at times even though the average power is positive. This result reflects the fact that
although the average power of an inductor is identically zero, the instantaneous
power of an inductor can be positive or negative as the inductor charges or discharges
with the sinusoidal source.
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EXAMPLE 6.2 Computing Average AC Power
Problem

Compute the average power dissipated by the load of Figure 6.7.



Figure 6.7 Circuit for Example 6.2.

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance,
and frequency.
Find: Pavg for the  load.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: None.
Analysis: First, compute the impedance of the load at the angular frequency ω = 377
rad/s:

where the angle is given in radians. Next, apply voltage division to compute the load
voltage:

Finally, compute the average power using equations 6.12:

Alternatively, compute the source current  and then use equations 6.12 to compute
the average power:



EXAMPLE 6.3 Computing Average AC Power
Problem

Compute the average power dissipated by the load of Figure 6.8.

Figure 6.8 Circuit for Example 6.3

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance
and inductance values, and frequency.
Find: Pavg for the complex load.Page 311

Schematics, Diagrams, Circuits, and Given Data: 
 Figure 6.8.

Assumptions: None.
Analysis: First, compute the impedance of the load Zo at the angular frequency ω =
377 rad/s:



Note that the equivalent load impedance at ω = 377 rad/s has a negative imaginary
part, which is a feature of a capacitive load, as shown in Figure 6.9. The average
power is:

Figure 6.9 Equivalent circuit for Example 6.3

Comment: At ω = 377 rad/s, the capacitance has a larger impact on the total
equivalent impedance than the inductance. At lower frequencies, where the
impedance of the capacitor is large compared to R + jωL, the parallel equivalent
impedance will be inductive. It is instructive to determine the frequencies when the
parallel equivalent impedance has a zero imaginary part.

CHECK YOUR UNDERSTANDING
Consider the circuit shown in Figure 6.10. Find the impedance of the load “seen” by
the voltage source, and compute the average power dissipated by the load. The
constant 155.6 multiplying the cosine function is always the peak amplitude, not the
rms amplitude.

Figure 6.10 Circuit for Check Your Understanding question.

Answer: 



(6.24)

(6.25)

CHECK YOUR UNDERSTANDING
For Example 6.2, compute the average power dissipated by the internal source
resistance RS.

6.2 COMPLEX POWER
The computation of AC power is simplified by defining a complex power S, where:
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that the effect of taking the complex conjugate of a phasor is to multiply its phase
angle by −1. In other words,  The definition of complex
power leads to:

where  are the resistance and reactance of the
impedance triangle shown in Figure 6.11. The real and imaginary parts of S are the
real power  and the reactive power  respectively, such
that:

Figure 6.11 The impedance triangle

Answer: 101.46 W.



(6.26)

(6.27)

(6.28)

The magnitude ∣S∣ of the complex power is called the apparent power S and is
measured in units of volt-amperes (VA). The units of Q are volt-amperes reactive,
or VAR.

The relationship between S, P, and Q is summarized by a power triangle as
shown in Figure 6.12. It is important to note that the impedance and power triangles
are similar; that is, they have the same shape. This result is helpful in problem
solving. Table 6.1 shows the general expressions for calculating P = Pavg and Q.

Table 6.1 Real and reactive power

Figure 6.12 The complex power triangle

The complex power can also be expressed as:

Furthermore, since  the complex power can be re-expressed
as:

As previously stated, capacitors and inductors (reactive loads) do not dissipate
energy themselves; they are lossless elements. However, they do influence power
dissipation in a circuit by affecting the voltage across and current through resistors,
which do dissipate energy. This influence is now quantified by the reactive power, Q,



1.

2.

3.

•

•

4.

5.

which is due entirely to capacitance and inductance in a circuit. It is worth noting that
Q = 0, pf = 1, and therefore P = S in purely resistive networks. It is also important to
realize that P represents the real work done (per unit time) by a circuit. For example,
the real power P of an electric motor represents the work done (per unit time) by the
motor to perform some useful task. From the perspective of the utility company that
provides the electric power for the motor and of the owner of the motor who has to
pay the utility bill, it would be best if all the apparent power S provided by the utility
company was converted to useful power P. (Why?) However, all electric motors have
some inductance (e.g., coils of wire) such that Q ≠ 0, pf < 1, and P < S. It is possible
to correct the effect of a motor’s inductance by adding capacitance in parallel with
the motor so as to decrease Q and thereby decrease the apparent power S that must be
provided for a given P required by the task.Page 313

F O C U S  O N  P R O B L E M  S O LV I N G

COMPLEX POWER COMPUTATION
Use AC circuit analysis methods to compute (as phasors) the voltage across 
current through the load. Convert peak amplitudes to effective (rms) values.

Compute θZ = θV − θI and the power factor pf = cos (θZ). Draw the impeda
triangle, as shown in Figure 6.11.
Use one of the two following methods to compute Pavg and Q.

Compute the complex power  such that  and 
∣S∣. The effect of taking the complex conjugate of a phasor is to mult
its phase angle by −1, such that 

Compute the apparent power  such that P = Pavg = S · pf and 
S sin(θZ).

Draw the power triangle, as shown in Figure 6.12, and confirm that S2 = P2 +
and that tan(θZ) = Q⁄P.
If Q is negative, the load is capacitive and the power factor is leading; if 
positive, the load is inductive and the power factor is lagging.



EXAMPLE 6.4 Complex Power Calculations
Problem

Compute the complex power for the load Zo of Figure 6.13.

Figure 6.13 Circuit for Example 6.4.

Solution
Known Quantities: Source, load voltage, and current.
Find: S = Pavg + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: υ(t) = 100 cos (ωt + 0.262) V; i(t)
= 2 cos(ωt − 0.262) A; ω = 377 rad/s.
Assumptions: All angles are given in units of radians unless indicated otherwise.
Analysis: First, realize that the constants multiplying the cosine functions are always
peak, not rms, values. These functions can be converted to phasor quantities with rms
amplitudes as follows:

Page 314Compute the phase angle of the load, and the real and reactive power, using
the definitions of equations 6.12:



Apply the definition of complex power (equations 6.24) to repeat the same
calculation:

Therefore

Comments: Note how the definition of complex power yields both quantities at one
time.

EXAMPLE 6.5 Real and Reactive Power Calculations
Problem

Compute the complex power for the load of Figure 6.14.

Figure 6.14 Circuit for Example 6.5.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find: S = P + jQ for the complex load.
Schematics, Diagrams, Circuits, and Given Data: ; 

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.



Analysis: The load impedance is:

Next, apply voltage division and the generalized Ohm’s law to compute the load
voltage and current:

Finally, compute the complex power, as defined in equations 6.24:

Therefore:Page 315

P = 1,192 W Q = − 316 VAR
Comment: Is the reactive power capacitive or inductive? Since Q < 0, the reactive
power is capacitive!

EXAMPLE 6.6 Real Power Transfer for Complex Loads
Problem

Compute the complex power for the load between terminals a and b of Figure 6.15.
Repeat the computation with the inductor removed from the load, and compare the
real power for the two cases.



1.
2.
3.

1.

2.

Figure 6.15 Circuit for Example 6.6.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find:

S1 = P1 + jQ1 for the complex load.
S2 = P2 + jQ2 for the real load.
For each case, compute the ratio of the real power dissipated by the load to the
overall real power dissipated by the circuit.

Schematics, Diagrams, Circuits, and Given Data:  jXL
= j6 Ω.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

With the inductor included in the load, its impedance Zo is:

Apply voltage division to compute the load voltage  and the generalized
Ohm’s law to compute the current 

Finally, compute the complex power, as defined in equations 6.24:

Therefore:
P1 = 503 W Q1 = 839 VAR
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With the inductor excluded from the load (Figure 6.16), its impedance is:



3.

Figure 6.16 Circuit for Example 6.6 with inductor removed.

Zo = R = 10 Ω

Compute the load voltage and current:

Finally, compute the complex power, as defined in equations 6.24:

Therefore:

To compute the overall real power Ptotal dissipated by the circuit, it is necessary
to include the impact of the line resistance RS and compute for each case:

For case 1:

The percent real power transfer is:

For case 2:

The percent real power transfer is:



Comments: If it were possible to eliminate the reactive part of the impedance, the
percentage of real power transferred from the source to the load would be increased
significantly. The procedure to accomplish this goal is called power factor
correction.

EXAMPLE 6.7 Complex Power and Power Triangle
Problem

Find the reactive and real power for the load of Figure 6.17. Draw the associated
power triangle.Page 317

Figure 6.17 Circuit for Example 6.7.

Solution
Known Quantities: Source voltage; load impedance.
Find: S = Pavg + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: First, compute the load current:

Next, compute the complex power, as defined in equations 6.24:



Therefore:

P = 432 W Q = 576 VAR

The total reactive power must be the sum of the reactive powers in each of the
elements, such that Q = QC + QL. Compute these two quantities as follows:

and

Comments: The power triangle corresponding to this circuit is drawn in Figure 6.18.
The vector diagram shows how the complex power S results from the vector addition
of the three components P, QC, and QL.

Figure 6.18 Power triangle for Example 6.7.

CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Example 6.2.

Answer: Pavg = 595 W; Q = −359 VAR



CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Figure 6.10.
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CHECK YOUR UNDERSTANDING
Refer to Example 6.6, and compute the percent of real power transfer for the case
where the inductance of the load is one-half of the original value.

CHECK YOUR UNDERSTANDING
Compute the power factor for the load of Example 6.7 with and without the inductor
in the circuit.

6.3 POWER FACTOR CORRECTION
A power factor close to unity signifies an efficient transfer of energy from the AC
source to the load while a small power factor corresponds to inefficient use of energy,
as illustrated in Example 6.6. If a load requires a given real power P, the current
required by the load will be minimized when the power factor is maximized, that is,

Answer: Pavg = 2.1 kW; Q = 1.39 kVAR

Answer: 29.3%

Answer: pf = 0.6, lagging (with L in circuit); pf = 0.5145, leading (without
L)



when pf = cos(θZ) → 1. When pf < 1, it is possible to increase it (i.e., correct it) by
adding, as appropriate, reactance (e.g., capacitance) to the load. When pf is leading,
inductance must be added; when pf is lagging, capacitance must be added.

If θZ > 0, then Q > 0, the load is inductive, the load current lags the load
voltage, and the power factor pf is lagging. Alternatively, if θZ < 0, then Q < 0,
the load is capacitive, the load current leads the load voltage, and the power
factor pf is leading.

Table 6.2 illustrates and summarizes these concepts. For simplicity, the phase angle
of the voltage phasor V ̃  shown in the table is zero and acts as a reference angle for
the current phasor.

Table 6.2 Important facts related to complex power

In practice, the load designed for a useful industrial task is often inductive
because of the presence of electric motors. The power factor of an inductive load can
be corrected by adding capacitance in parallel with the load. This procedure is called
power factor correction.



1.

2.

3.

4.

5.

The measurement and correction of the power factor for the load are an
extremely important aspect of any industrial engineering application that requires the
use of substantial quantities of electric power. In particular, industrial plants,
construction sites, heavy machinery, and other heavy users of electric power must be
aware of the power factor that their loads present to the electric utility company. As
was already observed, a low power factor results in greater current draw from the
electric utility and greater line losses. Thus, computations related to the power factor
of complex loads are of great utility to any practicing engineer.Page 319

F O C U S  O N  P R O B L E M  S O LV I N G

POWER FACTOR CORRECTION
Follow the steps outlined in the Focus on Problem Solving box “Complex Po
Computation” to find the initial phase angle of the load  , power factor
real power Pi , and reactive power Qi. If both Pi and either pf or θZ are gi
compute Q directly using Q = P tan(θZ). An initial power triangle is helpful
visualizing this information.
For a lagging power factor, augment the load with a parallel capacitor such th

Express the final reactive power Qf as:

The real power is unchanged by the addition of the capacitor in parallel. Thu
= Pi and the final (corrected) phase angle of the augmented load is:

It is helpful to draw a final power triangle to visualize the effect of the par
capacitor.
The final corrected power factor is:



1.
2.

1.

Page 320

EXAMPLE 6.8 Power Factor Correction
Problem

Calculate the power factor for the circuit of Figure 6.19. Correct it to unity by adding
a capacitor in parallel with the load.

Figure 6.19 Circuit for Example 6.8.

Solution
Known Quantities: Source voltage; load impedance.
Find:

S = P + jQ for the complex load.
Value of parallel capacitance that results in pf = 1.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

First, compute the load impedance:

Next, compute the load current 

The complex power, as defined in equations 6.24, is:



2.

3.

Therefore:
P = 68.4 W Q = 118.5 VAR

The power triangle corresponding to this circuit is drawn in Figure 6.20. The
vector diagram shows how the complex power S results from the vector addition
of the two components P and Q.

Figure 6.20 Power triangle for Example 6.8.

To correct the power factor to unity it is necessary to subtract 118.5 VAR. This
goal can be accomplished by adding in parallel a capacitor with QC = −118.5
VAR. The required capacitance is found by:

The reactance XC is related to the capacitance by:

Thus, the result is:
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The total current required of the source is  where:

Notice that  The total current is computed by
phasor addition to be:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0. Thus, the source current must now be in phase with
the source voltage; and it is.



Comments: Notice that the magnitude of the source current is reduced by increasing
the power factor. The power factor correction, which is a very common procedure in
electric power systems, is illustrated in Figure 6.21.

Figure 6.21 Power factor correction

EXAMPLE 6.9 Can a Series Capacitor Be Used for Power Factor
Correction?
Problem

The circuit of Figure 6.22 suggests the use of a series capacitor for power factor
correction. Why is this approach not a feasible alternative to the parallel capacitor
approach demonstrated in Example 6.8?

Figure 6.22 Circuit for Example 6.9.

Solution



Known Quantities: Source voltage; load impedance.
Find: Load (source) current.
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: First, compute the impedance of the load between terminals a and b:

Page 322Notice that the reactance of the capacitor was chosen so as to make the total
load purely resistive. Thus, θZ = 0 and the corrected power factor is pf = 1. So far, so
good.

Next, compute the current through the series load:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0. Thus, the source current must now be in phase with the
source voltage; and it is.

The problem with this approach to power factor correction is revealed by
computing the initial current through the load, prior to the addition of the capacitor.

Comments: Notice the twofold increase in the source current as a result of the
additional capacitor in series. Consequently, the power required by the source
doubled as well. In practice, adding capacitance in parallel can be accomplished
relatively easily with one large bank located somewhere on an industrial site and
away from the production motors themselves. Electric utilities motivate industries to
raise power factors by offering discounted rates ($/kWh).

EXAMPLE 6.10 Power Factor Correction



1.
2.

1.

Problem

A capacitor is used to correct the power factor of the 100 kW and lagging pf = 0.7
load of Figure 6.23. Determine the reactive power of the load alone, and compute the
capacitance required for a corrected power factor pf = 1.

Figure 6.23 Circuit for Example 6.10.

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

The reactive power Q of the load alone.
The capacitance C required for a corrected power factor pf = 1.

Schematics, Diagrams, Circuits, and Given Data: 
lagging for the load; ω = 377 rad/s.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

For the load alone, pf = 0.7 lagging or cos(θZ) = 7⁄10, and the power triangle has
the shape shown in Figure 6.24. The real power is given as P = 100 kW, so the
reactive power of the load can be computed using the relative triangle
dimensions to be:

Figure 6.24 Relative dimensions of power triangle



2.

Since the power factor is lagging, the reactive power is positive as indicated in
Table 6.2 and shown in the power triangle of Figure 6.25.Page 223

Figure 6.25 Power triangle for Example 6.10.

To set the corrected power factor to pf = 1 the capacitance must contribute −102
kVAR of reactive power. That is:

Since the voltage across capacitor  equals the source voltage  the reactive
power of the capacitor is:

Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:

Q C = − (377)(480 2)C = − 102 kVAR
or

Use trigonometry and/or the Pythagorean theorem to show that the apparent
power ∣S∣ = 143 kVA, as indicated in Figure 6.25.
Comments: Note that it is not necessary to know the load impedance to perform
power factor correction; however, it is a useful exercise to compute the equivalent
impedance seen by V ̃ S and check that cos(θZ) = 0.7.

EXAMPLE 6.11 Power Factor Correction
Problem



1.
2.
3.

1.

Figure 6.26 shows a second load added to the circuit of Figure 6.23. Determine the
capacitance required for an overall corrected power factor pf = 1. Draw the phasor
diagram showing the relationship between 

Figure 6.26 Circuit for Example 6.11.

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

The total reactive power of loads 1 and 2.
The capacitance C required for an overall power factor pf = 1.

 and construct a phasor diagram of these currents.Page 324
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

Compute  and  using the relation 

and

It is important to keep in mind that although inverse trigonometric functions are
double-valued [e.g., cos −1 (0.7) ≈ ± 0.795 rad], the power factor for load 1 is
lagging such that θZ 1 = + 0.795 rad is the correct choice.
Similarly, for load 2:



2.

and

The power factor for load 2 is leading such that θZ 2 = − 0.318 rad is the correct
choice.
Now use the given data and the relation Q = P tan(θZ) to compute the reactive
power for each load.

Q 1 = P 1 tan(+0.795 rad) ≈ + 102 kVAR
and

Q 2 = P 2 tan(−0.318 rad) ≈ − 16.4 kVAR
The power triangles for the two loads are shown in Figures 6.27 and 6.28. The
total reactive power is therefore Q = Q1 + Q2 ≈ 85.6 kVAR.

Figure 6.28 Power triangle for load 2

Figure 6.27 Power triangle for load 1

To set the corrected power factor to pf = 1 the capacitance must contribute −85.6
kVAR of reactive power. That is:

For a capacitor alone its reactive power is:

Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:

Q C = − (377)(4802)C = − 85.6 kVAR
or



3.

a.
b.
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To compute the capacitor current it is not possible to use  because P =
0 and pf = 0 for a capacitor. Instead, the generalized Ohm’s law provides an
alternative approach.

where V ̃ C = V ̃ S. The phase angle of  is:

The current phasor diagram can now be drawn as shown in Figure 6.29.

Figure 6.29 Phasor diagram for Example 6.11.

Comment: The power triangle suggests that the capacitor current can also be
calculated using the relation 

 Try it!

CHECK YOUR UNDERSTANDING
Two cases of the voltage across and the current through a load are given below.
Determine the power factor of the load, and whether it is leading or lagging, for each
case.

υ(t) = 540 cos(ωt + 15°) V, i(T) = 2 cos(ωt + 47°) A
υ(t) = 155 cos(ωt − 15°) V, i(T) = 2 cos(ωt − 22°) A

Answer: a. 0.848, leading; b. 0.9925, lagging



CHECK YOUR UNDERSTANDING
Determine if a load is capacitive or inductive, given the following facts:

a. pf = 0.87, leading

b. pf = 0.42, leading

c. υ(T) = 42 cos(ωt) V, i(t) = 4.2 sin (ωt) A [Hint: sin (ωt) lags cos(ωt).]

d. υ(t) = 10.4 cos(ωt − 22°) V, i(T) = 0.4 cos(ωt − 22°) A

CHECK YOUR UNDERSTANDING
Compute the power factor for an inductive load with L = 100 mH in series with R =
0.4 Ω. Assume ω = 377 rad/s.
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FOCUS ON MEASUREMENTS

Answer: a. Capacitive; b. capacitive; c. inductive; d. neither (resistive)

Answer: pf = 0.0106, lagging



The Wattmeter
The instrument used to measure power is called a wattmeter. The external part of a
wattmeter consists of four connections and a metering mechanism that displays the
amount of real power dissipated by a circuit. The external and internal appearance of
a wattmeter is depicted in Figure 6.30. Inside the wattmeter are two coils: a current-
sensing coil and a voltage-sensing coil. In this example, we assume for simplicity
that the impedance of the current-sensing coil ZI is zero and that the impedance of
the voltage-sensing coil ZV is infinite. In practice, this will not necessarily be true;
some correction mechanism will be required to account for the impedance of the
sensing coils.

Figure 6.30 Wattmeter connections.

A wattmeter should be connected as shown in Figure 6.31 to provide both current
and voltage measurements. We see that the current-sensing coil is placed in series
with the load and that the voltage-sensing coil is placed in parallel with the load. In



1.

2.

1.

this manner, the wattmeter is seeing the current through and the voltage across the
load. Remember that the power dissipated by a circuit element is related to these two
quantities. The wattmeter, then, is constructed to provide a readout of the real power
absorbed by the load: 

Figure 6.31 How to connect a wattmeterin a circuit.
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Problem:
For the circuit shown in Figure 6.32, show the connections of a wattmeter
between the ideal voltage source and the load and find the power dissipated by
the load.

Figure 6.32 Circuit for power measurement example.

Show the connections that will determine the power dissipated by R2. What
should the meter read?

Solution:
To measure the power dissipated by the load, we must know the current through
and the voltage across the entire load circuit. This means that the wattmeter must
be connected as shown in Figure 6.33. The wattmeter should read



2.

Figure 6.33 Circuit with wattmeter inserted.
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To measure the power dissipated by R2 alone, we must measure the current
through R2 and the voltage across R2 alone. The connection is shown in Figure
6.34. The meter will read

Figure 6.34 Circuit with wattmeter inserted to measure only the power
dissipated by R2



FOCUS ON MEASUREMENTS

Power Factor
Problem:
A capacitor is being used to correct the power factor of a load to unity, as shown in
Figure 6.35. The capacitor value is varied, and measurements of the total current are
taken. Explain how it is possible to zero in on the capacitance value necessary to
bring the power factor to unity just by monitoring the current 

Figure 6.35 Circuit for illustration of power factor correction.

Solution:
The current through the load is
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The source current to be measured is

The magnitude of the source current is

We know that when the load is a pure resistance, then the current and voltage are in
phase, the power factor is 1, and all the power delivered by the source is dissipated
by the load as real power. This corresponds to equating the imaginary part of the
expression for the source current to zero or, equivalently, to the following expression:

in the expression for ∣I ̃ S∣. Thus, the magnitude of the source current is actually a
minimum when the power factor is unity! It is therefore possible to “tune” a load to a
unity pf by observing the readout of the ammeter while changing the value of the
capacitor and selecting the capacitor value that corresponds to the lowest source
current value.

6.4 TRANSFORMERS
Two separate AC circuits are often interfaced by a transformer, which acts as a
magnetic coupling and transforms the voltage and current at the interface (e.g., by
matching the high-voltage, low-current output of one circuit to the low-voltage, high-
current input required by the other). Transformers play a major role in electric power
engineering and are a necessary part of the electric power distribution network. The
objective of this section is to introduce the ideal transformer and the concepts of
impedance reflection and impedance matching. The operations of practical
transformers, and more advanced models, are discussed in Chapter 12.

The Ideal Transformer



(6.29)

The ideal transformer consists of two coils coupled to each other by a magnetic
medium. There is no conducting electrical connection between the coils. The input
side of a transformer is known as the primary while the output side is known as the
secondary. The number of turns in the primary and secondary coils are designated n1
and n2, respectively. The turns ratio N is defined by:

Figure 6.36 illustrates the convention by which voltages and currents are usually
assigned at a transformer. The solid black dots in Figure 6.36 are used to mark coil
terminals that have the same polarity.

Figure 6.36 Ideal transformer

Page 330Recall from Faraday’s law that each coil experiences self-induction in
that a time-varying current through a coil produces a time-varying magnetic flux
through the coil itself, which, in turn, induces a potential difference opposing the
time-varying magnetic flux. The net effect of this self-induction is expressed by the
inductance L of a coil. However, when two coils are present, as in a transformer, both
coils also experience mutual induction in that some of the time-varying magnetic flux
due to one coil passes through the other coil and induces another opposing potential
difference. The net effect of the mutual induction is expressed by the mutual
inductance M of the two coils. Both L and M contribute to the behavior of a
transformer.

Notice the emphasis on time variations in the previous paragraph. One result of
Faraday’s law is that a leave in current through a coil, which generates a constant
magnetic field, induces no opposing reaction within the coil itself (no self-induction)
nor within any nearby coil (no mutual induction). Instead, a coil acts as a short-
circuit in the presence of leave in current and transformers perform no useful
function in DC circuits. See Chapter 12 for further discussion of Faraday’s law as it
relates to electromechanics.

As depicted in Figure 6.36, the relationships between primary and secondary
currents and voltages in an ideal transformer are:
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When  and a transformer is called a step-up transformer. When 
 and a transformer is called a step-down transformer. Either side of

an ideal transformer can be used as the primary; thus, to produce a step-up
transformer from a step-down transformer one only need exchange the primary and
secondary connections. (Exchanging the primary and secondary by mistake can lead
to significant dangers in a laboratory experiment!) Finally, when N = 1, a transformer
is called an isolation transformer, which can be used to electrically couple or isolate
two circuits and adjust the output and input impedances at the interface of two
circuits.

A comparison of the complex power at the primary and secondary terminals of an
ideal transformer reveals that they are the same:

That is, ideal transformers conserve power.

As shown in Figure 6.37, the secondary coil of many practical transformers is
center-tapped, which splits the secondary voltage into two equal halves. This type of
transformer is found at the entry of a power line into a household, where a high-
voltage primary is transformed to 240 V as well as split into two 120-V lines.
Referring to Figure 6.37,  and  would both provide 120 V for common
household appliances while  would provide 240 V for higher-powered
devices, such as clothes dryers and electric ranges.

Figure 6.37 Center-tapped transformer
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Impedance Reflection
Transformers are commonly used to couple one AC circuit to another, as depicted in
Figure 6.38, where an AC Thévenin source network is connected to a load Z2 by
means of a transformer.

Figure 6.38 Operation of an ideal transformer

The equivalent impedance seen by the Thévenin source is that of the entire
network to the right of terminals a and b. Applying the definition of equivalent
impedance and using the ideal transformer relations from equations 6.30, the result
is:

Thus, the equivalent impedance seen by the AC Thévenin source is the load
impedance Z2 reduced by the factor 1⁄N2.

Likewise, the equivalent network seen by Z2 is the Thévenin equivalent of the
entire network to the left of terminals c and d. When Z2 is replaced by an open-
circuit,  and the Thévenin (open-circuit) voltage is:

However, since  the voltage drop across ZS is zero such that  with
the result:
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When Z2 is replaced by a short-circuit,  and the short-circuit current is:

However, since  the voltage drop across ZS is  such that 
with the result:

Thus, the Thévenin equivalent impedance seen by Z2 is:

Thus, the equivalent impedance seen by Z2 is the source impedance ZS multiplied by
N2.

Figure 6.39 summarizes and illustrates these effects, which are known as
impedance reflection across a transformer and which play an important role in
power transfer.Page 332

Figure 6.39 Impedance reflection across a transformer

Maximum Power Transfer
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Recall that in resistive DC circuits, maximum power is transferred to a load when the
load equals the Thévenin equivalent resistance of the source network. For AC
circuits, the analogous maximum power transfer condition is known as impedance
matching.

Consider the general form of an AC circuit, shown in Figure 6.40, and assume
that the source impedance ZT is:

Figure 6.40 The maximum power transfer problem in AC circuits

What value of the load Zo results in the maximum real power transfer to the load
itself? The real power absorbed by the load is:

Apply voltage division and the generalized Ohm’s law to find:

Let  and since  the real
power absorbed by the load can be expressed as:

Or, after simplification:

The condition for the maximum value of Po can be found by solving:

or
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Page 333Both of these conditions are satisfied when R o = R T and X o = −XT. That
is, the condition for maximum real power transfer to a load is 

Maximum power is transferred to the load when its impedance equals the
complex conjugate of the Thévenin equivalent impedance of the source. When
this condition is satisfied, the load and source impedances are matched.

In some cases, it may not be possible to match the load to the source because of
practical limitations. In these situations, it may be possible to use a transformer as the
interface between the source and the load to achieve maximum power transfer.
Figure 6.41 illustrates how the reflected load impedance, as seen by the source, is
equal to Zo⁄n 2, such that the condition for maximum power transfer is:

Figure 6.41 Maximum power transfer in an AC circuit with a transformer



EXAMPLE 6.12 Ideal Transformer Turns Ratio
Problem

We require a transformer (see Figure 6.42) to output 500 mA at 24 V from a 120 V
rms input line source. The primary has n1 = 3,000 turns. How many turns are
required in the secondary? What is the primary current?

Figure 6.42 Example 6.12

Solution
Known Quantities: Primary and secondary voltages; secondary current; number of
turns in the primary coil.
Find: n2 and 

Schematics, Diagrams, Circuits, and Given Data:  n1
= 3,000 turns.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: Use equations 6.30 to compute the number of turns in the secondary coil:

Page 334Again, use equations 6.29 and 6.30 to compute the primary current:

Comment: Note that since the transformer does not affect the phase of the voltages
and currents, it was possible to solve the problem using only the rms amplitudes.



EXAMPLE 6.13 Center-Tapped Transformer
Problem

An ideal center-tapped power transformer (Figure 6.43) has a 4,800-V primary and a
240-V secondary. The center-tap is located such that  Three resistive
loads are attached to the secondary terminals. Compute the current in the primary
assuming that R2, R3, and R4 each absorb P2, P3, and P4, respectively. Also compute
the current through each load and the resistance of each load.

Figure 6.43 Example 6.13

Solution
Known Quantities: Primary and secondary voltages; load power ratings.
Find: 
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise. The transformer is ideal.
Analysis: Power is conserved for an ideal transformer; thus:

Sprimary = Ssecondary

Since each load is purely resistive, θZ = 0 and pf = cos θZ = 1 such that:

∣S∣secondary = Psecondary = P2 + P3 + P4 = 7,500 W

Since ∣S∣primary = ∣S∣secondary:

Thus:



Page 335The current through each resistor is simply:

The resistor values are:

Comments: The calculations in this example were particularly straightforward
because the load was purely resistive, such that θZ = 0, the power triangle is flat, and
the apparent power S equals the real power P. When the load is complex, θZ > 0, the
power triangle is not flat, and the apparent power S equals P cos θZ . Then, the
calculations are more complicated.

Also, KCL can be used to determine the current drawn from/to the outside and
center taps. Try it!

EXAMPLE 6.14 Use of Transformers to Improve Power Line
Efficiency
Problem

Figure 6.44 illustrates the use of transformers in electric power transmission lines.
The line voltage is transformed before and after being transmitted over long
distances. This example illustrates the efficiency gained through the use of
transformers. For the sake of simplicity, ideal transformers and simple resistive
models for the generator, transmission line, and load have been assumed.



Figure 6.44 Electric power transmission: (a) direct power transmission; (b)
power transmission with transformers; (c) equivalent circuit seen by
generator; (d) equivalent circuit seen by load

Solution
Known Quantities: Values of circuit elements.
Find: Calculate the power transfer efficiency for the two circuits of Figure 6.44.
Schematics, Diagrams, Circuits, and Given Data: Step-up transformer turns ratio is
N, step-down transformer turns ratio is M = 1⁄N. All transformers are ideal.



Assumptions: None.
Analysis: Since the load and source currents are equal in Figure 6.44(a), the power
transmission efficiency is:
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In Figure 6.44(b), transformers are introduced between each of the three portions of
the overall circuit. The equivalent load resistance seen by the transmission line (or
“reflected” by the step-down transformer) is found from equations 6.32 to be:

Now, the step-up transformer sees the equivalent impedance  The resistance
seen by the generator (or “reflected” by the step-up transformer) is:

Page 337These transformations are depicted in Figure 6.44(c). The effect of the two
transformers is to reduce the line resistance seen by the source by N2. The source
current is:

The source power is:

The same process can be repeated starting from the left and reflecting the source
circuit to the right of the step-up transformer:

Now the circuit to the left of the step-down transformer comprises the series
combination of  which can be reflected to the right of the step-
down transformer to obtain 

 in series. These
transformations are depicted in Figure 6.44(d). Thus, the load voltage, current, and
power are:



Finally, the power efficiency can be computed as the ratio of the load to source
power:

Notice that the power transmission efficiency calculated for Figure 6.44(a) was
improved by reducing the effect of the line resistance by a factor of 1⁄N2.

EXAMPLE 6.15 Maximum Power Transfer Through a Transformer
Problem

Find the transformer turns ratio N and the load reactance Xo that results in maximum
power transfer in the transformer shown in Figure 6.45.

Figure 6.45 Circuit for Example 6.15.

Solution



Known Quantities: Source voltage, frequency, and impedance; load resistance.
Find: Transformer turns ratio and load reactance.
Schematics, Diagrams, Circuits, and Given Data:
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Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians. The transformer is ideal.
Analysis: The requirements for maximum power transfer, as given by equations 6.46,
are Ro = n2RS and Xo = − n2 XS = − n2 (ω × 0.1). Thus:

Thus, the load reactance should be a capacitor with value:

CHECK YOUR UNDERSTANDING
With reference to Example 6.12, compute the number of primary turns required if n2
= 600 but the transformer is required to deliver 1 A. What is the primary current
now?

CHECK YOUR UNDERSTANDING
If the transformer of Example 6.12 has 300 turns in the secondary coil, how many
turns will the primary require?

Answers: 



CHECK YOUR UNDERSTANDING
Assume that the generator produces a source voltage of 480 V rms, and that N = 300.
Further assume that the source impedance is 2 Ω, the line impedance is also 2 Ω, and
that the load impedance is 8 Ω. Calculate the efficiency improvement for the circuit
of Figure 6.37(b) over the circuit of Figure 6.37(a).

CHECK YOUR UNDERSTANDING
The transformer shown in Figure 6.46 is ideal. Assume that Z S = 1, 800 Ω and Zo =
8 Ω to find the turns ratio N that will ensure maximum power transfer to the
load.Page 339

Figure 6.46 Figure for Check Your Understanding.

Now assume that N = 5.4 and Zo = 2 + j10 Ω. Find the source impedance ZS that will
ensure maximum power transfer to the load.

Answer: n2 = 6,000

Answer: 80% vs. 67%

Answers: n = 0.0667; ZS = 0.0686 − j0.3429 Ω
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6.5 THREE-PHASE POWER
The material presented so far in this chapter has dealt exclusively with single-phase
AC power, which implies a single sinusoidal source. However, most of the AC
power used today is generated and distributed as three-phase power, which implies
three sinusoidal sources, each out of phase with the Page 340other. The primary
benefit is efficiency: The weight of the conductors and other components in a three-
phase system is much lower than that in a single-phase system delivering the same
amount of power. Further, while the power produced by a single-phase system has a
pulsating nature (recall the results of Sections 6.1), a three-phase system can deliver
a steady, constant supply of power. For example, later in this section it will be shown
that a three-phase generator producing three balanced voltages—that is, voltages of
equal amplitude and frequency displaced in phase by 120°—has the property of
delivering constant instantaneous power.

The change to three-phase AC power systems from the early DC system
proposed by Edison was due to a number of reasons: the efficiency resulting from
transforming voltages up and down to minimize transmission losses over long
distances, the ability to deliver constant power, a more efficient use of conductors,
and the ability to provide starting torque for industrial motors.

Consider a three-phase source connected in a wye (Y) configuration, as shown
in Figure 6.47. Each of the three voltages is 120° out of phase with the others, such
that:

Figure 6.47 Balanced three-phase AC circuit
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If the three-phase source is balanced, then:

For three balanced phase voltages each separated by 120°, the phase amplitudes are
also equal:

The result is the so-called positive abc sequence, as shown in Figure 6.48. In the
wye configuration, the three phase voltages share a common neutral node, denoted
by n.

Figure 6.48 Positive, or abc, sequence for balanced three-phase voltages

It is also possible to define line voltages as the potential differences between
lines aa′ and bb′, lines aa′ and cc′ , and lines bb′ and cc′. Each line voltage is related
to the phase voltages by:

It is instructive to note that the circuit of Figure 6.47 can be redrawn as shown in
Figure 6.49, where it is clear that the three branches are in parallel.
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Figure 6.49 Balanced three-phase AC circuit (redrawn)

When Z a = Z b = Z c = Z, the wye load configuration is also balanced. When
both the source and load networks are balanced, KCL requires that the current  in
the neutral line n − n′ be identically zero.

Another important characteristic of a balanced three-phase power system is
illustrated by a simplified version of Figure 6.49, where the balanced load
impedances are replaced by three equal resistors R. Since θR = 0, the instantaneous
power p(t) delivered to each resistor is given by equations 6.4 [with θV = θI and with
the freely chosen reference (θV)a = 0)] to be:

Page 341The total instantaneous power p(t) delivered to the total load is the sum:

It is worthwhile to verify that the sum of the three cosine terms is identically zero.
(Hint: Consider the phasor sum of 

Thus, with the simplified balanced resistive load, the total power delivered to the
load by the balanced three-phase source is constant. This is an extremely important
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result, for a very practical reason: Delivering power in a steady fashion (as opposed
to the pulsating nature of single-phase power) reduces “wear and tear” on the source
and load.

It is also possible to connect three AC sources in a delta (Δ) configuration, as
shown in Figure 6.50 although it is rarely used in practice.

Figure 6.50 Delta configuration

Balanced Wye Loads
These results for purely resistive loads can be generalized for any arbitrary balanced
complex load. Consider again in Figure 6.47, where now the balanced load consists
of three complex impedances:

Because of the common neutral line n − n′, each impedance sees the corresponding
phase voltage across itself. Therefore, since  it is also true that 
and the phase angles of the currents will differ by ±120°. Consequently, it is possible
to compute the power for each phase from the phase voltage and the associated line
current. Denote the complex power for each phase by S, where:

The total real power delivered to the balanced wye load is 3P, and the total reactive
power is 3Q. The total complex power ST is:

The apparent power ∣S T∣ is:
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such that:

Balanced Delta Loads
It is also possible to assemble a balanced load in a delta configuration. A wye
generator and a delta load are shown in Figure 6.51.Page 342

Figure 6.51 Balanced wye generators with balanced delta load

Note immediately that each impedance ZΔ sees a corresponding line voltage,
rather than a phase voltage. For example, the voltage across Zc′a′ is  Thus, the
three load currents are:

The relationship between a delta load and a wye load can be illustrated by
determining the delta load ZΔ that would draw the same amount of current as a wye
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load Zy, assuming a given source voltage. Consider the circuits shown in Figures
6.47 and 6.51. For instance, the line current drawn in phase a by a wye load is:

The current drawn by a delta load is:
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The two currents  are equal if:

This result also implies that a delta load will draw three times as much current and
absorb three times as much power as a wye load with the same branch impedance.

EXAMPLE 6.16 Per-Phase Solution of Balanced Wye-Wye Circuit
Problem

Compute the power delivered to the load by the three-phase generator in the circuit
shown in Figure 6.52.



Figure 6.52 Circuit for Example 6.52.

Solution
Known Quantities: Source voltage, line resistance, load impedance.
Find: Power delivered to the load Pload.Page 344

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: Since the circuit is balanced,  and the current through the neutral
line is zero. As a result, each phase has the structure shown in Figure 6.53. For
example, the real power absorbed by the load in phase a is:

Figure 6.53 One phase of the three-phase circuit

where

and P a = (84.85 A)2 (2 Ω) = 14.4 kW. Since the circuit is balanced, the results for
phases b and c are identical, such that:

P load = 3Pa = 43.2 kW



EXAMPLE 6.17 Parallel Wye-Delta Load Circuit
Problem

Compute the power delivered to the wye-delta load by the three-phase generator in
the circuit shown in Figure 6.54.

Figure 6.54 AC circuit with delta and wye loads

Solution
Known Quantities: Source voltage, line resistance, load impedance.
Find: Power delivered to the load Pload.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: First, convert the balanced delta load to an equivalent wye load, according
to equations 6.62. Figure 6.55 illustrates the effect of this conversion.



Figure 6.55 Conversion of delta load to equivalent wye load

Since the circuit is balanced,  and the current through the neutral line is zero.
The resulting per-phase circuit is shown in Figure 6.56. For example, the real power
absorbed by the load in phase a is:

Figure 6.56 Per-phase circuit

where

The load current  is:

Thus, P a = (132.6) 2 × Re (Zo) = 28.5 kW. Since the circuit is balanced, the results
for phases b and c are identical, such that:

Pload = 3Pa = 85.5 kW
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CHECK YOUR UNDERSTANDING
Find the power lost in the line resistance shown in Example 6.16.

Compute the complex power So delivered to the balanced load of Example 6.16 if the
lines have zero resistance and Zy = 1 + j3 Ω.

Show that the voltage across each branch of the wye load is equal to the
corresponding phase voltage (e.g., the voltage across Za is ).

Prove that the sum of the instantaneous powers absorbed by the three branches in a
balanced wye-connected load is constant and equal to .

6.6 RESIDENTIAL WIRING; GROUNDING AND
SAFETY
Common residential electric power service consists of a three-wire AC system
supplied by the local power company. The three wires originate from a utility pole
and consist of a neutral wire, which is connected to earth ground, and two “hot”
wires. Each of the hot lines supplies 120 V rms to the residential circuits; the two
lines are 180° out of phase, for reasons that will become apparent during the course
of this discussion. The phasor line voltages, shown in Figure 6.57, are usually
referred to by means of a subscript convention derived from the color of the
insulation on the different wires: W for white (neutral), B for black (hot), and R for
red (hot). This convention is adhered to uniformly.

Answers: Pline = 43.2 kW; So = 69.12 kW + j207.4 kVA
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Figure 6.57 Line voltage convention for residential circuits

The voltages across the hot lines are given by

Appliances such as electric stoves, air conditioners, and heaters are powered by the
240 V rms arrangement. On the other hand, lighting and all the electric outlets in the
house used for small appliances are powered by a single 120 V rms line.

The use of 240 V rms service for appliances that require a substantial amount of
power to operate is dictated by power transfer considerations. Consider the two
circuits shown in Figure 6.58. In delivering the necessary power to a load, a lower
line loss will be incurred with the 240 V rms wiring since the power loss in the lines
(the I2R loss, as it is commonly referred to) is directly related to the current required
by the load. In an effort to minimize line losses, the size of the wires is increased for
the lower-voltage case. This typically reduces the wire resistance by a factor of 2. In
the top circuit, assuming RS⁄2 = 0.01 Ω, the current required by the 10-kW load is
approximately 83.3 A while in the bottom circuit, with RS = 0.02 Ω, it is
approximately one-half as much (41.7 A). (You should be able to verify that the
approximate I2R losses are 69.4 W in the top circuit and 34.7 W in the bottom
circuit.) Limiting the I2R losses is important from the viewpoint of efficiency, besides
reducing the amount of heat generated in the wiring for safety considerations. Figure
6.59 shows some typical wiring configurations for a home. Note that several circuits
are wired and fused separately.Page 346



Figure 6.58 Line losses in 120- and 240-VAC circuits

Figure 6.59 A typical residential wiring arrangement

Today, most homes have three wire connections to their outlets. The outlets
appear as sketched in Figure 6.60. Then why are both the ground and neutral
connections needed in an outlet? The answer to this question is safety: The ground
connection is used to connect the chassis of the appliance to earth ground. Without
this provision, the appliance chassis could be at any potential with respect to ground,



possibly even at the hot wire’s potential if a segment of the hot wire were to lose
some insulation and come in contact with the inside of the chassis! Poorly grounded
appliances can thus be a significant hazard. Figure 6.61 illustrates schematically how
even though the chassis is intended to be insulated from the electric circuit, an
unintended connection (represented by the dashed line) may occur, for example,
because of corrosion or a loose mechanical connection. A path to ground might be
provided by the body of a person touching the chassis with a hand. In the figure, such
an undesired ground loop current is indicated by IG. In this case, the ground current
IG would pass directly through the body to ground and could be harmful.

Figure 6.60 A three-wire outlet

Figure 6.61 Unintended connection

In some cases the danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 6.62 describes the effects of electric
currents on an average male when the point of contact is dry skin. Particularly
hazardous conditions are liable to occur whenever the natural resistance to current
provided by the skin breaks down, as would happen in the presence of water. Thus,



the danger presented to humans by unsafe electric circuits is very much dependent on
the particular conditions—whenever water or moisture is present, the natural
electrical resistance of dry skin, or of dry shoe soles, decreases dramatically, and
even relatively low voltages can lead to fatal currents. Proper grounding procedures,
such as those required by the National Electrical Code, help prevent fatalities due to
electric shock. Page 347The ground fault circuit interrupter, labeled GFCI in
Figure 6.59, is a special safety circuit used primarily with outdoor circuits and in
bathrooms, where the risk of death by electric shock is greatest. Its application is best
described by an example.

Figure 6.62 Physiological effects of electric currents

Consider the case of an outdoor pool surrounded by a metal fence, which uses an
existing light pole for a post, as shown in Figure 6.63. The light pole and the metal
fence can be considered as forming a chassis. If the fence were not Page 348properly
grounded all the way around the pool and if the light fixture were poorly insulated
from the pole, a path to ground could easily be created by an unaware swimmer
reaching, say, for the metal gate. A GFCI provides protection from potentially lethal
ground loops, such as this one, by sensing both the hot-wire (B) and the neutral (W)
currents. If the difference between the hot-wire current IB and the neutral current IW
is more than a few milliamperes, then the GFCI disconnects the circuit nearly
instantaneously. Any significant difference between the hot and neutral (return-path)
currents means that a second path to ground has been created (by the unfortunate
swimmer, in this example) and a potentially dangerous condition has arisen. Figure
6.64 illustrates the idea. GFCIs are typically resettable circuit breakers, so that one
does not need to replace a fuse every time the GFCI circuit is enabled.



Figure 6.63 Outdoor pool

Figure 6.64 Use of a GFCI in a potentially hazardous setting

CHECK YOUR UNDERSTANDING

Use the circuits of Figure 6.58 to show that the I2R losses will be higher for a 120-V
service appliance than a 240-V service appliance if both have the same power usage
rating.

Answer: The 120 V rms circuit has double the losses of the 240 V rms
circuit for the same power rating.



6.7 POWER GENERATION AND DISTRIBUTION
We now conclude the discussion of power systems with a brief description of the
various elements of a power system. Electric power originates from a variety of
sources; in Chapter 13, electric generators are introduced as a means of producing
electric power from a variety of energy conversion processes. In general, electric
power may be obtained from hydroelectric, thermoelectric, geothermal, wind, solar,
and nuclear sources. The choice of a given source is typically dictated by the power
requirement for the given application, and by economic and environmental factors. In
this section, the structure of an AC power network, from the power-generating
station to the residential circuits discussed in Sections 6.6, is briefly outlined.

A typical generator will produce electric power at 18 kV rms, as shown in the
diagram of Figure 6.65. To minimize losses along the conductors, the output of the
generators is processed through a step-up transformer to achieve line voltages Page
349of hundreds of kilovolts (345 kV rms, in Figure 6.65). Without this
transformation, the majority of the power generated would be lost in the
transmission lines that carry the electric current from the power station.

Figure 6.65 Structure of an AC power distribution network

The local electric company operates a power-generating plant that is capable of
supplying several hundred megavolt-amperes (MVA) on a three-phase basis. For this
reason, the power company uses a three-phase step-up transformer at the generation
plant to increase the line voltage to around 345 kV rms. One can immediately see



1.

2.

that at the rated power of the generator (in megavolt-amperes) there will be a
significant reduction of current beyond the step-up transformer.

Beyond the generation plant, an electric power network distributes energy to
several substations. This network is usually referred to as the power grid. At the
substations, the voltage is stepped down to a lower level (10 to 150 kV rms,
typically). Some very large loads (e.g., an industrial plant)may be served directly
from the power grid although most loads are supplied by individual substations in the
power grid. At the local substations (one of which you may have seen in your own
neighborhood), the voltage is stepped down further by a three-phase step-down
transformer to 4,800 V. These substations distribute the energy to residential and
industrial customers. To further reduce the line voltage to levels that are safe for
residential use, step-down transformers are mounted on utility poles. These drop the
voltage to the 120/240-V three-wire single-phase residential service discussed in
Sections 6.6. Industrial and commercial customers receive 460- and/or 208-V three-
phase service.

Conclusion
Chapter 6 introduces the essential elements that permit the analysis of AC power
systems. AC power is essential to all industrial activities and to the conveniences we
are accustomed to in residential life. Virtually all engineers will be exposed to AC
power systems in their Page 350careers, and the material presented in this chapter
provides all the necessary tools to understand the analysis of AC power circuits.
Upon completing this chapter, you should have mastered the following learning
objectives:

Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor
of a complex load. The power dissipated by a load in an AC circuit consists of
the sum of an average and a fluctuating component. In practice, the average
power is the quantity of interest.
Learn complex power notation; compute apparent, real, and reactive power for
complex loads. Draw the power triangle, and compute the capacitor size
required to perform power factor correction on a load. AC power can best be
analyzed with the aid of complex notation. Complex power S is defined as the
product of the phasor load voltage and the complex conjugate of the load
current. The real part of S is the real power actually consumed by a load (that for
which the user is charged); the imaginary part of S is called the reactive power
and corresponds to energy stored in the circuit—it cannot be directly used for
practical purposes. Reactive power is quantified by a quantity called the power
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6.1

6.2

6.3
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c.

d.

6.4
a.

b.

c.

factor, and it can be minimized through a procedure called power factor
correction.
Analyze the ideal transformer; compute primary and secondary currents and
voltages and turns ratios. Calculate reflected sources and impedances across
ideal transformers. Understand maximum power transfer. Transformers find
many applications in electrical engineering. One of the most common is in
power transmission and distribution, where the electric power generated at
electric power plants is stepped “up” and “down” before and after transmission,
to improve the overall efficiency of electric power distribution.
Learn three-phase AC power notation; compute load currents and voltages for
balanced wye and delta loads. AC power is generated and distributed in three-
phase form. Residential services are typically single-phase (making use of only
one branch of the three-phase lines) while industrial applications are often
served directly by three-phase power.
Understand the basic principles of residential electrical wiring, of electrical
safety, and of the generation and distribution of AC power.

HOMEWORK PROBLEMS
Sections 6.1: Instantaneous and Average Power

The heating element in a soldering iron has a resistance of 20 Ω. Find the
average power dissipated in the soldering iron if it is connected to a voltage
source of 90 V rms.

A coffeemaker has a rated power of 1,000 W at 240 V rms. Find the resistance
of the heating element.

A current source i(t) is connected to a 50-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is

7 cos 100t A
7 cos(100t − 30°) A

7 cos 100t − 3 cos(100t − 60°) A

7 cos 100t − 3 A

Find the rms value of each of the following periodic currents:

cos 200t + 3 cos 200t
cos 10t + 2 sin 10t
cos 50t + 1



d.

6.5

6.6

6.7

6.8
a.

b.

c.

6.9

a.

cos 30t + cos(30t + π⁄6)

A current of 2.5 A through a neon light advertisement is supplied by a 115 V
rms voltage source. The current lags the voltage by 30°. Find the impedance of
the light, the real power dissipated by it, and its power factor.

Compute the average power dissipated by the load seen by the voltage source
in Figure P6.6. Let  and C = 200 μF.
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Figure P6.6

A drilling machine is driven by a single-phase induction machine connected to
a 110 V rms supply. Assume that the machining operation requires 1 kW, that
the tool machine has 90 percent efficiency, and that the supply current is 14 A
rms with a power factor of 0.8. Find the AC machine efficiency.

Given the waveform of a voltage source shown in Figure P6.8, find:

The steady DC voltage that would cause the same heating effect across a
resistance.

The average current supplied to a 10-Ω resistor connected across the
voltage source.

The average power supplied to a 1-Ω resistor connected across the voltage
source.

Figure P6.8

A current source i(t) is connected to a 100-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is:

4 cos(100t) A



b.

c.

d.

6.10

6.11

6.12

a.

b.

c.

d.

6.13

a.

b.

c.

d.

4 cos(100t − 50°) A

4 cos(100t − 3) cos(100t − 50°) A

4 cos(100t − 3) A

Find the rms value of each of the following periodic currents:

cos(377t) + cos(377t) A
cos(2t) + sin (2t) A
cos(377t) + 1 A

cos(2t) + cos(2t + 135°) A

cos(2t) + cos(3t) A

Sections 6.2: Complex Power
A current of 10 A rms results when a single-phase circuit is placed across a
220 V rms source. The current lags the voltage by 60°. Find the power
dissipated by the circuit and the power factor.

A network is supplied by a 120 V rms, 60-Hz voltage source. An ammeter and
a wattmeter indicate that 12 A rms is drawn from the source and 800 W are
consumed by the network. Determine:

The network power factor.

The network phase angle.

The network impedance.

The equivalent resistance and reactance of the network.

For the following numeric values, determine the average power, P, the reactive
power, Q, and the complex power, S, of the circuit shown in Figure P6.13.
Note: Phasor quantities are rms.



6.14

a.

b.

c.

d.

6.15

a.

b.

c.

d.

6.16

a.

b.

Figure P6.13

For the circuit of Figure P6.13, determine the power factor for the load Zo and
determine whether it is leading or lagging for the following conditions:

υS(t) = 679 cos(ωt + 15°) Vi o(t) = 20 cos(ωt + 47°) A

Zo = (48 + j16) Ω

For the circuit of Figure P6.13, determine whether the load is capacitive or
inductive, assuming:Page 352

pf = 0.87 (leading)

pf = 0.42 (leading)

For the circuit shown in Figure P6.16, assume C = 265 μF, L = 25.55 mH, and
R = 10 Ω. Find the instantaneous real and reactive power if:

υS(t) = 120 cos(377t) V (i.e., the frequency is 60 Hz)

υS(t) = 650 cos(314t) V (i.e., the frequency is 50 Hz)

Figure P6.16



6.17

a.

b.

c.

d.

e.

6.18

6.19

6.20

A load impedance, Zo = 10 + j3 Ω, is connected to a source with line resistance
equal to 1 Ω, as shown in Figure P6.17. Calculate the following values:

The average power delivered to the load.

The average power absorbed by the line.

The apparent power supplied by the generator.

The power factor of the load.

The power factor of line plus load.

Figure P6.17

Sections 6.3: Power Factor Correction
A single-phase motor draws 220 W at a power factor of 0.8 lagging when
connected across a 240 V rms, 60-Hz source. A capacitor is connected in
parallel with the load to produce a unity power factor. Determine the required
capacitance.

The networks seen by the voltage sources in Figure P6.19 have unity power
factor. Determine CP and CS.

Figure P6.19

A 1,000-W electric motor is connected to a 120 Vrms, 60-Hz source. The power
factor seen by the source is 0.8, lagging. To correct the pf to 0.95 lagging, a
capacitor is placed in parallel with the motor. Calculate the current drawn from
the source with and without the capacitor connected. Determine the value of
the capacitor required to make the correction.



6.21

a.

b.

c.

d.

6.22
a.

b.

The motor inside a blender can be modeled as a resistance in series with an
inductance, as shown in Figure P6.21. The wall socket source is modeled as an
ideal 120 V rms voltage source in series with a 2-Ω output resistance. Assume
the source frequency is ω = 377 rad/s.

What is the power factor of the motor?

What is the power factor seen by the voltage source?

What is the average power, PAV, consumed by the motor?

What value of capacitor when placed in parallel with the motor will
change the power factor seen by the voltage source to 0.9 lagging?

Figure P6.21
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For the circuit shown in Figure P6.22, find:

The Thévenin equivalent network seen by the load.

The power dissipated by the load resistor.



6.23

a.

b.

c.

6.24

a.

b.

c.

d.

6.25

a.

b.

c.

d.

Figure P6.22

For the following numerical values, determine the capacitance to be placed in
parallel with the load Zo shown in Figure P6.13 that will result in a unity
power factor seen by the voltage source. Assume ω = 377 rad/s.

For the circuit of Figure P6.13, determine the power factor of the load for each
case listed below. Is it leading or lagging?

Zo = (20 + j5) Ω

Zo = (20 − j5) Ω

For the circuit of Figure P6.13, determine whether the load Zo is capacitive or
inductive, if:

its power factor is pf = 0.76 lagging.

its power factor is pf = 0.5 (leading).



6.26

6.27

a.

b.

6.28

a.

b.

c.

6.29

a.

Find the real and reactive power supplied by the voltage source shown in
Figure P6.26 for ω = 5 rad/s and ω = 15 rad/s. Let υS = 15 cos(ωt) V, R = 5 Ω,
C = 0.1 F, L1 = 1 H, L2 = 2 H.

Figure P6.26

In Figure P6.27, assume 
 Find:

The amplitude of the current supplied by each source.

The total real power supplied by each source.

Figure P6.27

For the circuit shown in Figure P6.28, assume 
 Calculate:

The capacitance C and the inductance L.

The power factor seen by the voltage source.

The new capacitance required to correct that power factor to unity.

Figure P6.28
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The load Zo shown in Figure P6.29 consists of a 20-Ω resistor in series with a
0.01-H inductor. Assuming  Calculate:

The apparent power supplied by the voltage source.



b.

c.

6.30

6.31

6.32

6.33

The apparent power delivered to the load.

The power factor of the load.

Figure P6.29

Calculate the real and reactive power of the load between terminals a and b in
Figure P6.30. Assume  and XL = 5 Ω.

Figure P6.30

Calculate the apparent power, real power, and reactive power supplied by the
voltage source shown in Figure P6.31. Draw the power triangle. Assume 

 and L = 0.001 H.

Figure P6.31

Refer to Problem 6.31 and determine the capacitance needed in parallel with
the voltage source to correct the power factor seen by the source to 0.95. Draw
the power triangle.

A single-phase motor is modeled as a resistor R in series with an inductor L as
shown in Figure P6.33. The capacitor corrects the power factor between
terminals a and b to unity. Assume the meters shown are ideal and f = 50 Hz, V
= 220 V rms, I = 20 A rms, and I1 = 25 A rms. Find the capacitor value.



6.34

6.35

a.

b.

c.

Figure P6.33

Suppose that the electricity in your home has gone out on a hot, humid summer
day and the power company will not be able to fix the problem for several
days. The freezer in the basement contains $300 worth of food that you cannot
afford to let spoil. You would also like to keep one window air conditioner
running, as well as run the refrigerator in your kitchen. When these appliances
are on, they draw the following currents (all values are rms):

Air conditioner: 9.6 A rms @ 120 V rms

      pf = 0.90 lagging

Freezer: 4.2 A rms @ 120 V rms

      pf = 0.87 lagging

Refrigerator: 3.5 A rms @ 120 V rms

      pf = 0.80 lagging

In the worst-case scenario, how much power must an emergency generator
supply?

The French TGV high-speed train absorbs 11 MW at 300 km/h (186 mi/h).
The power supply module shown in Figure P6.35 consists of two 25-kV rms
single-phase AC power stations connected at the same overhead line, one at
each end of the module. For the return circuits, the rail is used. The train is also
designed to operate at a low speed with 1.5-kV DC in railway stations or under
the old electrification lines. The natural (average) power factor in the AC
operation is 0.8. Assume that the equivalent specific resistance of the overhead
line is 0.2 Ω/km and that the rail resistance can be neglected. Find:

A simple circuit model for the system.

The locomotive’s current in the condition of a 10 percent voltage drop.

The reactive power supplied by the power stations.



d.

e.

f.

6.36

6.37

a.

b.

6.38

The supplied real power, overhead line losses, and maximum distance
between two power stations supplied in the condition of a 10 percent
voltage drop when the train is located at the half-distance between the
stations.Page 355

Overhead line losses in the condition of a 10 percent voltage drop when
the train is located at the half-distance between the stations, assuming pf =
1. (The French TGV is designed with a state-of-the-art power
compensation system.)

The maximum distance between the two power stations supplied in the
condition of a 10 percent voltage drop when the train is located at the half-
distance between the stations, assuming the DC (1.5-kV) operation at one-
quarter power.

Figure P6.35

An industrial assembly hall is continuously lit by one hundred 40-W mercury
vapor lamps in parallel and supplied by a 120 V rms, 60-Hz source. The power
factor seen by the source is 0.65, which is so low that a 25 percent penalty is
applied at billing. If the average price of 1 kWh is $0.05 and the average cost
of a capacitor is $50 per mF, compute how long it will take before the billing
penalty equals the cost of the capacitor needed to correct the power factor to
0.85.

Refer to Problem 6.36 and assume that each lamp is now available with a
compensating capacitor in parallel with the original lamp. Find:

The compensating capacitor value for unity power factor seen by the
source.

The maximum number of additional lamps that can be installed without
exceeding the original current supplied by the source when using
uncompensated lamps.

The voltage and current supplied by a source to a load are:



a.

b.

c.

6.39

6.40

a.

b.

c.

6.41

a.

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Determine the real power dissipated and the reactive power stored in each of
the impedances shown in Figure P6.39. Assume:

Figure P6.39

The following are supplied by a source to a load:

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Sections 6.4: Transformers
A center-tapped transformer has the schematic representation shown in Figure
P6.41. The primary-side voltage is stepped down to two secondary-side
voltages. Assume that each secondary supplies a 7-kW resistive load and that
the primary is connected to 100 V rms. Find:

The primary power.



b.

6.42

a.

b.

6.43

a.

b.

6.44
a.

b.

c.

6.45

a.

The primary current.

Figure P6.41
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A center-tapped transformer has the schematic representation shown in Figure
P6.41. The primary-side voltage is stepped down to a secondary-side voltage 
sec by a ratio of n:1. On the secondary side, 

What must n be if  and we desire 

For the circuit shown in Figure P6.43, assume that  and Ro
= 12 Ω. Assume an ideal transformer. Find:

The equivalent resistance seen by the voltage source.

The power Psource supplied by the voltage source.

Figure P6.43

Refer to Problem 6.43 and find:

The power Pload consumed by Ro.

The installation efficiency Pload⁄Psource.

The load Ro that results in maximum power transfer to the load.

An ideal transformer is rated to deliver 460 kVA at 380 V rms to a customer, as
shown in Figure P6.45.

How much current can the transformer supply to the customer?



b.

c.

d.

e.

6.46

a.

b.

c.

d.

6.47

If the customer’s load is purely resistive (i.e., if pf = 1), what is the
maximum power that the customer can receive?

If the customer’s power factor is 0.8 lagging, what is the maximum usable
power the customer can receive?

What is the maximum power if the pf is 0.7 lagging?

If the customer requires 300 kW to operate, what is the minimum power
factor with the given size transformer?

Figure P6.45

For the ideal transformer shown in Figure P6.46, assume υin(t) = 240 cos(377t)
V, Rin = 50 Ω, Ro = 20 Ω, and the step-down turns ratio is set by n = 3.
Determine:

The primary current iin.

The secondary voltage υ o.

The secondary power 

The installation efficiency Pin⁄Po, where 

Figure P6.46

For Figure P6.47, assume the transformer is ideal. Find the step-down turns
ratio M = n that provides maximum power transfer to Ro. Let Rin = 1,200 Ω, Ro
= 100 Ω, and υin(t) = Vpk cos(ωt).



6.48

6.49

6.50

Figure P6.47

Consider the 8-Ω resistor shown in Figure P6.48 to be the load. Assume 
 and a variable turns ratio n. What value of n results in maximum

power (a) dissipated by the load? (b) supplied by the voltage source? What
value of n results in maximum power transfer efficiency from source to load?
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Figure P6.48

Assume the transformer shown in Figure P6.49 delivers 70 A rms at 90 V rms
to a resistive load. What is the power transfer efficiency between voltage
source and load? Let RS = 2 Ω, 

Figure P6.49

A method for determining the equivalent network of a non-ideal transformer
consists of two tests: the open-circuit test and the short-circuit test. The open-
circuit test, shown in Figure P6.50(a), is usually done by applying rated
voltage to the primary side of the transformer while leaving the secondary side
open.

The current into the primary side is measured, as is the power dissipated. The
short-circuit test, shown in Figure P6.50(b), is performed by increasing the



primary voltage until rated current is going into the transformer while the
secondary side is short-circuited. The current into the transformer, the applied
voltage, and the power dissipated are measured.

The equivalent circuit of a transformer is shown in Figure P6.50(c), where rw
and Lw represent the winding resistance and inductance, respectively, and rc
and Lc represent the losses in the core of the transformer and the inductance of
the core. The ideal transformer is also included in the model.

With the open-circuit test, we may assume that  Then all the
current that is measured is directed through the parallel combination of rc and
Lc. We also assume that ∣rc∣ ∣ jωLc∣ is much greater than rw + jωLw.
Using these assumptions and the open-circuit test data, we can find the
resistance rc and the inductance Lc.

In the short-circuit test, we assume that  is zero, so that the voltage on the
primary side of the ideal transformer is also zero, causing no current through
the r c∥Lc parallel combination. Using this assumption with the short-circuit
test data, we are able to find the resistance rw and inductance Lw.

The following test data was measured by the meters indicated in Figure
P6.50(a) and (b):

Both tests were made at ω = 377 rad/s. Use the data to determine the
equivalent network of the non-ideal transformer.



6.51

6.52

Figure P6.50

Use the methods outlined in Problem 6.50 and the following data to find the
equivalent network of a nonideal transformer.

Figure P6.51

The transformer is rated at 460 kVA, and tests are performed at 60 Hz.Page
358

A method of thermal treatment for a steel pipe is to heat the pipe by the Joule
effect, caused when a current is directed through the pipe. In most cases, a low-
voltage, high-current transformer is used to deliver the current through the
pipe. In this problem, we consider a single-phase transformer at 220 V rms,
which delivers 1.2 V rms. Because of the pipe’s resistance variation with
temperature, a secondary voltage regulation is needed in the range of 10
percent, as shown in Figure P6.52. The voltage regulation is obtained with five
different slots in the primary winding (high-voltage regulation). Assuming that
the secondary coil has two turns, find the number of turns for each slot.



6.53

a.

b.

c.

6.54

a.

b.

6.55

a.

b.

c.

d.

Figure P6.52

Refer to Problem 6.52 and assume a pipe resistance of 2 × 10−4 Ω and a
secondary resistance (wire leads + slide contacts) of 5 × 10−5 Ω. The primary
current is 28.8 A rms and the power factor seen by the 220 V rms source is
0.91. Find:

The slot number.

The secondary reactance.

The power transfer efficiency.

A single-phase transformer used for street lighting (high-pressure sodium
discharge lamps) converts 6 kV rms to 230 V rms with an efficiency of 0.95.
Assuming the power factor seen by the high voltage source is 0.8 and the
primary apparent power is 30 kVA, find:

The secondary current.

The transformer turns ratio N.

The transformer shown in Figure P6.55 has several sets of windings on the
secondary side. The windings have the following turns ratios:

: N = 1⁄15

: N = 1⁄4

: N = 1⁄12

: N = 1⁄18
If  find and draw the connections that will allow you to produce

the  following secondary voltages:



a.

b.

c.

d.

6.56

24.67∠0° V rms

36.67∠0° V rms

18∠0° V rms

54.67∠180° V rms

Figure P6.55

The circuit in Figure P6.56 shows the use of ideal transformers for impedance
matching. You have a limited choice of turns ratios among available
transformers. Suppose you can find transformers with turns ratios of 2:1, 7:2,
120:1, 3:2, and 6:1. If Zo is 475∠−25° Ω and Zab must be 267∠−25°, find the
combination of transformers that will provide this Page 359impedance. (You
may assume that polarities are easily reversed on these transformers.)

Figure P6.56



6.57

6.58

6.59

Before cable TV was generally available, TV networks broadcast their signals
wirelessly. Large antennas were often installed atop residential homes to
improve the reception of these signals. The impedance of the wire connecting
the roof antenna to the TV set was typically 300 Ω, as shown in Figure
P6.57(a). However, a typical TV had a 75-Ω impedance connection, as shown
in Figure P6.57(b). To achieve maximum power transfer from the antenna to
the television set, an ideal transformer was placed between the antenna and the
TV, as shown in Figure P6.57(c). What is the turns ratio, N = 1⁄n, needed to
obtain maximum power transfer?

Figure P6.57

Sections 6.5: Three-Phase Power
The magnitude of the phase voltage of a balanced three-phase wye system is
208 V rms. Express each phase and line voltage in both polar and rectangular
coordinates.

The phase currents in a four-wire wye-connected load, such as that shown in
Figure 6.49, are:

Determine the current in the neutral wire.



6.60

a.

b.

6.61

6.62

Each voltage source shown in Figure P6.60 has a relative phase difference of
2π⁄3.

Find  where  and 

Compare the results of part a with the calculations:

Figure P6.60

For the three-phase network shown in Figure P6.61, find the current in each
wire and the real power consumed by the wye network. Let 

 and 

Page 360

Figure P6.61

For the three-phase network shown in Figure P6.62, find the current in each
wire and the real power consumed by the wye network. Let 

 and 



6.63

a.

b.

6.64

a.

b.

6.65

a.

b.

Figure P6.62

A three-phase steel-treatment electric oven has a phase resistance of 10 Ω and
is connected at three-phase 380 V rms AC. Compute

The current through the resistors in wye and delta connections.

The power of the oven in wye and delta connections.

A naval in-board synchronous generator has an apparent power of 50 kVA and
supplies a three-phase network of 380 V rms. Compute the phase currents, the
real power, and the reactive power if:

The power factor is 0.85.

The power factor is 1.

The three-phase circuit shown in Figure P6.65 has a balanced wye source but
an unbalanced wye load.

Determine the current through Z1, using the following methods:

Mesh analysis.

Superposition.

Figure P6.65



6.66

6.67

6.68

Determine the current through R shown in Figure P6.66. Assume: 

Figure P6.66

The circuit of Figure P6.67 has a balanced three-phase wye source but an
unbalanced delta load. Determine the current through each impedance.

Figure P6.67
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If we model each winding of a three-phase motor like the circuit shown in
Figure P6.68(a) and connect the windings as shown in Figure P6.68(b), we
have the three-phase circuit shown in Figure P6.68(c). The motor can be
constructed so that R1 = R2 = R3 and L1 = L2 = L3, as is the usual case. If we
connect the motor as shown in Figure P6.68(c), find the currents 
assuming that the resistances are 40 Ω each and each inductance is 5 mH. The
frequency of each source is 60 Hz.



6.69
a.

b.

c.

6.70

Figure P6.68

With reference to the motor of Problem 6.67,

How much power (in watts) is delivered to the motor?

What is the motor’s power factor?

Why is it common in industrial practice not to connect the ground lead to
motors of this type?

In general, a three-phase induction motor is designed for wye connection
operation. However, for short-time operation, a delta connection can be used at
the nominal wye voltage. Find the ratio between the power delivered to the
same motor in the wye and delta connections.



6.71

a.

b.

6.72

a.

b.

c.

d.

A residential four-wire system supplies power at 240 V rms to the following
single-phase appliances: On the first phase, there are ten 60-W bulbs. On the
second phase, there is a 1-kW vacuum cleaner with a power factor of 0.9. On
the third phase, there are ten 23-W compact fluorescent lamps with a power
factor of 0.61. Find:

The current in the neutral wire.

The real, reactive, and apparent power for each phase.

The electric power company is concerned with the loading of its transformers.
Since it is responsible for a large number of customers, it must be certain that it
can supply the demands of all customers. The power company’s transformers
will deliver rated kVA to the secondary load. However, if the demand
increased to a point where greater than rated current were required, the
secondary voltage would have to drop below rated value. Also, the current
would increase, and with it the I2R losses (due to winding resistance), possibly
causing the transformer to overheat. Unreasonable current demand could be
caused, for example, by excessively low power factors at the load.

The customer, on the other hand, is not greatly concerned with an inefficient
power factor, provided that sufficient power reaches the load. To make the
customer more aware of power factor considerations, the power company may
install a penalty on the customer’s bill. A typical penalty–power factor chart is
shown in Table 6.3. Power factors below 0.7 are not permitted. A 25 percent
penalty will be applied to any billing after two consecutive months in which
the customer’s power factor has remained below 0.7.Page 362

The wye-wye circuit shown in Figure P6.72 is representative of a three-phase
motor load.

Find the total power supplied to the motor.

Find the power converted to mechanical energy if the motor is 80 percent
efficient.

Find the power factor.

Does the company risk facing a power factor penalty on its next bill if all
the motors in the factory are similar to this one?



6.73

a.

b.

6.74

6.75

Figure P6.72

To correct the power factor problems of the motor in Problem 6.72, the
company has decided to install capacitors as shown in Figure P6.73.

What capacitance must be installed to achieve a unity power factor if the
line frequency is 60 Hz?

Repeat part a if the power factor is to be 0.85 lagging.

Figure P6.73

Find the apparent power and the real power delivered to the load in the Y-Δ
circuit shown in Figure P6.74. What is the power factor?

Figure P6.74

The circuit shown in Figure P6.75 is a Y-Δ-Y connected three-phase circuit.
The primaries of the transformers are wye-connected, the secondaries are
delta-connected, and the load is wye-connected. Find the currents 



6.76

a.

b.

6.77

Figure P6.75

A three-phase motor is modeled by the wye-connected circuit shown in Figure
P6.76. At t = t1, a line fuse is blown (modeled by the switch). Find the line
currents  and the power dissipated by the motor in the following
conditions:

t ≪ t1

t ≫ t1
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Figure P6.76

For the circuit shown in Figure P6.77, find the currents  and the real
power dissipated by the load.



Figure P6.77
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C H A P T E R
7

OPERATIONAL AMPLIFIERS

mplification and switching are the two fundamental operations carried out
by diodes and transistors, which are themselves the two fundamental
electronic components. Of course, many specialized electronic devices
have been developed from diodes and transistors. One of these is the

operational amplifier, or op-amp, the mastery of which is essential to any
practical application of electronics. This chapter presents the general features of
an ideal amplifier and the specific features of the operational amplifier and
various popular and powerful circuits based upon it. The effects of feedback in
amplifier circuits are discussed as well as the gain and frequency response of the
operational amplifier. The models presented in this chapter are based on concepts
that have already been explored at length in earlier chapters, namely, Thévenin
and Norton equivalent circuits and frequency response. The chapter is designed to
provide both a thorough analytical and practical understanding of the operational
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amplifier so that a student can successfully use it in practical amplifier circuits
found in many engineering applications.Page 366

 Learning Objectives
Students will learn to...

Understand the properties of ideal amplifiers and the concepts of gain, input
impedance, output impedance, and feedback. Sections 7.1.
Understand the difference between open-loop and closed-loop op-amp
configurations; and compute the gain of (or complete the design of) simple
inverting, noninverting, summing, and differential amplifiers using ideal op-
amp analysis. Analyze more advanced op-amp circuits, using ideal op-amp
analysis; and identify important performance parameters in op-amp data
sheets. Sections 7.2.
Analyze and design simple active filters. Analyze and design ideal integrator
and differentiator circuits. Sections 7.3–7.4.
Understand the principal physical limitations of an op-amp. Sections 7.5.

7.1 IDEAL AMPLIFIERS
Amplifiers are an essential aspect of many electronic applications. Perhaps the
most familiar use of an amplifier is to convert the low-voltage, low-power signal
from a digital audio player (e.g., iPhone or MP3 player) to a level suitable for
driving a pair of earbuds or headphones, as shown in Figure 7.1. Amplifiers have
important applications in practically every field of engineering because the vast
majority of transducers and sensors used for measurement produce electrical
signals, which are then amplified, filtered, sampled, and processed by analog and
digital electronic instrumentation. For example, mechanical engineers use
thermistors, accelerometers, and strain gauges to convert temperature,
acceleration, and strain into electrical signals. These signals must be amplified
prior to transmission and then filtered (a function carried out by amplifiers) prior
to sampling the data in preparation for producing a digital version of the original
analog signal. Other, less obvious, functions such as impedance isolation are also
performed by amplifiers. It should now be clear that amplifiers do more than
simply produce an enlarged replica of a signal although that function is certainly
very important. This chapter explores the general features of amplifiers and
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focuses on the characteristics and applications of a particularly important
integrated-circuit amplifier, the operational amplifier.

Figure 7.1 Typical digital audio player (Jim Kearns)

Ideal Amplifier Characteristics
The simplest model for an amplifier is depicted in Figure 7.2, where a signal υS is
amplified by a constant factor G, called the voltage gain of the amplifier. Ideally,
the input impedance of the amplifier is infinite such that υ in = υ S; if its output
impedance is zero, υo will be determined by the amplifier independent of R such
that:

Figure 7.2 Amplifier between source and load

Note that the input seen by the amplifier is a Thévenin source (υS in series with
RS), while the output seen by the amplifier is a single equivalent resistance R.

A more realistic (but still quite simple) amplifier model is shown in Figure
7.3. In this figure the concepts of input and output impedance of the amplifier are
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incorporated as single resistances Rin and Rout, respectively. That is, from the
perspective Page 367of the load R the amplifier acts as a Thévenin source (Aυ in
in series with Rout), while from the perspective of the external source (υS in series
with RS) the amplifier acts as an equivalent resistance Rin. The constant A is the
multiplier associated with the dependent (controlled) voltage source and is known
as the open-loop gain.1

Figure 7.3 Simple voltage amplifier model

Using the amplifier model of Figure 7.3 and applying voltage division, the
input voltage to the amplifier is now:

The output voltage of the amplifier can also be found by applying voltage
division, where:

Substitute for υin and divide both sides by υS to obtain:

which is the overall voltage gain from υS to υo. The voltage gain G of the
amplifier itself is:

For this model, the voltage gain G is dependent upon the external resistance
R, which means that the amplifier performs differently for different loads.
Moreover, the input voltage υin to the amplifier is a modified version of υS.
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Neither of these results seem desirable. Rather, it stands to reason that the gain of
a “quality” amplifier would be independent of its load and would not impact its
source signal. These attributes are achieved when Rout ≪ R and Rin ≫ RS. In the
limit that Rout → 0:

such that:

Also, in the limit that Rin → ∞:

such that

In general, a “quality” voltage amplifier will have a very small output impedance
and a very large input impedance.Page 368

Input and Output Impedance
In general, the input impedance Rin and the output impedance Rout of an amplifier
are defined as:

where υOC is the open-circuit voltage and iSC is the short-circuit current at the
output of the amplifier. An ideal voltage amplifier has zero output impedance and
infinite input impedance so that the amplifier does not suffer from loading effects
at its input or output terminals. In practice, voltage amplifiers are designed to
have large input impedance and small output impedance.

It is a worthwhile exercise to show that an ideal current amplifier has zero
input impedance and infinite output impedance. Also, as was suggested in
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Chapter 6, an ideal power amplifier is designed so that its input impedance
matches its source network and its output impedance matches its load impedance.

Feedback
Feedback, which is the process of using the output of an amplifier to reinforce or
inhibit its input, plays a critical role in many amplifier applications. Without
feedback an amplifier is said to be in open-loop mode; with feedback an amplifier
is said to be in closed-loop mode. The output of the amplifier model shown in
Figure 7.3 does not affect its input (because there is no path from output to input),
so feedback is not present, and the model is open loop. As suggested earlier, the
most basic characteristic of an amplifier is its gain, which is simply the ratio of
the output to the input. The open-loop gain A of a practical amplifier (e.g., an
operational amplifier) is usually very large, whereas the closed-loop gain G is a
reduced version of the open-loop gain. The relationship between A and G is
developed and explored in the rest of this chapter.

There are two types of feedback possible in closed-loop mode: positive
feedback, which tends to reinforce the amplifier input, and negative feedback,
which tends to inhibit the amplifier input. Both positive and negative feedback
have useful applications; however, negative feedback is by far the most common
type of feedback found in applications. In general, negative feedback causes the
large open-loop gain A of an amplifier to be exchanged for a smaller closed-loop
gain G. While this exchange may seem undesirable at first glance, several key
benefits accompany the exchange. These benefits to the amplifier are:

Decreased sensitivity to variations in circuit and environmental parameters,
most notably temperature.
Increased bandwidth.
Increased linearity.
Increased signal-to-noise ratio.

In addition, negative feedback is implemented by establishing one or more paths
from the output to the input of the amplifier. The impedance of each feedback
path can be adjusted to produce improved input and output impedances of the
overall amplifier circuit. These input and output impedances are key
characteristics for understanding the loading effects of other circuits attached to
an amplifier.Page 369

Figure 7.4 shows a signal-flow diagram of an amplifier situated between a
source and a load. The arrows indicate the direction of signal flow. The signals
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shown are us, uf , e, and y. The output signal of each rectangle is a multiple of its
input signal, where the two constants, A and β, are both positive such that:

Figure 7.4 Signal-flow diagram of generic amplifier

The circle sums its inputs, us and uf, to produce one output, e. The polarity signs
(±) indicate that us and uf make positive and negative contributions to the sum,
respectively. That is:

Because the feedback signal uf makes a negative contribution to the sum, the
signal flow diagram of Figure 7.4 is said to employ negative feedback.

equations 7.11 and 7.12 can be combined to yield:

which can be rearranged to solve for y. Then, the closed-loop gain of the
amplifier is:

The quantity Aβ is known as the loop gain. Implicit in the derivation of equations
7.14 is that the behavior of the blocks within the amplifier is not affected by the
other blocks nor by the external source and load. In other words, the blocks are
ideal such that loading effects are zero.

Two important observations can be made at this point:
The closed-loop gain G depends upon β, which is known as the feedback
factor.
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Since Aβ is positive, the closed-loop gain G is smaller than the open-loop
gain A.

Furthermore, for most practical amplifiers, Aβ is quite large such that:

This result is particularly important (and probably surprising!) because it
indicates that the closed-loop gain G of the amplifier is largely independent of the
open-loop gain A, as long as Aβ ≫ 1, and that G is, in turn, determined largely by
the feedback factor, β.Page 370

When Aβ ≫ 1, the closed-loop gain G of an amplifier is determined largely
by the feedback factor, β.

Furthermore, equations 7.14 can be used to find the ratio of the two inputs, us
and uf.

Thus, when Aβ ≫ 1, another important result is:

This result indicates that when the loop gain Aβ is large, the difference between
the input signal us and the feedback signal uf is driven toward zero.

When Aβ ≫ 1, the difference between the input signal us and the feedback
signal uf is driven toward zero.

Both of the results of equations 7.15 and 7.17 will show up repeatedly in the
analysis of operational amplifier circuits in closed-loop mode.

Benefits of Negative Feedback
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As mentioned in the previous section, negative feedback provides several benefits
in exchange for a reduced gain. For example, take the derivative of both sides of
equations 7.14 to find:

Divide the left side by G and the right side by A⁄(1 + Aβ) to obtain:

When Aβ ≫ 1, this result indicates that the percentage change in G due to a-  
percentage change in A is relatively small. In other words, the closed-loop gain G
is relatively insensitive to changes in the open-loop gain A.

When Aβ ≫ 1, the closed-loop gain G is relatively insensitive to changes in
the open-loop gain A.

For any amplifier, the open-loop gain A is a function of frequency. For
example, the open-loop gain A(ω) of an op-amp is characterized by a simple pole
such that:

Page 371where ωo is its 3-dB break frequency. The Bode magnitude
characteristic plot is shown in Figure 7.5. Equations 7.20 can be substituted into
equations 7.14 to obtain:

Figure 7.5 Typical amplifier Bode magnitude characteristic



(7.21)

(7.22)

Multiply the numerator and denominator on the right side of equations 7.21 by 1 
+ jω⁄ωo and then factor out 1 + A0 β from the denominator to obtain:

where ωg = ωo (1 + A0 β). Thus, the closed-loop 3-dB break frequency is (1 + A0
β) larger than the open-loop 3-dB break frequency.

The closed-loop 3-dB break frequency is (1 + A0 β) larger than the open-
loop 3-dB break frequency.

Likewise, if the amplifier is characterized by a simple zero, its 3-dB break
frequency will be (1 + A0 β) smaller than the open-loop 3-dB break frequency. It
is a worthwhile exercise to work out this result.

Similar analyses can be performed to show the increased linearity and
increased signal-to-noise ratio resulting from negative feedback. All these
benefits are acquired at the expense of amplifier gain. Finally, all of the features
of a generic amplifier with negative feedback outlined in this section also occur in
closed-loop amplifiers constructed using operational amplifiers and other basic
components.

7.2 THE OPERATIONAL AMPLIFIER
An operational amplifier (op-amp) is an integrated circuit (IC) that contains a
large number of microscopic electrical and electronic components integrated on a
single silicon wafer. An op-amp can be used in conjunction with other common
components to create circuits that perform amplification and filtering, as well as
mathematical operations, such as addition, subtraction, multiplication,
differentiation, and integration, on electrical signals. Op-amps are found in most
measurement and instrumentation applications, serving as a versatile building
block for many applications.

The behavior of an op-amp is well described by fairly simple models, which
permit an understanding of its effects and applications without delving into



its internal details. Its simplicity and versatility make the op-amp an appealing
electronic device with which to begin understanding electronics and integrated
circuits. The lower right portion of Figure 7.6 shows a standard single op-amp IC
chip pin layout. It has two input pins (2 and 3) and one output pin (6). Also notice
the two DC power supply pins (4 and 7) that provide external power to the chip
and thus enable the op-amp. Operational amplifiers are active devices; that is,
they need an external power source to function. Pin 4 is held at a low DC voltage
V S −, while pin 7 is held at a high DC voltage V S +. These two DC voltages are
well below and above, respectively, the op-amp’s reference voltage and bound the
output of the op-amp.Page 372

Figure 7.6 (a) Small-signal op-amp model; (b) simplified op-amp
circuit symbol; (c) generic op-amp IC schematic; (d) single op-amp IC
chip pin layout

The upper left portion of Figure 7.6 shows the so-called small-signal, low-
frequency model of an op-amp, which is exactly the same amplifier model shown
in Figure 7.3. For this model, the input impedance is Rin and the output
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impedance is Rout. The op-amp itself is a differential amplifier because its output
is a function of the difference between two input voltages, υ+ and υ−, which are
known as the noninverting and inverting inputs, respectively. Notice that the
value of the internal dependent voltage source is A(υ+ − υ−), where A is the open-
loop gain of the op-amp. In a practical op-amp, A is quite large by design,
typically on the order of 105 to 107. As discussed in the previous section, this
large open-loop gain can be exchanged, by design, for a smaller closed-loop gain
G to acquire various beneficial characteristics for an amplifier circuit, of which
the op-amp is just one component.2Page 373

The Ideal Op-Amp
Practical op-amps have a large open-loop gain A, as noted above. The input
impedance Rin is also large, typically on the order of 106 to 1012 Ω, while the
output impedance Rout is small, typically on the order of 100 or 101 Ω. In the ideal
case, the open-loop gain and the input impedance would be infinite, while the
output impedance would be zero. When the output impedance is zero, the output
voltage of an ideal op-amp is simply:

But is this relationship practical when the open-loop gain A approaches infinity?
The implication for a practical op-amp is that one of the two following
possibilities will hold:

In the case that Δυ ≠ 0, the output voltage saturates near either the positive or
negative DC power supply value,  as shown in Figure 7.7. These
external DC power supply rails enable a practical op-amp to function but
also bound the op-amp output voltage υout. This case applies to all practical
applications of an op-amp used in open-loop mode; that is, when there is no
feedback from υout to υ−.

Figure 7.7 Ideal operational amplifier
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In the case that Δυ = 0, the output voltage is not determined by the op-amp
itself but by whatever other circuitry is attached to it. Recall from Sections
7.1 that when Aβ ≫ 1 the closed-loop gain of an amplifier is approximately
equal to 1⁄β and largely independent of A itself. Thus, this case applies to all
practical applications of an op-amp in closed-loop mode; that is, when
negative feedback is present from υout to υ−.

By far the most prominent open-loop mode application of an op-amp is the
comparator. Many of the practical applications of the op-amp in closed-loop
mode are explored in this chapter.

Notice in Figure 7.7 that the letter “A” does not appear within the triangle
symbol, thus implying that the open-loop gain is infinite. Also implied by the
ideal op-amp symbol is that the current into or out of either input terminal is zero.
This result is a consequence of the infinite input impedance of an ideal op-amp
and is known as the first golden rule of ideal op-amps:

Also recall from the discussion of negative feedback in Sections 7.1 that when Aβ
≫ 1 the difference between the two amplifier inputs, us and uf , approaches zero.
In the context of ideal op-amps, where A → ∞, the difference between the two
amplifier inputs, υ+ and υ−, will be zero exactly as long as there is a feedback
path from υout to υ−.

The Golden Rules of Ideal Op-Amps:

i + = i − = 0.

υ+ = υ− (when negative feedback is present).

Page 374
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Amplifier Archetypes
There are three fundamental amplifiers that utilize the operational amplifier and
employ negative feedback. They are:

The inverting amplifier.

The noninverting amplifier.

The isolation buffer (or voltage follower).

These archetypes have many important applications and are the building blocks
for other important amplifiers. Understanding and recognizing these archetypes is
an essential first step in the study of amplifiers based upon the op-amp. It is worth
emphasizing that the op-amp is rarely used as a stand-alone amplifier; rather it is
used along with other components to form specialized amplifiers.

The Inverting Amplifier
Figure 7.8 shows a basic inverting amplifier circuit. The name derives from the
fact that the input signal υS “sees” the inverting terminal (−) and that, as is shown
below, the output signal υo is an inverted (negative) version of the input signal.
The goal of the following analysis is to determine the relationship between the
output and the input signals. To begin, assume the op-amp is ideal and apply KCL
at the inverting node marked υ−.

Figure 7.8 Inverting amplifier

However, the first golden rule of ideal op-amps states that iin = i− = 0. Thus, iS =
iF such that RS and RF form a virtual series connection. Ohm’s law can be applied
to each resistor to yield:
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These expressions can be simplified by noting that υ+ = 0 and then applying the
second golden rule of ideal op-amps to realize υ− = υ+ = 0. Thus:

Cross-multiply to find the closed-loop gain G:

Note that the magnitude of G can be greater or less than 1.

An alternate approach is to apply voltage division across the virtual series
connection of RS and RF.

Subtract 1 from each side of this expression to find the same result as equations
7.29.Page 375

Notice that the closed-loop gain G of an inverting amplifier is determined
solely by the choice of resistors. This result was derived for an ideal op-amp. For
a practical op-amp the result is only slightly different as long as the open-loop
gain A is large. It is important to remember that this result depends upon both
golden rules of ideal op-amps and that, in particular, the second golden rule is
valid only when negative feedback is present.
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As long as the open-loop gain A is large, the presence of negative feedback
from the output to the inverting input drives the voltage difference between
the two input terminals to zero.

The input impedance of the inverting amplifier is simply:

Notice the important role played by the virtual ground at the inverting terminal in
making this calculation so easy. This result also reveals a shortcoming of the
inverting amplifier. In general, an ideal amplifier would have an infinite input
impedance so as to not load the source network. It is tempting to correct this
problem by choosing RS to be very large; however, in so doing, the closed-loop
gain (equations 7.29) will be reduced. Thus, it is not possible to design an
inverting amplifier to have a large gain and also a large input impedance. Alas,
there is no such thing as a free lunch!

The Noninverting Amplifier
Figure 7.9 shows a basic noninverting amplifier circuit. The name derives from
the fact that the input signal υS “sees” the noninverting terminal (+) and that, as is
shown below, the output signal υo is a noninverted (positive) version of the input
signal. The goal of the following analysis is to determine the relationship between
the output and the input signals. As was done for the inverting amplifier circuit,
assume the op-amp is ideal and apply KCL at the inverting node marked υ−.

Figure 7.9 Noninverting amplifier
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However, the first golden rule of ideal op-amps states that iin = i− = i+ = 0. Thus,
iF = i1 such that RF and R1 form a virtual series connection. Ohm’s law can be
applied to each resistor to yield:

Since there is negative feedback present, the second golden rule of ideal op-amps
can be applied such that υ− = υ+. Notice that because iin = 0, the voltage drop
across Page 376RS is zero with the result that υ− = υ+ = υS. Substitute this result
into equations 7.33 and rearrange terms to yield the closed-loop gain G:

Note that G ≥ 1.

An alternate approach is to apply voltage division across the virtual series
connection of R1 and RF.

Since υ− = υS:

which is the same result as that found in equations 7.34.

Notice that the closed-loop gain G of a noninverting amplifier is also
determined solely by the choice of resistors. This result was derived for an ideal
op-amp. For a practical op-amp the result is only slightly different as long as the
open-loop gain A is large. It is important to remember that this result depended
upon both golden rules of ideal op-amps and that, in particular, the second golden
rule is valid only when negative feedback is present.
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As long as the open-loop gain A is large, the presence of negative feedback
from the output to the inverting input drives the voltage difference between
the two input terminals to zero.

The input impedance of the noninverting amplifier is simply:

In practice, the input impedance of a noninverting amplifier is very large due to
the very large input impedance of the op-amp, which limits iin to very small
values. Notice that the closed-loop gain of the noninverting amplifier is
independent of its input impedance. Thus, the noninverting amplifier does not
suffer from a trade-off between gain and input impedance, as does the inverting
amplifier. However, the gain of a noninverting amplifier is limited to values
greater than one, whereas the gain of the inverting amplifier can take on any
value. Alas, again there is no such thing as a free lunch!

Isolation Buffer or Voltage Follower
Figure 7.10 shows an isolation buffer, which is also known as a voltage follower.
Notice that the input signal υS “sees” the noninverting terminal (+) such that the
output signal υo should be a noninverted (positive) version of υS. The analysis of
Page 377this circuit is as simple as the circuit itself. Assume that the op-amp is
ideal. Since negative feedback is present, both golden rules are valid. That is:

Figure 7.10 Isolation buffer or voltage follower
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By observation, υ+ = υS and υ− = υout with the result that the closed-loop gain G
is:

The reason this circuit is called a voltage follower should now be obvious; the
output voltage υo “follows” (equals) the input voltage υS. On the other hand, the
reason this circuit is also known as an isolation buffer is not obvious. However,
since i+ = 0, the ideal op-amp is said to possess an infinite input resistance or
input impedance such that the voltage source experiences no loading from the op-
amp. Yet the circuit still reproduces υS at the output. Any loading effects at the
output are experienced by the op-amp rather than the voltage source, such that the
source is isolated or buffered from the output.

The input impedance of an isolation buffer is simply:

In practice, the input impedance of an isolation buffer is very large due to the
very large input impedance of the op-amp, which limits iin to very small values.
The closed-loop gain is fixed at unity as long as the open-loop gain A is large
such that υ− will be driven to υ+ by negative feedback.

Application of Thévenin’s Theorem
Notice in Figures 7.8 and 7.9 that the input source is represented as a Thévenin
source. The implication is that the previous results for inverting and noninverting
amplifiers can be applied to any case where the input source of the amplifier
circuit is linear and can be simplified to an equivalent Thévenin source. In other
words, RS and υS are the Thévenin equivalent resistance and the open-circuit
voltage, respectively, of any arbitrary linear input circuit.
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For example, consider the inverting amplifier circuit shown in Figure 7.11. It
does not have the same form as the archetype of Figure 7.8. However, the voltage
source υin “sees” the inverting terminal; therefore, the output voltage υo will be an
inverted version of υin. The circuit is an inverting amplifier. To solve for υo
replace the entire linear circuit to the left of terminals a and b with its Thévenin
equivalent.

Figure 7.11 Inverting amplifier before simplification to archetype

Page 378Figure 7.12 shows the source circuit detached at terminals a and b.
To find the Thévenin equivalent resistance of the input circuit set the voltage
source to zero and replace it with a short-circuit. Then:

Figure 7.12 Source network detached at terminals a and b

The Thévenin (open-circuit) voltage across terminals a and b can be found from
voltage division:

The Thévenin equivalent source network attached to the rest of the amplifier
circuit is shown in Figure 7.13. Notice that the simplified amplifier is now
identical in form to the inverting amplifier archetype of Figure 7.8. Thus, using
equations 7.29:
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Figure 7.13 Inverting amplifier after simplification to archetype

To obtain the closed-loop gain G of the original amplifier circuit, write:

Figure 7.13 generalizes Figure 7.8 by representing explicitly the source
network as the Thévenin equivalent network of any linear input source network.
The same approach can be taken to generalize the noninverting amplifier and
isolation buffer circuits shown in Figures 7.9 and 7.10, respectively, where υS and
RS are now the Thévenin (open-circuit) voltage and the Thévenin equivalent
resistance, respectively, of the input source network.

Multiple Sources and the Principle of Superposition
There are many situations that call for an amplifier to accommodate multiple
input source networks. The analysis of these amplifiers can be accomplished
using basic principles, such as KCL, KVL, and Ohm’s law. However, it is often
useful to apply the principle of superposition to simplify the overall amplifier
circuit into multiple component amplifiers, each with only one independent
source still turned on. Thévenin’s theorem can often be used to transform these
component amplifiers into Page 379one of the amplifier archetypes: the inverting
amplifier, the noninverting amplifier, and the isolation buffer. Two important
examples of amplifiers with multiple input sources are the summing amplifier and
the differential amplifier.

The Summing Amplifier
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A useful op-amp circuit that is based on the inverting amplifier is the op-amp
summer, or summing amplifier, as shown in Figure 7.14. Assume the op-amp is
ideal. The first golden rule of op-amps states that i+ = i− = 0. Thus, when KCL is
applied at the inverting node, the result is:

Figure 7.14 Summing amplifier

Since negative feedback is present, the second golden rule is also valid such that
υ− = υ+ = 0. Ohm’s law can then be applied at each resistor to obtain:

The results of equations 7.46 can be plugged into equations 7.45 to find:

The output of the summing amplifier is the weighted sum of N input signal
sources, where the weighting factor for each source  equals the ratio of the
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feedback resistance RF to the source resistance . Notice that if 
 then:

The summing amplifier can also be analyzed using the principle of super- 
position. Consider turning off all the voltage sources except υ S 1. The result is
that the voltage drop across the resistors R 2 , . . . , RN is zero since a zero voltage
source is equivalent to a short-circuit. Thus, for this case, i2 = i3 = ... = iN = 0 as
shown Page 380in Figure 7.15. Assume the op-amp is ideal such that i+ = i− = 0.
Then KCL applied at the inverting terminal node yields simply:

Figure 7.15 Summing amplifier with only one source turned on

Again, because negative feedback is present, the second golden rule is valid
such that υ− = υ+ = 0. Ohm’s law can then be applied to R S 1 and RF to obtain:

Plug these two results into equations 7.49 and rearrange to yield:
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where  is the component of υo due to the voltage source  It is worth noting
that this result is equivalent to what would be obtained for the inverting amplifier
archetype shown in Figure 7.16. This equivalence is due to the fact that the
currents i2, i3, . . . , iN are all zero such that  and R F are still in a virtual series
connection as in the inverting amplifier archetype.

Figure 7.16 Equivalent inverting amplifier circuit for summing
amplifier with only one source turned on

Since the Thévenin source pairs  and  in Figure 7.14 are all in parallel, the
component of υo due to  is:

Summing all these component contributions yields:

which is the same result as that found in equations 7.47.

The Differential Amplifier
A useful op-amp circuit that is based on the inverting and noninverting amplifier
archetypes is the differential amplifier shown in Figure 7.17. This amplifier
finds frequent use in situations where the difference between two signals needs to
be amplified. The two sources υ1 and υ2 may be independent of each other or may
originate from the same process, as they do in the Focus on Measurements box,
“Electrocardiogram (EKG) Amplifier.”
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Figure 7.17 Amplifier with input sources at the inverting and
noninverting terminals

The analysis of the differential amplifier can be accomplished by applying
basic principles (e.g., KCL, Ohm’s law) or by applying the principle of
superposition. Page 381Both approaches will assume an ideal op-amp, and since
negative feedback is present, both golden rules are valid. The former approach
begins by noting that i+ = i− = 0 such that R1 and RF are in a virtual series
connection as are R2 and R3. Thus, the voltage at the noninverting terminal υ+ can
be computed from voltage division.

Likewise, voltage division along the other virtual series connection yields:

Solving for υ − yields:

The second golden rule is υ+ = υ− such that:

In this form the expression for υo is too complicated to leave much of an
impression. However, it is greatly simplified by choosing the resistor values to
satisfy:



(7.58)

(7.59)

such that:

Figure 7.18 shows one particular version of a differential amplifier where
equations 7.58 is satisfied by setting R3 = RF and R2 = R1.

Figure 7.18 Differential amplifier

The circuit in Figure 7.17 can also be analyzed using the principle of
superposition. The op-amp is still assumed to be ideal, and since negative
feedback is present, both golden rules are valid. To begin, set υ2 = 0 and find the
component of υo due to υ1 as shown in Figure 7.19. Since i+ = 0, there can be no
voltage drop across R2 and R3 with the result that υ+ = 0. Thus, the circuit is an
inverting amplifier with the output given by equations 7.29 as:

Figure 7.19 Inverting amplifier appears when υ2 = 0



(7.60)

(7.61)

(7.62)

(7.63)

Now set υ1 = 0 and find the component of Vo due to υ2 as shown in Figure
7.20. Since i+ = 0, υ2, R2, and R3 are in a virtual series connection. Apply voltage
division to yield:

Figure 7.20 Amplifier of Figure 7.17 but with υ1 = 0

Page 382Thus, the equivalent circuit is a noninverting amplifier as shown in
Figure 7.21 with the output given by equations 7.34 as:

Figure 7.21 Noninverting amplifier appears when υ1 = 0

Finally, apply the principle of superposition to obtain:

As before, this expression is greatly simplified by choosing the resistor values
such that:



(7.64)

(7.65)

(7.66)

The result is (of course!) equations 7.59.

Both of the solution methods shown above are completely valid. Neither is
particularly easier than the other although tastes do vary! However, the principle
of superposition has the added appeal of determining the individual contributions
of each voltage source and therefore allows for a quick recalculation of the
solution when only one of the voltage sources is changed.

It is important to realize that if the linear source network seen by either
terminal is more complicated than those shown in Figure 7.17 it is possible to
simplify them using Thévenin’s theorem. For example, the source network seen
by the noninverting terminal is shown in Figure 7.22, where:

Figure 7.22 Figure 7.20 but with the network seen by the noninverting
terminal replaced with its Thévenin equivalent network
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Common and Differential Modes
It is often necessary to amplify the difference between two signals that may both
be corrupted by noise or interference. The two input signals υ1 and υ2 can be
decomposed be into two parts: the common mode (CM) and the differential
mode (DM). These two modes are defined mathematically as:

where the common mode υCM is the average value of υ1 and υ2.



(7.67)

(7.68)

(7.69)

(7.70)

With these definitions, the output of an ideal differential amplifier is simply:

In other words, the common mode of the two input signals is rejected by the
differential amplifier. In many situations, the noise and interference of one input
is identical to (or nearly the same as) that of the other input. Thus, a differential
amplifier can be used to eliminate noise and interference that is common to both
inputs. In practice, the output of a differential amplifier is given by:

where ADM and ACM are the differential-mode and common-mode gains,
respectively. In the ideal case, ACM = 0, such as for the circuit of Figure 7.18
when the op-amp is ideal and the external resistors satisfy equations 7.58 exactly.
The extent to which a practical differential amplifier rejects the common mode is
known as the common-mode rejection ratio (CMRR):

For example, op-amps themselves are differential amplifiers. A particular op-amp
known as the 741 has a typical CMRR of 90 dB. The Focus on Measurements
box, “Electrocardiogram (EKG) Amplifier,” provides a realistic look at a
common application of a differential amplifier.

Table 7.1 summarizes the basic op-amp circuits presented in this section.Page
384

Table 7.1 Summary of basic amplifiers



FOCUS ON MEASUREMENTS

Electrocardiogram (EKG) Amplifier
This example illustrates the principle behind a two-lead electrocardiogram
(EKG) measurement. The desired cardiac waveform is given by the difference
between the potentials measured by two electrodes suitably placed on the
patient’s chest, as shown in Figure 7.23. A healthy, noise-free EKG waveform υ1
− υ2 is shown in Figure 7.24.



Figure 7.23 Two-lead electrocardiogram

Figure 7.24 EKG waveform

Unfortunately, noise present on the 60-Hz, 110-V AC line used to power the
equipment may appear in the EKG itself, due to capacitive coupling. Ambient
electromagnetic interference can also interact with the closed-loop formed by the
lead wires to generate another source of noise. Other sources of noise include
changes at the electrode-skin interface due to respiration, muscle contractions,
and other displacements. In addition, different DC offsets due to the electrodes
complicate the signals. The signal processing associated with an actual EKG
involves instrumentation amplifiers (see Example 7.2) and active filters (see
Sections 7.3). In this example, the focus is limited to the role of a differential
amplifier in rejecting common-mode 60-Hz noise found in a typical EKG. With
that limitation in mind, assume that the EKG signals υ1 and υ2 indicated in Figure
7.23 are represented by:

Lead 1:

Lead 2:



As shown in Figure 7.25, the interference signal Vn = cos(377t + ϕn) is
approximately the same at both leads because the electrodes are designed to be
identical and are used in close proximity to each other. If the resistors of the
differential amplifier are properly matched, the voltage output will be:

Figure 7.25 EKG amplifier

Thus, common-mode 60-Hz noise is eliminated, or greatly reduced, while the
desired EKG waveform is amplified. Great! In practice, the common-mode
rejection ratio is not infinite but can be made quite large to satisfy the design
specifications required for a proper diagnosis.Page 385
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Sensor Calibration Circuit
In many practical instances, the output of a sensor is related to the physical
variable we wish to measure in a form that requires some signal conditioning. The
most desirable form of a sensor output is one in which the electrical output of the
sensor (e.g., voltage) is related to the physical variable by a constant factor. Such
a relationship is depicted in Figure 7.26(a), where k is the calibration constant
relating voltage to temperature. Note that k is a positive number, and that the
calibration curve passes through the (0, 0) point. On the other hand, the sensor
characteristic of Figure 7.26(b) is best described by the following equation:

Figure 7.26 Sensor calibration curves

It is possible to modify the sensor calibration curve of Figure 7.26(b) to the
more desirable one of Figure 7.26(a) by means of the simple circuit displayed in
Figure 7.27. This circuit provides the desired calibration constant k by a simple
gain adjustment, while the zero (or bias) offset is adjusted by means of a



potentiometer connected to the voltage supplies. The detailed operation of the
circuit is described in the following paragraphs.Page 386

Figure 7.27 Sensor calibration circuit

This nonideal characteristic is described by:

When Vref = 0, the sensor voltage input sees an inverting amplifier such that:

Likewise, when υsensor = 0, the battery voltage sees a noninverting amplifier such
that:

Thus, the total output of the op-amp circuit of Figure 7.27 may be determined
from the principle of superposition:

The requirement for a linear response such as that shown in Figure 7.26(a) is υ o
= kT, where k is the constant slope of the linear response. This requirement is
satisfied by suitable choices of RF , RS , and Vref such that:



For this equation to hold, the coefficients of T on both sides must be equal and
the sum of the constant terms on the right side must equal zero. That is:

and

or

Page 387It is worth noting that Vref ≈ V0 when RF ≫ RS. Thus, when this
condition holds, the appropriate battery voltage for the sensor calibration circuit
can be determined directly from the sensor calibration curve of Figure 7.26(b).
One should also attempt to pick a large enough value of RS such that the sensor is
not loaded by the calibration circuit.

It is also worth noting that the effect of the inverting aspect of the amplifier is
to invert (change the sign of) the slope, while the effect of the reference battery
voltage is to raise or lower the inverted calibration curve so that it passes through
the origin. For this reason, the sensor calibration circuit is known more generally
as a level shifter. See Example 7.3 for further discussion.

EXAMPLE 7.1 Inverting Amplifier Circuit
Problem

Determine the voltage gain and output voltage for the inverting amplifier circuit
of Figure 7.8. What will the uncertainty in the gain be if 5 and 10 percent
tolerance resistors are used, respectively?

Solution



Known Quantities: Feedback and source resistances, source voltage.
Find: G = υout⁄υin; maximum percent change in G for 5 and 10 percent tolerance
resistors.
Schematics, Diagrams, Circuits, and Given Data: RS = 1 kΩ; RF = 10 kΩ; υS(t)
= A cos(ωt); A = 0.015 V; ω = 50 rad/s.
Assumptions: The amplifier behaves ideally; that is, the input current into the op-
amp is zero, and negative feedback forces υ+ = υ−.
Analysis: Using equations 7.29, the output voltage is:

The input and output waveforms are sketched in Figure 7.28.

Figure 7.28 Input and output signal waveforms for Example 7.1.

Page 388The nominal gain of the amplifier is G nom = − 10. If 5 percent
tolerance resistors are employed, the worst-case error will occur at the extremes:

The percentage error is therefore computed as

Thus, the amplifier gain could vary by as much as ±10 percent (approximately)
when 5 percent resistors are used. If 10 percent resistors were used, we would
calculate a percent error of approximately ±20 percent, as shown below.



Comments: Note that the worst-case percent error in the closed-loop gain G is
approximately double the resistor tolerance. This result can be calculated by
assuming a resistor tolerance x and noting that the worst case is:

Let Gnom = −RF⁄RS such that:

EXAMPLE 7.2 Instrumentation Amplifier
Problem

Determine the closed-loop voltage gain of the instrumentation amplifier circuit of
Figure 7.29.

Figure 7.29 Instrumentation amplifier



Solution
Known Quantities: Feedback and source resistances.
Find:

Assumptions: Assume ideal op-amps.Page 389
Analysis: Often, to provide impedance isolation between bridge transducers and
the differential amplifier stage, the signals υ1 and υ2 are amplified separately. This
technique gives rise to the instrumentation amplifier (IA), shown in Figure
7.29.

Because the instrumentation amplifier has widespread application—and to
ensure the best possible match between resistors—the entire circuit of Figure 7.29
is often packaged as a single integrated circuit. The advantage of this
configuration is that resistors R1 and R2 can be matched much more precisely in
an integrated circuit than would be possible by using discrete components.

Consider the input circuit first. Thanks to the symmetry of the circuit, we can
represent one-half of the circuit as illustrated in Figure 7.30(a), depicting the
lower half of the first stage of the instrumentation amplifier. We next recognize
that the circuit of Figure 7.30(a) is a noninverting amplifier (see Figure 7.9), such
that the closed-loop voltage gain is (equations 7.34):

Figure 7.30 Input (a) and output (b) stages of instrumentation amplifier



Page 390Each of the two inputs υ1 and υ2 is therefore an input to the second stage
of the instrumentation amplifier, shown in Figure 7.30(b). We recognize the
second stage to be a differential amplifier (see Figure 7.18), and can therefore
write the output voltage using equations 7.59:

from which we can compute the closed-loop voltage gain of the instrumentation
amplifier:

EXAMPLE 7.3 Level Shifter
Problem

The level shifter of Figure 7.31 has the ability to add or subtract a DC offset to or
from a signal. Analyze the circuit, and design it so that it can remove a 1.8-V DC
offset from a sensor signal.

Figure 7.31 Level shifter



Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors.
Find: Value of Vref required to remove DC bias.

Schematics, Diagrams, Circuits, and Given Data: Υsensor(t) = 1.8 + 0.1 cos (ωt);
R F = 220 kΩ; R S = 10 kΩ.
Assumptions: Assume an ideal op-amp.
Analysis: The output voltage can be computed quite easily using the principle of
superposition. When the reference voltage source Vref is set to zero and replaced
by a short-circuit, the sensor input voltage υsensor sees an inverting amplifier such
that:

When the sensor input voltage source is set to zero and replaced by a short-
circuit, the reference voltage source (the battery) sees a noninverting amplifier
such that:

Thus, the total output voltage is the sum of contributions from the two sources:

Page 391Substitute the expression for υsensor into the previous equation to find:

To remove the DC offset, require:

or



Comments: The presence of a precision voltage source in the circuit is
undesirable because it may add considerable expense to the circuit design and, in
the case of a battery, it is not adjustable. The circuit of Figure 7.32 illustrates how
an adjustable voltage reference can be produced from the DC supplies already
used by the op-amp, two fixed resistors R, and a potentiometer Rp. The fixed
resistors are included to guarantee a minimum resistance R from the wiper to
either power supply at all times and thus prevent possible overheating of the
potentiometer. An expression for Vref is obtained from voltage division:

Figure 7.32 Adjustable voltage reference for Example 7.3.

If the voltage supplies are symmetric, as is usually the case,  such that:

Rearrange terms to find:

The value of Vref is determined by the position of the wiper ΔR. Also, when Rp ≫
R, the range of Vref is approximately 



EXAMPLE 7.4 Temperature Control Using Op-Amps
Problem

Op-amps often serve as building blocks in analog control systems. The objective
of this example is to illustrate the use of op-amps in a temperature control circuit.
Figure 7.33(a) depicts a system for which the temperature is to be maintained
constant at 20°C in a variable temperature environment. The system temperature
is measured via a thermocouple. Heat is added to the system by a coil of
resistance Rcoil. The heat flux is qin = i2Rcoil, where i is the current provided by a
power amplifier. The system is insulated on three sides. The fourth side is not
insulated such that heat is transferred across the boundary by convection, which is
represented by an equivalent thermal resistance Rt. The system has mass m, Page
392specific heat c, and thermal capacitance Ct = mc (see the Make the
Connection boxes “Thermal Capacitance” and “Thermal System Dynamics” in
Chapter 4).

Figure 7.33(a) Thermal system

Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal
system component values.
Find: Select desired value of proportional gain KP to achieve automatic
temperature control.
Schematics, Diagrams, Circuits, and Given Data: Rcoil = 5 Ω; Rt = 2°C/W; Ct =
50 J/°C; Α = 1 V/°C. Figure 7.33(a) to (e).
Assumptions: Assume ideal op-amps.
Analysis: Conservation of energy requires that:



where qin represents the heat added to the system by the electrical heater, qout
represents the heat lost from the system through convection to the surrounding
air, and Estored represents the energy stored in the system due to its thermal
capacitance. The system temperature T is measured by a thermocouple whose
output voltage is proportional to temperature: υtemp = αT. Further, assume that the
power amplifier is modeled by a voltage-controlled current source (VCCS) such
that:

where υe is the error or difference between the reference voltage and the
measured voltage. The negative feedback system shown in Figure 7.33(b) tends
to drive υe to zero. When υe Page 393is positive, υref > υtemp and the system calls
for heating; on the other hand, when υe is negative, υref < υtemp and the system
calls for cooling. The power amplifier outputs a positive current for a positive υe.
Thus, the block diagram shown in Figure 7.33(b) corresponds to an automatic
control system that increases or decreases the heating coil current to maintain the
system temperature at the desired (reference) value. The proportional gain Kp of
the power amplifier determines how much to increase coil current and allows the
user to optimize the response of the system for a specific design requirement. For
example, a system specification could require that the automatic temperature
control system be designed so as to maintain the temperature to within 1 degree
of the reference temperature for external temperature disturbances as large as 10
degrees. The response of the system can be adjusted by varying the proportional
gain.

Figure 7.33(b) Block diagram of control system

The voltage amplifier can be realized by a two-stage amplifier using two op-
amps as shown in Figure 7.33(c). The first stage is an inverting amplifier with
closed-loop gain G1 = −1 such that the voltage at node a is −υref. The second



stage is a summing amplifier with a closed-loop gain of G2 = −R2⁄R1 for each
input. Thus, the output voltage at node b is:

Figure 7.33(c) Circuit for generating proportional gain of error voltage

The coefficient R2⁄R1 is the voltage gain Kυ. In other words, selecting the
feedback resistor R2 is equivalent to choosing Kυ.

The thermal system itself is described by the conservation of energy equation
given above. The rate of energy added to the system by the heating coil is simply
i2Rcoil. The rate of energy subtracted from the system by convective heat transfer
is defined as (T − Ta )⁄Rt , where Rt is a lumped parameter called the thermal
resistance. Small values of Rt correspond to large values of the convective heat
transfer coefficient, and vice versa. Finally, the net rate at which energy is stored
in the system is proportional to the rate at which the system temperature T is
changing, where the constant of proportionality Ct is known as the thermal
capacitance. With these definitions in place, the conservation of energy equation
can be rewritten as:

>

or

where i =KpKυΥe = KpKυα(Tref − T). Notice this equation is, in general, a
nonlinear first-order ordinary differential equation. The time constant is τ = RtCt



= 2°C/W × 50 J/°C = 100 s.Page 394

When Kp = 0, no current is supplied to the heating coil and the thermal system
response is simply its own natural response; that is, no automatic control is active
when Kp = 0 and the system response is the open-loop response. In that case, the
governing differential equation is:

The solution is (see Chapter 4):

where T0 is the initial value of the system temperature. For example, assume T0 =
20°C and Ta = 10°C. The time constant τ is RtCt = 100 s, using the data given for
Rt and Ct. Thus:

When the gain Kp is increased to 1, υe increases as soon as the temperature drops
below the reference value. The transduction constant of the thermocouple was
given as α = 1 such that the voltage υtemp is numerically equal to the system
temperature. Figure 7.33(d) shows the temperature response for values of Kp
ranging from 1 to 10. As the gain increases, the error between the desired and
actual temperatures decreases very quickly. Observe that the error is less than 1
degree (recall the design specification) for Kp = 5. To better understand the
workings of the complete control system, it is helpful to observe the heater
current, which is an amplified version of the error voltage. Figure 7.33(e) shows
that when Kp = 1 the current increases to a final value of roughly 2.7 A; when Kp
= 5 and 10, the current increases more rapidly, and eventually settles to values of
3 and 3.1 A, respectively. Page 395The steady-state value of the current is
reached in about 17 s for Kp = 5, and in about 8 s for Kp = 10.



Figure 7.33(d) Response of thermal system for various values of
proportional gain Kp



Figure 7.33(e) Power amplifier output current for various proportional
gain Kp

Comments: As Kp increases, the system’s speed of response increases; however,
the system’s steady-state error also increases. The design specifications anticipate
this effect by setting a tolerance of 1°C.
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CHECK YOUR UNDERSTANDING
Consider an ideal inverting amplifier (see Figure 7.8) with a nominal closed-loop
gain of −1,000. The impact of a nonideal op-amp with a finite, but large, open-
loop gain A on the closed-loop gain can be derived by assuming that the voltage
υ− at the inverting terminal is only approximately equal to the voltage υ+ = 0 at
the noninverting terminal. Under this assumption, υout = − Aυ−. The first golden
rule still applies such that iin = 0 and RS is virtually in series with RF. Use this
information to find an expression for the closed-loop gain as a function of the
open-loop gain A. Compute the closed-loop gain when A equals 107, 106, 105,
104. How large is the open-loop gain when the closed-loop gain is less than 0.1
percent away from its nominal value?

CHECK YOUR UNDERSTANDING
For Example 7.1, calculate the uncertainty in the gain when 1 percent “precision”
resistors are used.

Answers: 999.1; 999.0; 990.1; 909.1. For 0.1 percent accuracy, A = 106.

Answer: +1.98 to −2.02 percent



CHECK YOUR UNDERSTANDING
Derive an expression for the closed-loop gain of an isolation buffer when the
open-loop gain A is finite. How large is the open-loop gain when the closed-loop
gain is only 0.1 percent away from unity?

CHECK YOUR UNDERSTANDING
For Example 7.3, find the value ΔR that removes the DC bias from the sensor
signal. Assume the supply voltages are symmetric at ±15 V and a 10-kΩ
potentiometer is tied to two 10-kΩ fixed resistors as in Figure 7.32. What is the
range of Vref when a 10-kΩ potentiometer is tied to two 10-kΩ fixed resistors?

CHECK YOUR UNDERSTANDING
How much steady-state power, in watts, will be input to the thermal system of
Example 7.4 to maintain its temperature in the face of a 10°C ambient
temperature drop for values of KP of 1, 5, and 10?

Answer: The expression for the closed-loop gain is υ out ⁄ υ in = 1 + 
1⁄A; thus A should equal 104 for 0.1 percent accuracy.

Answers: ΔR = 6.722 kΩ; Vref is between ±0.714 V

Answers: KP = 1: 36.5 W; KP = 5: 45 W; KP = 10: 48 W



CHECK YOUR UNDERSTANDING
With reference to the Focus on Measurements box, “Sensor Calibration Circuit,”
find numerical values of RF⁄RS and Vref if the temperature sensor has β = 0.235
and V 0 = 0.7 V and the desired relationship is υout = 10 T.
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7.3 ACTIVE FILTERS
The range of useful applications of an operational amplifier is greatly expanded if
energy storage elements are introduced into the design; the frequency-dependent
properties of these elements, studied in Chapters 3 and 5, will prove useful in the
design of various types of op-amp circuits. In particular, it will be shown that it is
possible to shape the frequency response of an operational amplifier by
appropriate use of complex impedances in the input and feedback circuits. The
class of filters one can obtain by means of op-amp designs is called active filters
because op-amps can provide amplification (gain) in addition to the filtering
effects already studied in Chapter 5 for passive circuits (i.e., circuits comprising
exclusively resistors, capacitors, and inductors).

The easiest way to see how the frequency response of an op-amp can be
shaped (almost) arbitrarily is to replace the resistors RF and RS in Figures 7.8 and
7.9 with impedances ZF and ZS, as shown in Figure 7.34. It is a straightforward
matter to show that in the case of the inverting amplifier, the expression for the
closed-loop gain is given by

Answers: RF⁄RS = 42.55; V ref = 0.684 V



(7.71)

(7.72)

Figure 7.34 Op-amp circuits employing complex impedances

whereas for the noninverting case, the gain is

where ZF and ZS can be arbitrarily complex impedance functions and where VS,
Vo, IF, and IS are all phasors. Thus, it is possible to shape the frequency response
of an ideal op-amp filter simply by selecting suitable ratios of feedback
impedance to source impedance. By connecting a circuit similar to the low-pass
filters studied in Chapter 5 in the feedback loop of an op-amp, the same filtering
effect can be achieved and, in addition, the signal can be amplified.

The simplest op-amp low-pass filter is shown in Figure 7.35. Its analysis is
quite simple if we take advantage of the fact that the closed-loop gain, as a
function of frequency, is given by
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(7.76)

Figure 7.35 Active low-pass filter

where

and

Note the similarity between ZF and the low-pass characteristic of the passive RC
circuit! The closed-loop gain GLP(jω) is then computed to be

This expression can be factored into two terms. The first is an amplification factor
analogous to the amplification that would be obtained with a simple inverting
amplifier (i.e., the same circuit as that of Figure 7.35 with the capacitor removed);
the second is a low-pass filter, with a cutoff frequency dictated by the parallel
Page 398combination of RF and CF in the feedback loop. The filtering effect is
completely analogous to what would be attained by the passive circuit shown in
Figure 7.36. However, the op-amp filter also provides amplification by a factor of
RF⁄RS.
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Figure 7.36 Passive low-pass filter

It should be apparent that the response of this op-amp filter is just an
amplified version of that of the passive filter. Figure 7.37 depicts the amplitude
response of the active low-pass filter (in the figure, RF⁄RS = 10 and 1⁄RFCF = 1) in
two different graphs; the first plots the amplitude ratio Vo(jω) versus radian
frequency ω on a logarithmic scale, while the second plots the amplitude ratio 20
log VS(jω) (in units of decibels), also versus ω on a logarithmic scale. Recall
from Chapter 5 that decibel frequency response plots are often encountered. Note
that in the decibel plot, the slope of the filter response for frequencies
significantly higher than the cutoff frequency,

Figure 7.37 Normalized response of active low-pass filter: (a)
amplitude ratio response; (b) dB response

is −20 dB/decade, while the slope for frequencies significantly lower than this
cutoff frequency is equal to zero. The value of the response at the cutoff
frequency is found to be, in units of decibel,

where
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(7.83)

Thus, ω0 is also called the 3-dB frequency.

Among the advantages of such active low-pass filters is the ease with which
the gain and the bandwidth can be adjusted by controlling the ratios RF⁄RS and
1⁄RFCF, respectively.

It is also possible to construct other types of filters by suitably connecting
resistors and energy storage elements to an op-amp. For example, a high-pass
active filter can easily be obtained by using the circuit shown in Figure 7.38. The
impedance of the input path is:

Figure 7.38 Active high-pass filter

The impedance of the feedback path is:

Page 399The closed-loop gain for this inverting amplifier is:

Note that G → 0 as ω → 0. Also note that as ω → ∞, the closed-loop gain G
approaches a constant:

That is, above a certain frequency range, the circuit acts as a linear amplifier. This
is exactly the behavior one would expect of a high-pass filter. The high-pass



(7.84)
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response is depicted in Figure 7.39, in both linear and decibel plots (in the figure,
RF⁄RS = 10 and 1⁄RSC = 1). Note that in the decibel plot, the slope of the filter
response for frequencies significantly lower than ω = 1⁄RSCS = 1 is +20
dB/decade, while the slope for frequencies significantly higher than this cutoff (or
3 dB) frequency is equal to zero.

Figure 7.39 Normalized response of active high-pass filter: (a)
amplitude ratio response; (b) dB response

As a final example of active filters, let us look at a simple active bandpass
filter configuration. This type of response may be realized simply by combining
the high- and low-pass filters we examined earlier. The circuit is shown in Figure
7.40.

Figure 7.40 Active bandpass filter

The analysis of the bandpass circuit follows the same structure used in
previous examples. First we evaluate the feedback and input impedances:
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Next we compute the closed-loop frequency response of the op-amp, as follows:

The form of the op-amp response we just obtained should not be a surprise. It is
very similar (although not identical) to the product of the low-pass and high-pass
responses of equations 7.76 and 7.82. In particular, the denominator of GBP(jω) is
exactly the product of the denominators of GLP(jω) and GHP(jω). It is particularly
Page 400enlightening to rewrite GLP(jω) in a slightly different form, after making
the observation that each RC product corresponds to some “critical” frequency:

It is easy to verify that for the case where

the response of the op-amp filter may be represented as shown in Figure 7.41 in
both linear and decibel plots (in the figure, ω1 = 1, ωHP = 1,000, and ωLP = 10).
The decibel plot is very revealing, for it shows that, in effect, the bandpass
response is the graphical superposition of the low-pass and high-pass responses
shown earlier. The two 3-dB (or cutoff) frequencies are the same as in GLP(jω),
1⁄RFCF; and in GHP(jω), 1⁄RSCS. The third frequency, ω1 = 1⁄RFCS, represents the
point where the response of the filter crosses the 0-dB axis (rising slope). Since 0
dB corresponds to a gain of 1, this frequency is called the unity gain frequency.

Figure 7.41 Normalized amplitude response of active bandpass filter:
(a) amplitude ratio response; (b) dB response



The ideas developed thus far can be employed to construct more complex
functions of frequency. In fact, most active filters one encounters in practical
applications are based on circuits involving more than one or two energy storage
elements. By constructing suitable functions for ZF and ZS, it is possible to
realize filters with greater frequency selectivity (i.e., sharpness of cutoff), as well
as flatter bandpass or band-rejection functions (i.e., filters that either allow or
reject signals in a limited band of frequencies). One remark that should be made
in passing, though, pertains to the exclusive use of capacitors in the circuits
analyzed thus far. One of the advantages of op-amp filters is that it is not
necessary to use both capacitors and inductors to obtain a bandpass response.
Suitable connections of capacitors can accomplish that task in an op-amp. This
seemingly minor fact is of great importance in practice because inductors are
expensive to mass-produce to close tolerances and exact specifications and are
often bulkier than capacitors with equivalent energy storage capabilities. On the
other hand, capacitors are easy to manufacture in a wide variety of tolerances and
values, and in relatively compact packages, including in integrated-circuit form.

Example 7.5 illustrates how it is possible to construct active filters with
greater frequency selectivity by adding energy storage elements to the
design.Page 401

EXAMPLE 7.5 Second-Order Low-Pass Filter
Problem

Determine the closed-loop voltage gain as a function of frequency for the op-amp
circuit of Figure 7.42.



Figure 7.42 Circuit for Example 7.5.

Solution
Known Quantities: Feedback and source impedances.
Find:

Schematics, Diagrams, Circuits, and Given Data: 1⁄R2C = R1⁄L = ω0.

Assumptions: Assume an ideal op-amp.
Analysis: The expression for the gain of the filter of Figure 7.42 can be
determined by using equations 7.71:

where

Thus, the closed-loop gain G of the filter is:

Note that it is possible to simplify the circuit in Figure 7.42 at very low and
very high frequencies. The solutions for these simplified forms can be used to
validate the previous expression. For example, at very low frequencies, the
inductor acts like a short-circuit and the capacitor acts like an open-circuit. Using
these approximations, the circuit becomes a simple inverting amplifier with
closed-loop gain:

This approximation matches the complete solution when ω ≪ ω 0 because 1 +
jω⁄ω 0 ≈ 1. Likewise, at very high frequencies, the inductor acts as an open-
circuit and the capacitor acts as a short-circuit. Using these approximations, the



circuit experiences a virtual short-circuit from its output to the inverting terminal
and the source VS sees a very large input Page 402impedance. The result is that V
o ≈ 0 due to the virtual ground at the inverting terminal and thus the closed-loop
gain is:

This approximation matches the complete solution when ω ≫ ω0 because 1 +
jω⁄ω0 → jω⁄ω0 → ∞ as ω → ∞. Validations are an important aspect of good
problem solving because they add confidence to solutions and, if done smartly,
usually expose erroneous solutions.

Comments: Note the similarity between the expression for the gain of the filter of
Figure 7.42 and that given in equations 7.76 for the gain of a first-order low-pass
filter. Clearly, the circuit analyzed in this example is also a second-order low-pass
filter, as indicated by the quadratic term in the denominator. Figure 7.43 compares
the two responses in both linear and decibel (Bode) magnitude plots. The slope of
the decibel plot for the second-order filter at higher frequencies is twice that of
the first-order filter (−40 versus −20 dB/decade). We should also remark that the
use of an inductor in the filter design is not recommended in practice, as
explained in the above section, and that we have used it in this example only
because of the simplicity of the resulting gain expressions.

Figure 7.43 Comparison of first- and second-order active low-pass
filters: (a) amplitude ratio response; (b) dB response

CHECK YOUR UNDERSTANDING
(a) Design a low-pass filter with a closed-loop gain of 100 and cutoff (3-dB)
frequency equal to 800 Hz. Assume that only 0.01-μF capacitors are available.



Find RF and RS.

(b) Repeat the design of the exercise above for a high-pass filter with a cutoff
frequency of 2,000 Hz. This time, however, assume that only standard values of
resistors are available (see the table of standard values in Chapter 1). Select the
nearest component values, and calculate the percent error in cutoff frequency.

(c) Find the frequencies corresponding to 1-dB attenuation from the low-
frequency gains of the filters of parts a and b.

(d) What is the decibel gain for the filter of Example 7.5 at the cutoff frequency
ω0? Find the 3-dB frequency for this filter in terms of the cutoff frequency ω0,
and note that the two are not the same.
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7.4 INTEGRATORS AND DIFFERENTIATORS
In the preceding sections, we examined the frequency response of op-amp circuits
for sinusoidal inputs. However, certain op-amp circuits containing energy storage
elements reveal some of their more general properties if we analyze their
response to inputs that are time varying but not necessarily sinusoidal. Among
such circuits are the commonly used integrator and differentiator; the analysis of
these circuits is presented in the following paragraphs.

The Ideal Integrator
Consider the circuit of Figure 7.44, where υS(t) is an arbitrary function of time
(e.g., a pulse train, a triangular wave, or a square wave). The op-amp circuit
shown provides an output that is proportional to the integral of υS(t). The analysis
of the integrator circuit is, as always, based on the observation that

Answers: Part a: RF = 19.9 kΩ, RS = 199 Ω; part b: RF = 8.2 kΩ, RS =
82 Ω, error: gain = 0 percent, ω3dB = 2.95 percent; part c: 407 Hz and
3.8 kHz; part d: −6 dB; ω3dB = 0.642 ω0
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Figure 7.44 Op-amp integrator

where

It is also known that

from the fundamental definition of the capacitor. The source voltage can then be
expressed as a function of the derivative of the output voltage:

Integrate both sides of equations 7.92 to obtain:

There are numerous applications for integrators in practical circuits.

The Ideal Differentiator
Using an argument similar to that employed for the integrator, we can derive a
result for the ideal differentiator circuit of Figure 7.45. The relationship between
input and output is obtained by observing that
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Figure 7.45 Op-amp differentiator

and

so that the output of the differentiator circuit is proportional to the derivative of
the input:

Although mathematically attractive, the differentiation property of this op-
amp circuit is seldom used in practice because differentiation tends to amplify
any noise that may be present in a signal.Page 404

FOCUS ON MEASUREMENTS



Charge Amplifiers
One of the most common families of transducers for the measurement of force,
pressure, and acceleration is that of piezoelectric transducers. These transducers
contain a piezoelectric crystal that generates an electric charge in response to
deformation. Thus, if a force is applied to the crystal (leading to a displacement),
a charge is generated within the crystal. If the external force generates a
displacement xi, then the transducer will generate a charge q according to the
expression:

q = k P x i

Figure 7.46 depicts the basic structure of the piezoelectric transducer, and a
simple circuit model. The model consists of a current source in parallel with a
capacitor, where the current source represents the rate of change of the charge
generated in response to an external force; and the capacitance is a consequence
of the structure of the transducer, which consists of a piezoelectric crystal (e.g.,
quartz or Rochelle salt) sandwiched between conducting electrodes (in effect, this
is a parallel-plate capacitor).



Figure 7.46 Piezoelectric transducer

Although it is possible, in principle, to employ a conventional voltage
amplifier to amplify the transducer output voltage υt, given by

it is often advantageous to use a charge amplifier. The charge amplifier is
essentially an integrator circuit, as shown in Figure 7.47, characterized by an
extremely high input impedance.3 The high impedance is essential; otherwise, the
charge generated by the transducer would leak to ground through the input
impedance of the amplifier.

Figure 7.47 Charge amplifier

Page 405Because of the high input impedance, the input current to the
amplifier is negligible; further, because of the high open-loop gain of the
amplifier, the inverting-terminal voltage is essentially at ground potential. Thus,
the voltage across the transducer is effectively zero. As a consequence, to satisfy
KCL, the feedback current iF (t) must be equal and opposite to the transducer
current i:

iF (t) = − i

and since

it follows that the output voltage is proportional to the charge generated by the
transducer, and therefore to the displacement:



Since the displacement is caused by an external force or pressure, this sensing
principle is widely adopted in the measurement of force and pressure.

EXAMPLE 7.6 Integrating a Square Wave

Problem

Determine the output voltage for the integrator circuit of Figure 7.44 if the input
is a square wave of amplitude ±A and period T, as shown in Figure 7.48.

Figure 7.48 Square wave for Example 7.6.

Solution
Known Quantities: Feedback and source impedances; input waveform
characteristics.
Find: υo(t).

Schematics, Diagrams, Circuits, and Given Data: T = 10 ms; CS = 1 μF; RF = 10
kΩ.
Assumptions: The op-amp is ideal and υo = 0 at t = 0.

Analysis: Equations 7.93 expresses the output of an integrator as:



Page 406The square wave can be integrated in a piecewise fashion by observing
that υS(t) = A for 0 ≤ t < T⁄2 and υS(t) = −A for T⁄2 ≤ t < T. Thus, for the two half
periods of the waveform:

Since the waveform is periodic, the above result will repeat with period T, as
shown in Figure 7.49. Note also that the average value of the output voltage is not
zero.

Figure 7.49 Output of integrator for Example 7.6.

Comments: The integral of a square wave is thus a triangular wave. This is a
useful fact to remember. Note that the effect of the initial condition is very
important since it determines the starting point of the triangular wave.

EXAMPLE 7.7 Proportional-Integral Control With Op-Amps
Problem

The aim of this example is to illustrate the very common practice of proportional-
integral, or PI, control. Consider the temperature control circuit of Example 7.4,
shown again in Figure 7.50(a), where it was discovered that the proportional



control implemented with the gain KP could still give rise to a steady-state error
in the final temperature of the system. This error can be eliminated by using an
automatic control system that feeds back a component that is proportional to the
integral of the error voltage, in addition to the proportional term. Figure 7.50(b)
depicts the block diagram of such a PI controller. Now, the design of the control
system requires selecting two gains, the proportional gain KP and the integral
gain KI.

Figure 7.50 (a) Thermal system and (b) block diagram of control
system

Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal
system component values.Page 407
Find: Select desired value of proportional gain KP and integral gain KI to achieve
automatic temperature control with zero steady-state error.
Schematics, Diagrams, Circuits and Given Data: Rcoil = 5 Ω; thermal resistance
Rt = 2°C/W; thermal capacitance Ct = 50 J/°C; sensor calibration constant, α = 1
V/°C.
Assumptions: Assume ideal op-amps.
Analysis: The circuit of Figure 7.50(c) shows two op-amp circuits—the top
circuit generates the error voltage υe. The only difference is that in this case the
circuit does not provide any gain. The bottom circuit amplifies υe by the
proportional gain −KP = −R2⁄R1 and also computes the integral of υe times the



integral gain −KI = −1⁄R3C. These two quantities are then summed through
another inverting summer circuit, which takes care of the sign change as well.

Figure 7.50(c) Circuit for generating error voltage and proportional
gain

Figure 7.50(d) depicts the temperature response of the system for KP = 5 (as
selected in Example 7.5) and different values of KI. Note that the steady-state
error is now zero! This is a property of controllers that incorporate an integral
term. Figure 7.50(e) shows the current supplied to the heater coil. Note that the
response is quite fast and that the temperature deviation is minimal.



Figure 7.50(d) Response of thermal system for various values of
integral gain, KI (KP = 5)



Figure 7.50(e) Power amplifier current system for various values of
integral gain KI (KP = 5)

Comments: The addition of the integral term in the controller causes the system
temperature to oscillate in response to the −10°C temperature disturbance
described in Example 7.4 (for sufficiently high values of KI). This oscillation is a
characteristic of an underdamped second order system (see Chapter 4)—but we
originally started out with a first-order thermal system! The addition of the
integral term has increased the order of the system, and now it is possible for the
system to display oscillatory behavior, that is, to have complex conjugate roots
(poles). To those familiar with thermal systems, this behavior should cause a
raised Page 408Page 409eyebrow! It is well known that thermal systems cannot
display underdamped behavior (that is, there is no thermal system property
analogous to inductance). The introduction of the integral gain can, in fact, cause
temperature oscillations as if an artificial “thermal inductor” were introduced in
the system.

CHECK YOUR UNDERSTANDING



Plot the frequency response of an ideal integrator in the form of a Bode plot.
Determine the slope of the straight-line segments in dB/decade. Assume RSCF =
10 s.

CHECK YOUR UNDERSTANDING
Plot the frequency response of an ideal differentiator in the form of a Bode plot.
Determine the slope of the straight-line segments in dB/decade. Assume RFCS =
100 s.

Verify that, if the triangular wave of Example 7.6 is the input to the ideal
differentiator of Figure 7.45, the resulting output is a square wave.

EXAMPLE 7.8 Using Cascaded Amplifiers to Simulate a
Differential Equation
Problem

Derive the differential equation corresponding to the circuit shown in Figure 7.51.
Answer: −20 dB/decade

Answer: +20 dB/decade



Figure 7.51 Analog computer simulation of unknown system

Solution
Known Quantities: Resistor and capacitor values.
Find: Differential equation in x(t).Page 410
Schematics, Diagrams, Circuits, and Given Data: R1 = 0.4 MΩ; R2 = R3 = R5 =
1 MΩ; R4 = 2.5 kΩ; C1 = C2 = 1 μF.

Assumptions: Assume ideal op-amps.
Analysis: Begin the analysis from the right-hand side of the circuit to determine
the intermediate variable z as a function of x:

Moving to the left, next determine the relationship between y and z:

Finally, determine y as a function of x and f :

or

Substitute the expressions into one another and eliminate y and z to obtain:



and

Comments: Note that the summing and integrating functions have been combined
into a single block in the first amplifier.

CHECK YOUR UNDERSTANDING
Derive the differential equation corresponding to the circuit shown in the figure.
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7.5 PHYSICAL LIMITATIONS OF OPERATIONAL
AMPLIFIERS
In nearly all the discussion and examples so far, the op-amp has been treated as
an ideal device, characterized by infinite input impedance, zero output resistance,
and infinite open-loop voltage gain. Although this model is adequate to represent
its behavior in a large number of applications, practical op-amps are not ideal but
exhibit limitations that should be considered in the design of instrumentation. In
particular, in dealing with relatively large voltages and currents, and in the
presence of high-frequency signals, it is important to be aware of the nonideal
properties of the op-amp.

Voltage Supply Limits

Answer: d2x⁄dt2 + 2x = − 10f(t)
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As indicated in Figure 7.6, operational amplifiers (and all amplifiers, in general)
are powered by external DC voltage supplies  and  which are usually
symmetric and on the order of ±10 to ±20 V. Some op-amps are especially
designed to operate from a single voltage supply, but for the sake of simplicity
from here on we shall consider only symmetric supplies. The effect of limiting
supply voltages is that amplifiers are capable of amplifying signals only within
the range of their supply voltages; it would be physically impossible for an
amplifier to generate a voltage greater than  or less than  This limitation may
be stated as follows:

For most op-amps, the limit is actually approximately 1.5 V less than the supply
voltages. How does this practically affect the performance of an amplifier circuit?
An example will best illustrate the idea.

Note how the voltage supply limit actually causes the peaks of the sine wave
to be clipped in an abrupt fashion. This type of hard nonlinearity changes the
characteristics of the signal quite radically and could lead to significant errors if
not taken into account. Just to give an intuitive idea of how such clipping can
affect a signal, have you ever wondered why rock guitar has a characteristic
sound that is very different from the sound of classical or jazz guitar? The reason
is that the “rock sound” is obtained by overamplifying the signal, attempting to
exceed the voltage supply limits, and causing clipping similar in quality to the
distortion introduced by voltage supply limits in an op-amp. This clipping
broadens the spectral content of each tone and causes the sound to be distorted.

One of the circuits most directly affected by supply voltage limitations is the
op-amp integrator.

Frequency Response Limits
Another property of all amplifiers that may pose severe limitations to the op-amp
is their finite bandwidth. We have so far assumed, in our ideal op-amp model, that
the open-loop gain is a very large constant. In reality, A is a function of frequency
and is characterized by a low-pass response. For a typical op-amp,
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Page 412The cutoff frequency of the op-amp open-loop gain ω0 represents
approximately the point where the amplifier response starts to drop off as a
function of frequency and is analogous to the cutoff frequencies of the RC and RL
circuits of Chapter 5. Figure 7.52 depicts A(jω) in both linear and decibel plots
for the fairly typical values A0 = 106 and ω0 = 10π. It should be apparent from
Figure 7.52 that the assumption of a very large open-loop gain becomes less and
less accurate for increasing frequency. Recall the initial derivation of the closed-
loop gain for the inverting amplifier: In obtaining the final result Vo⁄VS = −RF⁄RS,
it was assumed that A → ∞. This assumption is clearly inadequate at the higher
frequencies.

Figure 7.52 Open-loop gain of practical op-amp (a) amplitude ratio
response; (b) dB response

The finite bandwidth of the practical op-amp results in a fixed gain-
bandwidth product for any given amplifier. The effect of a constant gain-
bandwidth product is that as the closed-loop gain of the amplifier is increased, its
3-dB bandwidth is proportionally reduced until, in the limit, if the amplifier were
used in the open-loop mode, its gain would be equal to A0 and its 3-dB bandwidth
would be equal to ω0. The constant gain-bandwidth product is therefore equal to
the product of the open-loop gain and the open-loop bandwidth of the amplifier:
A0ω0 = K. When the amplifier is connected in a closed-loop configuration (e.g.,
as an inverting amplifier), its gain is typically much less than the open-loop gain
and the 3-dB bandwidth of the amplifier is proportionally increased. To explain
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this further, Figure 7.53 depicts the case in which two different linear amplifiers
(achieved through any two different negative feedback configurations) have been
designed for the same op-amp. The first has closed-loop gain G1 = A1, and the
second has closed-loop gain G2 = A2. The bold line in the figure indicates the
open-loop frequency response, with gain A0 and cutoff frequency ω0. As the gain
decreases from A0 to A1, the cutoff frequency increases from ω0 to ω1. As the
gain decreases to A2, the bandwidth increases to ω2. Thus:

Figure 7.53

Input Offset Voltage
Another limitation of practical op-amps results because even in the absence of
any external inputs, it is possible that an offset voltage will be present at the input
of an op-amp. This voltage is usually denoted by ±Vos, and it is caused by
mismatches Page 413in the internal circuitry of the op-amp. The offset voltage
appears as a differential input voltage between the inverting and noninverting
input terminals. The presence of an additional input voltage will cause a DC bias
error in the amplifier output. Typical and maximum values of Vos are quoted in
manufacturers’ data sheets. The worst case effects due to the presence of offset
voltages can therefore be predicted for any given application.

Input Bias Currents
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Another nonideal characteristic of op-amps results from the presence of small
input bias currents at the inverting and noninverting terminals. Once again, these
are due to the internal construction of the input stage of an operational amplifier.
Figure 7.54 illustrates the presence of nonzero input bias currents IB going into an
op-amp.

Figure 7.54 Input bias currents.

Typical values of IB+ and IB− depend on the semiconductor technology
employed in the construction of the op-amp. Op-amps with bipolar transistor
input stages may see input bias currents as large as 1 μA, while for FET input
devices, the input bias currents are less than 1 nA. These currents depend on the
internal design of the op-amp and are not necessarily equal.

The latter parameter is sometimes more convenient from the standpoint of
analysis.

Output Offset Adjustment
Both the offset voltage and the input offset current contribute to an output offset
voltage Vo,os. Some op-amps provide a means for minimizing Vo,os. For example,
the μA741 op-amp provides a connection for this procedure. Figure 7.55 shows a
typical pin configuration for an op-amp in an eight-pin dual-in-line package (DIP)
and the circuit used for nulling the output offset voltage. The variable resistor is
adjusted until υout reaches a minimum (ideally, 0 V). Nulling the output voltage in
this manner removes the effect of both input offset voltage and current on the
output.
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Figure 7.55 Output offset voltage adjustment

Slew Rate Limit
Another important restriction in the performance of a practical op-amp is
associated with rapid changes in voltage. The op-amp can produce only a finite
rate of change at its output. This limit rate is called the slew rate. Consider an
ideal step input, where at t = 0 the input voltage is switched from 0 to V volts.
Then we would expect the output to switch from 0 to AV volts, where A is the
amplifier gain. However, υo can change at only a finite rate; thus,

Page 414Figure 7.56 shows the response of an op-amp to an ideal step change in
input voltage. Here, S0, the slope of υo, represents the slew rate.
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Figure 7.56 Slew rate limit in op-amps

The slew rate limitation can affect sinusoidal signals, as well as signals that
display abrupt changes, as does the step voltage of Figure 7.56. This may not be
obvious until we examine the sinusoidal response more closely. It should be
apparent that the maximum rate of change for a sinusoid occurs at the zero
crossing, as shown by Figure 7.57. To evaluate the slope of the waveform at the
zero crossing, let

Figure 7.57 The maximum slope of a sinusoidal signal varies with the
signal frequency.

Then:

The maximum slope of the sinusoidal signal will therefore occur at ωt = 0, π, 2π, .
. . , so that

Thus, the maximum slope of a sinusoid is proportional to both the signal
frequency and the amplitude. The curve shown by a dashed line in Figure 7.57
should indicate that as ω increases, so does the slope of υ(t) at the zero crossings.
What is the direct consequence of this result, then?

Short-Circuit Output Current
Recall the model for the op-amp shown in Figure 7.3, which depicted the internal
circuit of the op-amp as an equivalent input impedance Rin and a controlled
voltage source Aυ in. In practice, the internal source is not ideal because it cannot
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provide an infinite amount of current (to the load, to the feedback connection, or
to both). The immediate consequence of this nonideal op-amp characteristic is
that the maximum output current of the amplifier is limited by the so-called short-
circuit output current ISC:

To further explain this point, consider that the op-amp needs to provide current to
the feedback path (in order to “zero” the voltage differential at the input) and to
whatever load resistance, Ro, may be connected to the output. Figure 7.58
illustrates Page 415this idea for the case of an inverting amplifier, where ISC is
the load current that would be provided to a short-circuit load (Ro = 0).

Figure 7.58 Circuit for illustration of short-circuit output current.

Common-Mode Rejection Ratio
The concepts of common-mode and differential-mode voltages as well as the
common-mode rejection ratio (CMRR) were introduced in Sections 7.2 and
expressed mathematically by equations 7.66 to 7.70. The CMRR is an amplifier
characteristic that can be found in the data sheet for any particular amplifier, such
as a 741 operational amplifier.



1.

2.

3.

4.

Practical Op-Amp Considerations

The results presented in the preceding pages suggest that operational amplifiers
permit the design of rather sophisticated circuits in a few simple steps, by
selecting appropriate resistor values. This is certainly true, provided that the
circuit component selection satisfies certain criteria. A few important practical
criteria for selecting op-amp circuit component values are summarized here.

Use standard resistor values. While any arbitrary value of gain can, in
principle, be achieved by selecting the appropriate combination of
resistors, the designer is often constrained to the use of standard 5 percent
resistor values. For example, if a design requires a gain of 25, it might be
tempting to select, say, 100- and 4-kΩ resistors to achieve RF⁄RS = 25 for
the inverting amplifier shown in Figure 7.58. However, 4 kΩ is not a
standard value; the closest 5 percent tolerance resistor value is 3.9 kΩ,
leading to a gain of 25.64. Can you find a combination of standard 5
percent resistors whose ratio is closer to 25?
Ensure that the load current is reasonable. Assume the maximum output
voltage in the step 1 example is 10 V. The feedback current required by
your design with RF = 100 kΩ and RS = 4 kΩ would be IF = 10⁄100,000 =
0.1 mA. This is a very reasonable value for an op-amp. If you tried to
achieve the same gain by using, say, a 10-Ω feedback resistor and a 0.39-
Ω source resistor, the feedback current would become as large as 1 A. This
value is generally beyond the capabilities of a generalpurpose op-amp, so
very low resistor values are generally not acceptable. On the other hand,
10-kΩ and 390-Ω resistors would still lead to acceptable currents. As a
general rule of thumb, avoid resistor values lower than 100 Ω in practical
designs.
Avoid stray capacitance by avoiding excessively large resistances, which
can cause unwanted signals to couple into the circuit through a mechanism
known as capacitive coupling. Large resistances can also cause other
problems. As a general rule of thumb, avoid resistor values higher than 1
MΩ in practical designs.
Precision designs may be warranted. If a certain design requires that the
amplifier gain be set to a very accurate value, it may be appropriate to use



the (more expensive) option of precision resistors: for example, 1 percent
tolerance resistors are commonly available, at a premium cost. Some of
the examples and homework problems explore the variability in gain due
to the use of higher- and lower-tolerance resistors.
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EXAMPLE 7.9 Voltage Supply Limits in an Inverting Amplifier
Problem

Compute and sketch the output voltage of the inverting amplifier of Figure 7.59.

Figure 7.59 Circuit for Example 7.9.

Solution
Known Quantities: Resistor and supply voltage values; input voltage.
Find: υo(t).Page 417

Schematics, Diagrams, Circuits, and Given Data: Ro = 1 kΩ; RF = 10 kΩ; Ro = 1
kΩ; 
Assumptions: Assume a supply voltage–limited op-amp.
Analysis: For an ideal op-amp the output would be



However, the supply voltage is limited to ±15 V, and the op-amp output voltage
will therefore saturate before reaching the theoretical peak output value of ±20 V.
Figure 7.60 depicts the output voltage waveform.

Figure 7.60 Op-amp output with voltage supply limit

Comments: In a practical op-amp, saturation would be reached at 1.5 V below the
supply voltages, or at approximately ±13.5 V.

EXAMPLE 7.10 Voltage Supply Limits in an Op-Amp Integrator
Problem

Compute and sketch the output voltage of the integrator of Figure 7.44.

Solution
Known Quantities: Resistor, capacitor, and supply voltage values; input voltage.
Find: υo(t).

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: Assume a supply voltage–limited op-amp. The initial condition is
υout(0) = 0.

Analysis: For an ideal op-amp integrator the output would be



However, the supply voltage is limited to ±15 V, and the integrator output voltage
will therefore saturate at the lower supply voltage value of −15 V as the term 2.5t
increases with time. Figure 7.61 depicts the output voltage waveform.

Figure 7.61 Effect of DC offset on integrator

Comments: Note that the DC offset in the waveform causes the integrator output
voltage to increase linearly with time. The presence of even a very small DC
offset will always cause integrator saturation. One solution to this problem is to
include a large feedback resistor in parallel with the capacitor.

EXAMPLE 7.11 Gain-Bandwidth Product Limit in an Op-Amp
Problem

Determine the maximum allowable closed-loop voltage gain of an op-amp if the
amplifier is required to have an audio-range bandwidth of 20 kHz.

Solution
Known Quantities: Gain-bandwidth product.
Find: Gmax.

Schematics, Diagrams, Circuits, and Given Data: A0 = 106; ω0 = 2π × 5 rad/s.

Assumptions: Assume a gain-bandwidth product limited op-amp.
Analysis: The gain-bandwidth product of the op-amp is



A0 × ω0 = k = 106 × 2π × 5 = π × 107 rad/s

The desired bandwidth is ωmax = 2π × 20, 000 rad/s, and the maximum allowable
gain will therefore be

For any closed-loop voltage gain greater than 250, the amplifier would have
reduced bandwidth.

Comments: If we desired to achieve gains greater than 250 and maintain the same
bandwidth, two options would be available: (1) Use a different op-amp with
greater gain-bandwidth product, or (2) connect two amplifiers in cascade, each
with lower gain and greater bandwidth, such that the product of the gains would
be greater than 250.

To further explore the first option, you may wish to look at the device data
sheets for different op-amps and verify that op-amps can be designed (at a cost!)
to have substantially greater gain-bandwidth product than the amplifier used in
this example.
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EXAMPLE 7.12 Increasing the Gain-Bandwidth Product by Means
of Amplifiers in Cascade
Problem

Determine the overall 3-dB bandwidth of the cascade amplifier of Figure 7.62.



Figure 7.62 Cascade amplifier

Solution
Known Quantities: Gain-bandwidth product and gain of each amplifier.
Find: ω3 dB of cascade amplifier.

Schematics, Diagrams, Circuits, and Given Data: A0 Ω0 = k = 4π × 106 for each
amplifier. RF⁄RS = 100 for each amplifier.

Assumptions: Assume gain-bandwidth product limited (otherwise ideal) op-
amps.
Analysis: Let G1 and ω1 denote the gain and the 3-dB bandwidth of the first
amplifier, respectively, and G2 and ω2 those of the second amplifier.

The 3-dB bandwidth of the first amplifier is

The second amplifier will also have

Thus, the approximate bandwidth of the cascade amplifier is 4π × 10 4, and the
gain of the cascade amplifier is G 1 G 2 = 100 × 100 = 10 4 or 80 dB.

Had we attempted to achieve the same gain with a single-stage amplifier
having the same K, we would have achieved a bandwidth of only

Comments: In practice, the actual 3-dB bandwidth of the cascade amplifier is not
quite as large as that of each of the two stages because the gain of each amplifier



starts decreasing at frequencies somewhat lower than the nominal cutoff
frequency.Page 419

EXAMPLE 7.13 Effect of Input Offset Voltage on an Amplifier
Problem

Determine the effect of the input offset voltage Vos on the output of the amplifier
shown in Figure 7.63.

Figure 7.63 Op-amp input offset voltage

Solution
Known Quantities: Nominal closed-loop voltage gain; input offset voltage.
Find: The offset voltage component in the output voltage Vo, os.

Schematics, Diagrams, Circuits, and Given Data: A nom = 100; V os = 1.5 mV.
Assumptions: Assume an input offset voltage–limited (otherwise ideal) op-amp.
Analysis: The amplifier is connected in a noninverting configuration; thus its gain
is

The DC offset voltage, represented by an ideal voltage source, is represented as
being directly applied to the noninverting input; thus



Vo, os = Gnom Vos = 100 V os = 150 mV

Thus, we should expect the output of the amplifier to be shifted upward by 150
mV.

Comments: The input offset voltage is not, of course, an external source, but it
represents a voltage offset between the inputs of the op-amp. Figure 7.55 depicts
how such an offset can be zeroed. The worst-case offset voltage is usually listed
in the device data sheets. Typical values are 2 mV for the 741c general-purpose
op-amp and 5 mV for the FET-input TLO81.

EXAMPLE 7.14 Effect of Input Offset Current on an Amplifier
Problem

Determine the effect of the input offset current Ios on the output of the amplifier
of Figure 7.64.

Figure 7.64 Circuit for Example 7.14.

Solution
Known Quantities: Resistor values; input offset current.
Find: The offset voltage component in the output voltage υout,os.

Schematics, Diagrams, Circuits, and Given Data: Ios = 1 µA; R2 = 10 kΩ.

Assumptions: Assume an input offset current–limited (otherwise ideal) op-amp.



Analysis: We calculate the inverting and noninverting terminal voltages caused
by the offset current in the absence of an external input:

Page 420With these values we can apply KCL at the inverting node and write

Thus, we should expect the output of the amplifier to be shifted downward by
R2Ios, or 104 × 10−6 = 10 mV for the data given in this example.

Comments: Usually, the worst-case input offset currents (or input bias currents)
are listed in the device data sheets. Values can range from 100 pA (for CMOS op-
amps, for example, LMC6061) to around 200 nA for a low-cost general-purpose
amplifier (for example, μA741c).Page 421

EXAMPLE 7.15 Effect of Slew Rate Limit on an Amplifier
Problem

Determine the effect of the slew rate limit S0 on the output of an inverting
amplifier for a sinusoidal input voltage of known amplitude and frequency.

Solution
Known Quantities: Slew rate limit S0; amplitude and frequency of sinusoidal
input voltage; amplifier closed-loop gain.
Find: Sketch the theoretically correct output and the actual output of the
amplifier in the same graph.



Schematics, Diagrams, Circuits, and Given Data: S0 = 1 V/µs; υS = sin(2π ×
105t); G = 10.
Assumptions: Assume the op-amp is slew rate–limited, but otherwise ideal.
Analysis: Given the closed-loop voltage gain of 10, compute the theoretical
output voltage to be:

υo = −10 sin (2π × 105t)

The maximum slope of the output voltage is then computed as follows:

Clearly, the value calculated above far exceeds the slew rate limit. Figure 7.65
depicts the approximate appearance of the waveforms that one would measure in
an experiment.

Figure 7.65 Distortion introduced by slew rate limit

Comments: Note that in this example the slew rate limit has been exceeded
severely, and the output waveform is visibly distorted, to the point that it has
effectively become a triangular wave. The effect of the slew rate limit is not
always necessarily so dramatic and visible; thus one needs to pay attention to the
specifications of a given op-amp. The slew rate limit is listed in the device data
sheets. Typical values can range from 13 V/μs, for the TLO81, to around 0.5 V/μs
for a low-cost general-purpose amplifier (for example, μA741c).



EXAMPLE 7.16 Effect of Short-Circuit Current Limit on an
Amplifier
Problem

Determine the effect of the short-circuit limit ISC on the output of an inverting
amplifier for a sinusoidal input voltage of known amplitude.

Solution
Known Quantities: Short-circuit current limit ISC; amplitude of sinusoidal input
voltage; amplifier closed-loop gain.
Find: Compute the minimum allowable load resistance value  and sketch the
theoretical and actual output voltage waveforms for resistances smaller than 
Schematics, Diagrams, Circuits, and Given Data: ISC = 50 mA; υS = 0.05 sin
(ωt); G = 100.
Assumptions: Assume the op-amp is short-circuit current–limited, but otherwise
ideal.
Analysis: Given the closed-loop voltage gain of 100, compute the theoretical
output voltage to be:

υo(t) = −G υS(t) = −5 sin(ωt)

To assess the effect of the short-circuit current limit, calculate the peak value of
the output voltage since this is the condition that will require the maximum output
current from the op-amp:

For any load resistance less than 100 Ω, the required load current will be greater
than ISC. For example, if we chose a 75-Ω load resistor, we would find that

That is, the output voltage cannot reach the theoretically correct 5-V peak and
would be “compressed” to reach a peak voltage of only 3.75 V. This effect is
depicted in Figure 7.66.



Figure 7.66 Distortion introduced by short-circuit current limit

Comments: The short-circuit current limit is listed in the device data sheets.
Typical values for a low-cost general-purpose amplifier (say, the 741c) are in the
tens of milliamperes.
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CHECK YOUR UNDERSTANDING
How long will it take (approximately) for the integrator of Example 7.10 to
saturate if the input signal has a 0.1-VDC bias [that is, υS(t) = 0.1 + 0.3 cos(10t)]?

CHECK YOUR UNDERSTANDING
What is the maximum gain that could be achieved by the op-amp of Example
7.11 if the desired bandwidth is 100 kHz?

Answer: Approximately 30 s

Answer: Amax = 50



CHECK YOUR UNDERSTANDING
In Example 7.12, the closed-loop gain of each amplifier was assumed constant at
frequencies below the cutoff frequency. In practice, this is only approximately
true, since the open-loop gain A of each op-amp begins to decrease with
frequency at frequencies usually much lower than the closed-loop gain cutoff
frequency. The frequency response for the open-loop gain of an op-amp is well
approximated by:

Use this expression to find an expression for the closed-loop gain of the cascade
amplifier. (Hint: The combined gain is equal to the product of the individual
closed-loop gains.) What is the actual gain in decibels at the cutoff frequency ω0
for the cascade amplifier?

What is the 3-dB bandwidth of the cascade amplifier of Example 7.12? [Hint:
The gain of the cascade amplifier is the product of the individual op-amp
frequency responses. Compute the magnitude of this product, set it equal to 

 and solve for ω.]

CHECK YOUR UNDERSTANDING
What is the maximum gain that can be accepted in the op-amp circuit of Example
7.13 if the offset is not to exceed 50 mV?
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Answers: 74 dB; ω 3 dB = 2π × 12,800 rad/s

Answer: A Vmax = 33.3



1.

2.

3.

CHECK YOUR UNDERSTANDING
Given the desired peak output amplitude (10 V), what is the maximum frequency
that will not result in violating the slew rate limit for the op-amp of Example
7.15.

Conclusion
Operational amplifiers constitute the single most important building block in
analog electronics. The contents of this chapter will be frequently referenced in
later sections of this book. Upon completing this chapter, the following learning
objectives should have been mastered:

Understand the properties of ideal amplifiers and the concepts of gain, input
impedance, output impedance, and feedback. Ideal amplifiers represent
fundamental building blocks of electronic instrumentation. With the concept
of an ideal amplifier clearly established, one can design practical amplifiers,
filters, integrators, and many other signal processing circuits. A practical op-
amp closely approximates the characteristics of ideal amplifiers.
Understand the difference between open-loop and closed-loop op-amp
configuration; and compute the gain (or complete the design of) simple
inverting, noninverting, summing, and differential amplifiers using ideal op-
amp analysis. Analyze more advanced op-amp circuits, using ideal op-amp
analysis, and identify important performance parameters in op-amp data
sheets. Analysis of op-amp circuits is made easy by a few simplifying
assumptions, which are based on the op-amp having a very large input
impedance, a very small output impedance, and a large open-loop gain. The
simple inverting and noninverting amplifier configurations permit the design
of very useful circuits simply by appropriately selecting and placing a few
resistors.
Analyze and design simple active filters. Analyze and design ideal integrator
and differentiator circuits. The use of capacitors in op-amp circuits extends
the applications of this useful element to include filtering, integration, and
differentiation.

Answer: fmax = 159 kHz



4.

5.

7.1

7.2

Understand the structure and behavior of analog computers, and design
analog computer circuits to solve simple differential equations. The
properties of op-amp summing amplifiers and integrators make it possible to
construct analog computers that can serve as an aid in the solution of
differential equations and in the simulation of dynamic systems. While
digital computer-based numerical simulations have become very popular in
the last two decades, there is still a role for analog computers in some
specialized applications.
Understand the principal physical limitations of an op-amp. It is important to
understand that there are limitations in the performance of op-amp circuits
that are not predicted by the simple op-amp models presented in the early
sections of the chapter. In practical designs, issues related to voltage supply
limits, bandwidth limits, offsets, slew rate limits, and output current limits
are very important if one is to achieve the design performance of an op-amp
circuit.Page 424

HOMEWORK PROBLEMS
Sections 7.1: Ideal Amplifiers

The circuit shown in Figure P7.1 has a DC signal source, two stages of
amplification, and a load. Determine, in decibels, the power gain G = P0⁄PS
= Vo Io⁄VS IS, where:

Figure P7.1

A temperature sensor in a production line under normal operating
conditions produces a no-load (i.e., sensor current = 0) voltage:



7.3

7.4

The temperature is monitored on a display (the load) with a vertical line of
light-emitting diodes. Normal conditions are indicated when a string of the
bottommost diodes 2 cm in length is on. This requires that a voltage be
supplied to the display input terminals where

The signal from the sensor must be amplified. Therefore, a voltage
amplifier, shown in Figure P7.2, is connected between the sensor and CRT
with

Determine the required no-load gain of the amplifier.

Figure P7.2

What approximations are valid for the voltages and currents shown in
Figure P7.3 of an ideal operational amplifier? What conditions must be
satisfied for these approximations?

Figure P7.3

What approximations are usually made about the circuit components and
parameters shown in Figure P7.4 for an ideal op-amp?



7.5

7.6

Figure P7.4

Sections 7.2: The Operational Amplifier
Find υ1 in the circuits of Figure P7.5(a) and (b). In Figure P7.5(a) the 3-kΩ
resistor “loads” the output; that is, υ1 is changed by attaching the 3-kΩ
resistor in parallel with the lower 6-kΩ resistor. However, in Figure P7.5(b)
the isolation buffer holds υ1 to υg⁄2, regardless of the presence of the 3-kΩ
resistor and its value!

Figure P7.5
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Find the current i in the circuit of Figure P7.6.



7.7

7.8

Figure P7.6

Find the voltage υo in Figure P7.7 by (i) applying nodal analysis, and by (ii)
finding the Thévenin equivalent network seen to the left of nodes a and b to
form an archetypical inverting amplifier.

Figure P7.7

Find the Thévenin equivalent network seen between the noninverting
terminal node and the reference node in Figure P7.8.



7.9

7.10

Figure P7.8

Determine an expression for the closed-loop voltage gain G = υo⁄υ1 for the
circuit of Figure P7.9. Find the input conductance i1⁄υ1 seen by the voltage
source. Assume the op-amp is ideal.

Figure P7.9

Differential amplifiers are often used in conjunction with a Wheatstone
bridge, such as that shown in Figure P7.10, where each resistor is a
temperature sensing element, and their change in resistance ΔR is directly
proportional to their change in temperature ΔT. The constant of
proportionality is the temperature coefficient ±α, which can be positive
(PTC) or negative (NTC). Find the Thévenin equivalent network seen by
the amplifier to the left of nodes a and b. Assume that 



7.11

a.

b.

Figure P7.10

The circuit shown in Figure P7.11 is a negative impedance converter. Find
the input impedance Zin:

when:

Zo = R
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Figure P7.11



7.12

7.13

a.

b.

The circuit of Figure P7.12 demonstrates that op-amp feedback can create a
resonant circuit without the use of an inductor. Assume R1 = R2 = 1 Ω, C1 =
2Q F, and C2 = 1⁄2Q F, where Q is the quality factor introduced in Chapter
5. Use nodal analysis to determine the voltage gain υo⁄υin.

Figure P7.12

Inductors are difficult to use as components of integrated circuits due to the
need for large coils of wire, which require significant space and tend to act
as excellent antennas for ambient noise. As an alternative, a “solid-state
inductor” can be constructed as shown in Figure P7.13.

Determine the input impedance Zin = V1⁄I1.

What is Zin when R = 1,000 Ω and C = 0.02 μF?



7.14

Figure P7.13

In the circuit of Figure P7.14, determine the input impedance Zin = V1⁄I1.



7.15

Figure P7.14
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It is easy to construct a current source using an inverting amplifier
configuration, as in Figure P7.15. Verify that the current I through Ro is
independent of the value of Ro, assuming that the op-amp stays in its linear
operating region, and find the value of I.



7.16

Figure P7.15

A “super diode” or “precision diode” circuit, which eliminates the diode
offset voltage, is shown in Figure P7.16. The diode permits current directed
from anode to cathode only, as indicated in the figure. Determine the output
voltage υo(t) for the given input voltage υin(t).



7.17

7.18

7.19

7.20

Figure P7.16

Determine the response function  for the circuit of Figure P7.17.

Figure P7.17

Time delays are often encountered in engineering systems. They can be
approximated using Euler’s definition as

If T = 1 and N = 1, then the approximation can be implemented by the
circuit of Problem 7.17 (see Figure P7.17), with the addition of a unity gain
inverting amplifier to eliminate the negative sign. Modify the circuit of
Figure P7.17 as needed, and use it as many times as necessary to design an
approximate time delay for T = 1 and N = 4 in Euler’s definition of the
exponential.

Show that the output voltage υ3 shown in Figure P7.8 has the form υ3 = a1
υ1 + a2 υ2, where a1 and a2 are constants.

For the circuit of Figure P7.20, find υo.



7.21

7.22
a.

b.

Figure P7.20
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Differential amplifiers are often used in conjunction with a Wheatstone
bridge, such as that shown in Figure P7.10, where each resistor is a
temperature sensing element, and their change in resistance ΔR is directly
proportional to their change in temperature ΔT. The constant of
proportionality is the temperature coefficient ±α, which can be positive
(PTC) or negative (NTC). Assume ∣ΔR∣ = kΔT, where K = constant.
Find an expression for υo (ΔT).

Consider the circuit of Figure P7.22. Assume ω = 1,000 rad/s:

If V1 − V2 = 1∠0 V, use phasor analysis to find ∣Vo∣.

Use phasor analysis to find ∠Vo.

Figure P7.22



7.23

7.24

7.25

a.

b.

c.

7.26

a.

b.

Find an expression for the voltage gain  of the circuit of Figure
P7.12. Assume R1 = 3 Ω, R2 = 2 Ω, and 

In the circuit of Figure P7.24, assume RF = 12 kΩ and that it is critical that
the voltage gain υo⁄υS remain within ±2 percent of the nominal gain of 20.
What value of RS is needed for the nominal gain? What are the allowed
maximum and minimum values of RS? Will a standard 5 percent tolerance
resistor be adequate to satisfy this requirement? (See Table 1.3 of standard
resistor values in Chapter 1.)

Figure P7.24

The two 5 percent tolerance resistors of an inverting amplifier (see Figure
7.8) have nominal values RF = 33 kΩ and RS = 1.5 kΩ.

What is the nominal voltage gain G = υo⁄υS of the amplifier?

What is the maximum value of G if the resistor values can swing ±5
percent?

What is the minimum value of G if the resistor values can swing ±5
percent?

The circuit of Figure P7.26 is a level shifter, which adjusts the DC portion
of the input voltage υ1(t) while also amplifying the AC portion. Let: υ1(t) =
10 + 10−3 sinωt V, RF = 10 kΩ and Vbatt = 20 V.

Find RS such that no DC voltage appears at the output.

What is υo(t), using RS from part a?



7.27

7.28

7.29

Figure P7.26

Figure P7.27 shows a simple practical amplifier that uses a 741 op-amp
chip. Pin numbers are as indicated. Assume the op amp has a 2-MΩ input
resistance, an open-loop gain A = 200,000, and an output impedance Ro =
50 Ω. Find the closed-loop gain G = υo⁄υi.

Figure P7.27
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Design an inverting summing amplifier to obtain the following weighted
sum of four different signal sources:

Assume that RF = 5 kΩ, and determine the required source resistors.

The amplifier shown in Figure P7.29 has a signal source (υs in series with
Rs) and load Ro separated by an amplification stage built upon the Motorola
MC1741C op-amp. Assume:



a.

b.

7.30

7.31

The op-amp itself has a 2-MΩ input resistance, a 75-Ω output resistance,
and a 200K open-loop gain. To a first approximation, the op-amp would be
modeled as ideal. A better model would include the effects of the
parameters listed above.

Assume the op-amp is not ideal, and derive an expression for the input
resistance ri = υi⁄ii of the overall amplifier, where υi = υs − iiRs.

Determine the value of that input resistance, and compare it to the
input resistance derived for an ideal op-amp.

Figure P7.29

In the circuit shown in Figure P7.30, assume R1 = 40 kΩ, R2 = 2 kΩ, RF =
150 kΩ, and υs = 0.01 + 0.005 cos(ωt) V. Determine an expression for the
output voltage υo and its value. Assume an ideal op-amp.

Figure P7.30
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For the circuit shown in Figure P7.31, assume υS = 0.3 + 0.2 cos(ωt), RS =
4 Ω, and R o = 15 Ω. Determine the output voltage Vo for an ideal op-amp



7.32

7.33

and also for a Motorola MC1741C op-amp with characteristics as given in
Problem P7.29.

Figure P7.31

For the circuit shown in Figure P7.32, assume:

Determine an expression and value for the output voltage υo.

Figure P7.32

For the circuit shown in Figure P7.33, assume υS1 = −2 V, υS2 = 2 sin(2π ·
2,000t) V, R1 = 100 kΩ, R2 = 50 kΩ, and RF = 150 kΩ. Determine the
output voltage υo.



7.34

a.

b.

7.35

7.36

Figure P7.33

For the circuit shown in Figure P7.33, assume: υ S1 = υ S2 = 5 mV, R 1 =
50 Ω, R 2 = 2 kΩ, and RF = 2 kΩ. The nonideal MC1741C op-amp has a 2-
mΩ input resistance, a 75-Ω output resistance, and an open-loop gain of
200K. Determine:

An expression for the output voltage υo.

The voltage gain for each of the two input signals.

In the circuit shown in Figure P7.35, assume ideal op-amps to determine
the output voltage Vo. All resistances are equal and V in = 4∠0 V.

Figure P7.35

In the circuit shown in Figure P7.36, assume V 2 = 8∠0 V and find the
input voltage Vin such that Vo = 0. Assume ideal op-amps.



7.37

a.

b.

c.

7.38

7.39

Figure P7.36

In the circuit shown in Figure P7.32, assume:

Determine:

The output voltage υo.

The common-mode component of υo.

The differential-mode component of υo.

In the circuit shown in Figure P7.38, determine the output voltage Vo. Let R
1 = 10 kΩ, R 2 = 10 kΩ, R 3 = 15 kΩ, R 4 = 10 kΩ, RF = 50 kΩ, and Vin =
6 V.

Figure P7.38

A linear potentiometer RP is used to sense and generate a voltage υy
proportional to the y-coordinate of an xy inkjet printer head. A reference
signal υR is supplied by the software controlling the printer. The difference



a.

b.

7.40

between these voltages is amplified to drive a motor. The motor changes
the position of the printer head until that difference equals zero. For proper
operation, the motor voltage must be 10 times the difference between the
signal and reference voltage. For rotation in the proper direction, the motor
voltage must be negative with respect to υy. In addition, iP must be
negligibly small to avoid loading the pot and causing an erroneous signal
voltage.

Design an op-amp circuit that satisfies these specifications. Redraw
Figure P7.39, replacing the dotted line box with your amplifier circuit.
Be sure to indicate component values.

Mark the pin numbers on your redrawn figure for an 8-pin single
μA741C op-amp chip.

Figure P7.39
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Compute the current Ibatt delivered by the battery in Figure P7.40. Assume:
RS1 = 30 kΩ, RS2 = 30 kΩ, RF1 = 100 kΩ, RF2 = 60 kΩ, R1 = 5 kΩ, R2 = 7
kΩ, and Vbatt = 3 V.

Figure P7.40



7.41

7.42

7.43

Figure P7.41 shows a simple voltage-to-current converter. Show that the
current Io through the light-emitting diode (LED), and therefore its
brightness, is proportional to the source voltage Vs as long as Vs > 0. The
LED permits current in the direction shown only.

Figure P7.41

Figure P7.42 shows a simple current-to-voltage converter. Show that the
voltage Vo is proportional to the current generated by the cadmium sulfide
(CdS) solar cell. Also show that the transimpedance of the circuit Vo⁄Is is
−R!

Figure P7.42

An op-amp voltmeter circuit as in Figure P7.43 is required to measure a
maximum input of V S = 15 mV. The op-amp input current is I B = 0.25
μA. The ammeter is designed for full-scale deflection when Im = 80 μA and
rm = 8 kΩ. Determine suitable values for R3 and R4 so that the full-scale
deflection of the ammeter corresponds to VS = 15 mV. What is the
significance of IB for a nonideal op-amp?



7.44

7.45

7.46

7.47

Figure P7.43

Find an expression for the voltage gain υo⁄υs in Figure P7.44. What is the
gain when RS1 = RS2 = 2.5 kΩ and RF1 = RF2 = 9.0 kΩ?

Figure P7.44

Select appropriate components using standard 5 percent resistors to obtain a
voltage gain υo⁄υs ≈ 80 for the circuit of Figure P7.44. How closely can you
approximate the desired gain? Compute the expected error.

Repeat Problem 7.45 but compute the maximum and minimum possible
voltage gains if the resistor values are allowed to swing ±5 percent.

The circuit shown in Figure P7.47 can function as a precision ammeter.
Assume that the voltmeter has a range of 0 to 10 V and an internal
resistance of 20 kΩ. The full-scale reading of the ammeter is intended to be
1 mA. Find the resistance R such that the voltmeter reading is 10 V when
iin = 1 mA.



7.48

7.49

7.50

7.51

7.52

a.

b.

Figure P7.47
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Select appropriate components using standard 5 percent resistors to obtain a
voltage gain υo⁄υs = 20 for the circuit of Figure P7.30. How closely can you
approximate the desired gain? Compute the expected error.

Repeat Problem 7.48 but compute the maximum and minimum possible
voltage gains if the resistor values are allowed to swing ±5 percent.

Select appropriate components using standard 1 percent resistors to obtain a
differential gain of approximately 15 in the circuit of Figure P7.32. Assume
that R3 = R4 and R1 = R2. How closely can you approximate the desired
gain? Compute the expected error.

Repeat Problem 7.50 but compute the maximum and minimum possible
voltage gains if the resistor values are allowed to swing ±1 percent. Also
compute the maximum common-mode output for the same allowed ±1
percent swing. Pick the nominal resistor values so that R3 = R4 and R1 = R2.

Sections 7.3: Active Filters
The circuit shown in Figure P7.52 with input Vs and output Vo is an active
high-pass filter. Assume:

Determine:

The voltage gain |Vo⁄Vs| (in dB) in the passband.

The cutoff frequency.

Figure P7.52



7.53

a.

b.

7.54

a.

b.

7.55

The op-amp circuit shown in Figure P7.53 is used as a high-pass filter.
Assume:

Determine:

The voltage gain |Vo⁄Vs|, (in dB), in the passband.

The cutoff frequency.

Figure P7.53

The op-amp circuit shown in Figure P7.53 is used as a high-pass filter.
Assume:

Determine:

The voltage gain |Vo⁄Vs|, (in dB), in the passband.

The cutoff frequency.

The circuit shown in Figure P7.55 is an active filter. Assume:

Determine the break frequencies and |Vo⁄Vi | at very low and at very high
frequencies.



7.56

a.

b.

c.

d.

7.57

Figure P7.55

The circuit shown in Figure P7.56 is an active filter. Assume:

Determine:

An expression for the voltage gain in standard form:

The break frequencies.

The passband gain.

The Bode magnitude and phase plots of Vo⁄Vi.Page 433

Figure P7.56

The op-amp circuit shown in Figure P7.57 is used as a low-pass filter.
Assume:



a.

b.

7.58

a.

b.

7.59

a.

b.

c.

d.

e.

Determine:

An expression in standard form for the voltage gain Vo⁄Vs.

The gain, in dB, in the passband and at the cutoff frequency.

Figure P7.57

The op-amp circuit shown in Figure P7.57 is a low-pass filter. Assume:

Determine:

An expression in standard form for the voltage gain Vo⁄Vs.

The gain, in dB, in the passband and at the cutoff frequency.

The circuit shown in Figure P7.59 is a bandpass filter. Assume:

Determine:

The voltage gain |Vo⁄Vi| in the passband.

The resonant frequency.

The break frequencies.

The quality factor Q.

The Bode magnitude and phase plots of Vo⁄Vi .



7.60

a.

b.

c.

7.61

7.62

7.63
a.

Figure P7.59

The op-amp circuit shown in Figure P7.57 is a low-pass filter. Assume:

Determine:

An expression in standard form for the voltage gain Vo⁄Vs.

The gain, in dB, in the passband and at the cutoff frequency.

Would such small resistance values cause a practical op-amp to behave
in a significantly nonideal manner?Page 434

The circuit shown in Figure P7.59 is a bandpass filter. Assume:

Determine the passband gain.

Derive the frequency response function Vo⁄Vin for the circuit shown in
Figure P7.62.

Figure P7.62

The circuit shown in Figure P7.63 can be used as a low-pass filter.

Derive the frequency response Vo⁄Vin of the circuit.



b.

c.

d.

7.64

7.65

If R 1 = R 2 = 100 kΩ and C = 0.1 μF, compute the attenuation, in dB,
of Vo⁄Vin at ω = 1,000 rad/s.

Compute the amplitude and phase of Vo⁄Vin at ω = 2,500 rad/s.

Find the range of frequencies over which the attenuation of Vo⁄Vin is
less than 1 dB.

Figure P7.36

Determine a symbolic expression in standard form for the voltage gain
Vo⁄Vin in Figure P7.64. What kind of a filter does the voltage gain
represent?

Figure P7.64

For the circuit of Figure P7.65, sketch the amplitude response of V2⁄V1,
indicating the half-power frequencies. Assume the op-amp is ideal.

Figure P7.65



7.66

7.67

7.68

Determine a symbolic expression for the voltage gain Vo⁄VS1 of Figure
P7.66. What kind of a filter does the gain represent?

Figure P7.66

Determine a symbolic expression for the voltage gain Vo⁄VS of Figure
P7.67. What kind of a filter does the gain represent?

Figure P7.67

Sections 7.4: Integrators and Differentiators
The circuit shown in Figure P7.68(a) produces an output voltage υo which
is either the integral or the derivative of the source voltage υs shown in
Figure P7.68(b) multiplied by some gain. Assume:

For the given source voltage, determine the output voltage as a function of
time and plot it.



7.69

Figure P7.68
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The circuit shown in Figure P7.69(a) produces an output voltage υo which
is either the integral or the derivative of the source voltage υs shown in
Figure P7.69(b) multiplied by some gain. Assume:

For the given source voltage, determine the output voltage as a function of
time and plot it.



7.70

a.

b.

7.71

a.

b.

c.

7.72

a.

Figure P7.69

The circuit shown in Figure P7.70 is an integrator. The capacitor is initially
uncharged, and the source voltage is

At t = 0, the switch S1 is closed. How long does it take before clipping
occurs at the output if RS = 10 kΩ and C F = 0.008 μF?

At what times does the integration of the DC input cause the op-amp to
saturate fully?

Figure P7.70

A practical integrator is shown in Figure 7.35. Note that the resistor in
parallel with the feedback capacitor provides a path for the capacitor to
discharge DC voltage. Usually, the time constant RFCF is chosen to be large
enough not to interfere with the integration.

If RS = 10 kΩ, RF = 2 MΩ, C F = 0.008 μF, and υS (t) = 10 V +
sin(2,000π t) V, find υo(t), using phasor analysis.

Repeat part a if RF = 200 kΩ and if RF = 20 kΩ.

Compare the time constants RFCF with the period of the waveform for
parts a and b. What can you say about the time constant and the ability
of the circuit to integrate?

The circuit of Figure 7.40 is a practical differentiator. Assume an ideal op-
amp, and υS (t) = 10 4 sin (2,000π t) mV, CS = 100 μF, CF = 0.008 μF, RF =
2 MΩ, and RS = 10 kΩ.

Determine the voltage gain Vo⁄VS .



b.

7.73

7.74

7.75

7.76

Sum the DC and AC components of υo(t) to find the total output
voltage.

Derive the differential equation in x(t) for the circuit of Figure P7.73.

Figure P7.73

Construct a circuit corresponding to the following differential equation:

Sections 7.5: Physical Limitations of Operational
Amplifiers

Consider the noninverting amplifier of Figure 7.9. Find the error introduced
in υo when the op-amp has an input offset voltage of 2 mV. Assume the
input bias currents are zero and R1 = RF = 4.7 kΩ. Assume that the offset
voltage appears as shown in Figure 7.63.
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In the circuit shown in Figure P7.76, sketch the output voltage υo(t) for the
two input voltages υ1(t) and υ2(t). Assume R1 = 120 kΩ, R2 = 150 kΩ, and
C = 2 nF. Also assume the op-amp slew rate limit is S0 = 1.0 V⁄μs and the
capacitor is initially uncharged.



7.77

7.78

a.

b.

c.

7.79

Figure P7.76

Consider a standard inverting amplifier, as shown in Figure P7.77. Assume
that the offset voltage can be neglected and that the two input bias currents
are equal. Find the value of Rx that eliminates the error in the output
voltage due to the bias currents.

Figure P7.77

Determine the effect of the slew rate limit S0 = 0.5 V⁄μs on the output of the
isolation buffer for each of the following sinusoidal input voltages:

υin = 0.8 sin (2π ⋅ 6,000t) V

υin = 0.9 sin (2π ⋅ 7,500t) V

υin = 0.9 sin (2π ⋅ 15,000t) V

In the circuit shown in Figure P7.79, derive the output voltage υo(t) as a
function of υin(t). Compute the effect of the slew rate on the maximum
slope of the output voltage. Assume υin is zero but then undergoes a step
increase of amplitude ΔV.
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a.

b.

c.

7.81

7.82

Figure P7.79

Determine the effect of the slew rate limit S0 = 0.5 V⁄μs on the output of a
noninverting amplifier with closed-loop voltage gain G = 10 for a
symmetric square wave υin. Sketch the output waveform for each following
case:

υin switches between ±0.5 V and f = 500 Hz.

υin switches between ±1.25 V and f = 5 kHz.

υin switches between ±0.5 V and f = 25 kHz.

Consider a differential amplifier. We desire the common-mode output to be
less than 1 percent of the differential-mode output. Find the minimum
decibel common-mode rejection ratio to fulfill this requirement if the
differential-mode gain Adm = 1,000. Let

Square wave testing can be used with operational amplifiers to estimate the
slew rate, which is defined as the maximum rate at which the output can
change (in volts per microsecond). Input and output waveforms for a
noninverting op-amp circuit are shown in Figure P7.82. As indicated, the
rise time tR of the output waveform is defined as the time it takes for that
waveform to increase from 10 percent to 90 percent of its final value, or

where τ is the circuit time constant. Estimate the slew rate for the op-amp.



7.83

a.

b.

c.

d.

7.84

a.

b.

Figure P7.82
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The nonideal op-amp used in the inverting amplifier of Figure 7.8 has an
open-loop voltage gain A = 250 × 103. Assume that υ− is small but nonzero.
The input terminal currents iin can still be assumed zero. Apply equations
7.23 to find:

If RS = 10 kΩ and RF = 1 MΩ, find the closed-loop voltage gain G =
υo⁄υS.

Repeat part a for RF = 10 MΩ.

Repeat part a for RF = 100 MΩ.

Evaluate G as A → ∞ for parts a to c.

The nonideal op-amp used in the noninverting amplifier of Figure P7.84
has an open-loop voltage gain A = 250 × 103. Assume υin = υ− + Δυ, where
Δυ is small but nonzero, as suggested in equations 7.23. The input terminal
currents iin can still be assumed zero. Find:

The closed-loop gain υo⁄υin for RF = RS = 7.5 kΩ;

The closed-loop gain υo⁄υin for RF = RS = 7.5 kΩ.



7.85

7.86

7.87

7.88

a.

b.

c.

Figure P7.84

Given the unity-gain bandwidth for an ideal op-amp equal to 5.0 MHz, find
the voltage gain at a frequency of f = 500 kHz.

The open-loop gain A of real (nonideal) op-amps is very large at low
frequencies but decreases markedly as frequency increases. As a result, the
closed-loop gain of op-amp circuits can be strongly dependent on
frequency. Determine the relationship between a finite and frequency-
dependent open-loop gain A(ω) and the closed-loop gain G(ω) of an
inverting amplifier as a function of frequency. Plot G versus ω. Notice that
−RF⁄RS is the low-frequency closed-loop gain.

A sinusoidal sound (pressure) wave p(t) impinges upon a condenser
microphone of sensitivity S (mV/kPa). The voltage output of the
microphone υs is amplified by two cascaded inverting amplifiers to produce
an amplified signal υ0. Determine the peak amplitude of the sound wave (in
dB) if υ0 = 5 VRMS. Estimate the maximum peak magnitude of the sound
wave in order that υ0 not contain any saturation effects of the op-amps.

For the circuit shown in Figure P7.88, assume a nonideal op-amp and:

where A1 and A2 are the open-loop voltage gains associated with inputs υS1
and υS2, respectively.

Determine:

Common- and differential-mode input signals.

Common- and differential-mode closed-loop gains.

Common- and differential-mode components of the output voltage.



d.

e.

7.89

a.

b.

c.

d.

7.90

Total output voltage.

Common-mode rejection ratio.

Figure P7.88

For the circuit shown in Figure P7.88, assume a nonideal op-amp and:

where Ac and Ad are the common- and differential-mode open-loop voltage
gains, respectively. Determine:

Common- and differential-mode input voltages.

The voltage gains for υS1 and υS2.

The common-mode component and differential-mode component of
the output voltage.

The common-mode rejection ratio (CMRR), in dB.

In the circuit shown in Figure P7.90, the two voltage sources are
temperature sensors with T = temperature (Kelvin) and
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where



a.

b.

c.

d.

e.

7.91

a.

b.

c.

7.92

If

determine

The voltage gains for the two input voltages.

The common-mode and differential-mode input voltages.

The common-mode and differential-mode gains.

The common-mode component and the differential-mode component
of the output voltage.

The common-mode rejection ratio (CMRR), in dB.

Figure P7.90

In the differential amplifier shown in Figure P7.90,

Determine

The common-mode gain.

The differential-mode gain.

The common-mode rejection ratio, in dB.

The ideal charge amplifier discussed in the Focus on Measurements box,
“Charge Amplifiers,” will saturate in the presence of any DC offsets.
Figure P7.92 presents a practical charge amplifier in which the user is
provided with a choice of three time constants—RCF, 10RCF, and 100RCF



—which can be selected by means of a switch. Assume that R = 0.1 MΩ,
and CF = 0.1 μF. Analyze the frequency response of the practical charge
amplifier for each time constant, and determine the lowest input signal
frequency that can be amplified without excessive distortion for each case.
Can this circuit amplify a DC signal?

Figure P7.92

 

 

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1The voltage gain G and the open-loop gain A may also be designated as AV and A
V OL, respectively. Electrical conductance is also designated as G; as always, it is
important to correctly interpret a symbol from the context in which it is used.
Happily, conductance G is rarely used in engineering work. Its inverse, resistance
R, is preferred instead.

2The operational amplifier of Figure 7.6 is a voltage amplifier; another type of
operational amplifier, called a current or transconductance amplifier, is described
in the homework problems.

3Special op-amps are employed to achieve extremely high input impedance,
through FET input circuits. See Chapter 10.
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C H A P T E R
8

SEMICONDUCTORSAND DIODES

arvelous advances have taken place in the field of solid state electronics
ever since the invention of the diode and transistor. Modern analog and
digital electronic systems are possible because these discrete electronic
elements have been integrated into complex devices and systems. Although

discrete electronic elements have been replaced in many applications by integrated
circuits (e.g., operational amplifiers), it is nonetheless important to understand how
these elements function. The aim of Part II of this textbook is to explore the behavior
and applications of diodes, transistors, and other electronic devices.

This chapter explains the workings of the semiconductor diode, a device that
finds use in many practical circuits used in electric power systems and in high- and
low-power electronic circuits. While the i-υ characteristic of a diode is inherently
nonlinear, simple linear models can be used to approximate the diode characteristic
and thus produce linear circuits that can be analyzed using the analytical tools
developed in earlier chapters.
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a

 Learning Objectives



1.

2.

3.

4.

5.

Students will learn to...
Understand the basic principles underlying the physics of semiconductor devices
in general and of the pn junction in particular. Become familiar with the diode
equation and i-υ characteristic. Sections 8.1–8.2.
Use various circuit models of the semiconductor diode in simple circuits. These
are divided into two classes: large-signal models, useful to study rectifier
circuits, and small-signal models, useful in signal processing applications
Section 8.2.
Study practical full-wave rectifier circuits and learn to analyze and determine the
practical specifications of a rectifier by using large-signal diode models. Section
8.3.
Understand the basic operation of Zener diodes as voltage references, and use
simple circuit models to analyze elementary voltage regulators. Section 8.4.
Use the diode models presented in Section 8.2 to analyze the operation of
various practical diode circuits in signal processing applications. Section 8.5.

8.1 ELECTRICAL CONDUCTION IN
SEMICONDUCTOR DEVICES

Elemental1 or intrinsic semiconductors are those elements, specifically silicon and
germanium, from group IV of the periodic table whose conductivity is much weaker
than that of a typical conductor but significantly stronger than that of a typical
insulator. For example, typical conductivities of copper (a good conductor) and glass
(a common insulator) are 5.96 × 107 S/m and 10−13 S/m, respectively. By
comparison, silicon and germanium, both semiconductors, have conductivities on the
order of 10−3 and 100, respectively. Another important property of silicon and
germanium is that their conductivities increase with temperature, whereas the
conductivity of most conductors (e.g., metals) decreases with temperature. It is
important to note that most of the group IV elements are not semiconductors; tin and
lead are metals whose conductivity is large and decreases with temperature.

Conducting materials have enough weakly bonded electrons in the outer
conduction band that a modest electric field can easily produce a significant current.
By contrast, the outer-band electrons in a semiconducting material are held by
covalent bonds such that much stronger electric fields are needed to liberate them.
Figure 8.1 depicts the lattice arrangement for a pure silicon (Si) matrix. At
sufficiently high temperatures, thermal energy causes the atoms in the lattice to
vibrate; when sufficient kinetic energy is present, some of the valence electrons break
their bonds with the lattice structure and become available as conduction electrons.



These free electrons enable current flow in the semiconductor. As the temperature
increases, more valence electrons are liberated, which explains why the conductivity
of a semiconductor increases with temperature.

However, the free valence electrons are not the only charge carriers present in a
semiconductor. Whenever a free electron is liberated from the lattice, a Page
441corresponding net positive charge or hole within the lattice is also created as
depicted by Figure 8.2. Holes act as positive charge carriers within a semiconducting
material but with a different mobility—the ease with which charge carriers move
through the lattice—than free electrons. Free electrons move far more easily around
the lattice than holes. These two charge carriers also move in opposite directions
when subjected to an external electric field, as illustrated in Figure 8.3.

Figure 8.1 Lattice structure of silicon, with four valence electrons

Figure 8.2 Free electrons and "holes" in the lattice structure



(8.1)

Figure 8.3 Current in a semiconductor

Occasionally, a free electron traveling in the immediate neighborhood of a hole
will recombine with it to form a covalent bond. The result is two lost charge carriers.
This additional phenomenon of recombination is proportional to the number of free
electrons and holes and reduces the number of charge carriers in a semiconductor.
However, in spite of recombination, at any given temperature a number of free
electrons and holes will be available for conduction. The number of available charge
carriers is called the intrinsic concentration ni. The most commonly reported
expression for ni is:

where T is temperature in K; Eg is the bandgap energy, which for silicon is 1.12 eV;
and k is Boltzmann’s constant 8.62 × 10−5 eV/K. At T = 300 K, ni is approximately
1.5 × 1010 carriers/cm3. Note the strong dependence on temperature.2

As noted above, pure semiconductors are not particularly good conductors. To
enhance its concentration of charge carriers and thus its conductivity, a
semiconductor can be doped, whereby either trivalent (group III) or pentavalent
(group V) impurities are added to the crystalline structure of the semiconductor.
Trivalent impurities, such as boron and gallium, add holes to the semiconductor’s
lattice and are known as acceptors; pentavalent impurities, such as phosphorus and
arsenic, add free electrons, as depicted in Figure 8.4, and are known as donors.



(8.2)

(8.3)

(8.4)

Figure 8.4 Doped semiconductor

Free electrons are the majority charge carrier, and holes are the minority charge
carrier in semiconductors doped with donor elements. These materials are called n-
type semiconductors. Likewise, holes are the majority charge carrier, and free
electrons are the minority charge carrier in semiconductors doped with acceptor
elements. These materials are called p-type semiconductors. In thermal equilibrium,
the concentration of free electrons n (negative) is related to the concentration of holes
p (positive) by:

In a doped semiconductor, the concentration of donated atoms is usually much
greater than the intrinsic concentration of the semiconductor. In this case, the
concentration of majority charge carriers is approximately the same as the
concentration of donated atoms, which is determined by the doping process and is
not a function of temperature. However, the concentration of minority charge carriers
is determined by temperature and is usually much less than the intrinsic
concentration of the semiconductor. For example, in an n-type material, the
concentration of free electrons nn is approximately equal to the concentration of
donor atoms nD. Since , the result is:
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Likewise, in a p-type material where nA is the concentration of acceptor atoms:

In the previous two equations, the subscripts i, n, and p indicate whether the material
is intrinsic (pure) semiconductor, n-type, or p-type, respectively.

It is important to keep in mind that doped n- and p-type materials are electrically
neutral because the donor and acceptor elements have equal numbers of protons and
electrons. The material type simply indicates the nature of the mobile majority charge
carriers present in the conduction band of the material lattice.

8.2 THE PN JUNCTION AND THE
SEMICONDUCTOR DIODE



A simple section of n- or p-type material is not particularly useful for the
construction of electronic circuits. However, when sections of n- and p-type material
are brought in contact to form a pn junction, a diode is formed. Diodes have a
number of interesting and useful properties that are due entirely to the nature of the
pn junction.

Figure 8.5 depicts an idealized pn junction. The difference in concentrations of
free electrons in the n-type material compared to the p-type material results in a
diffusion of free electrons from right to left across the junction. Likewise, the
difference in concentration of holes on either side of the junction results in diffusion
of holes from left to right across the junction. In both cases, the diffusion current Id
is directed left to right because a positive current is defined as either positive holes
moving left to right or negative free electrons moving right to left.

Figure 8.5 A pn junction

As free electrons leave the n-type material and enter the p-type material they tend
to recombine with holes. Likewise, as holes leave the p-type material and enter the n-
type material they tend to recombine with free electrons. Once free electrons and
holes recombine they are no longer mobile, but held in place in the material lattice by
covalent bonds. At first, most of the recombinations occur close to the junction.
However, as time passes, more and more of the mobile charges near the junction
have recombined such that diffusing mobile charges must travel further from the
junction to encounter a partner with which to recombine. Thus, this diffusion process
results in recombinations on both sides of the junction and, as the process continues,
an expanding depletion region wherein virtually no mobile charge carriers remain.
This region is electrically charged because mobile charge carriers that have
recombined to form the region have no electrical counterpart in the lattice where they
have become fixed. In Figure 8.5 this result is Page 443depicted by the negatively
charged p-type region to the left of the junction and the positively charged n-type
region to the right of the junction.

Once the depletion region begins to form, the resulting net charge separation
produces an electric field pointing from the positively charged n-type to the
negatively charged p-type portions of the depletion region. This electric field slows



the ongoing diffusion of majority charge carriers by establishing a potential barrier
or contact potential across the depletion region. This potential depends upon the
semiconductor material (about 0.6 to 0.7 V for silicon) and is also known as the
offset voltage Vγ.

In addition to the diffusion current associated with majority charge carriers, an
oppositely directed drift current IS associated with minority charge carriers is
established across the depletion region. Specifically, free electrons and holes are
thermally generated in the p- and n-type materials, respectively. Any of these
minority carriers that manage to reach the depletion region are swept across it by the
electric field. Note that both components of the drift current contribute to a positive
current from right to left because a positive current is defined as either positive holes
moving right to left or negative free electrons moving left to right.

Figure 8.6 depicts the presence of both a diffusion current and drift current across
the depletion region. Its equilibrium width is reached when the average net drift
current exactly offsets the average net diffusion current. Recall that the magnitude of
the diffusion current is largely determined by the concentration of the donor and
acceptor elements while the magnitude of the drift current is highly temperature
dependent. Thus, the equilibrium width of the depletion region depends upon both
temperature and the doping process.

Figure 8.6 Drift and diffusion currents in a pn junction

Now consider the case shown in Figure 8.7(a) where a battery has been
connected across a pn junction in the reverse-biased direction. Assume that suitable
contacts between the battery and the p- and n-type materials are established. The
reverse-bias orientation of the battery widens the depletion region and increases the
potential barrier across it such that the majority carrier diffusion current decreases.
On the other hand, the minority carrier drift current increases such that there is now a
small (on the order of nano-amperes) nonzero current I0 directed from the n- to p-



(8.5)

(8.6)

(8.7)

type region. I0 is small because it is comprised of minority carriers. Thus, when
reverse-biased, the diode current iD is:

Figure 8.7 Forward- and reverse-biased pn junctions

where IS is known as the reverse saturation current.

When the pn junction is forward-biased as in Figure 8.7(b), the depletion region
is narrowed and the potential barrier across it is lowered such that the majority carrier
diffusion current increases. As the forward-biased diode voltage υD is increased the
diffusion current Id increases exponentially:

where  is the elementary charge, T is the material temperature (in K),
and VT = kT/qe is the thermal voltage. At room temperature, VT ≈ 25 mV. The net
diode current under forward bias is:



(8.8)
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Figure 8.8 depicts the diode i-υ characteristic described by the diode equation for a
fairly typical silicon diode for υD > 0. Since I0 is typically very small (10−9 to 10−15

A), the diode equation is often approximated by:

This expression is a good approximation for a silicon diode at room temperature
when υD is greater than a few tenths of a volt.

Figure 8.8 Typical diode i-υ characteristic curve

The ability of the pn junction to conduct significant current only in the forward-
biased direction allows it to function in electric circuits much like a check valve
functions in mechanical circuits. A generic pn junction and the diode circuit symbol
are shown in Figure 8.9. Notice that the triangle shape suggests the direction of
forward-biased current. Positive current iD passes from the anode to the cathode,
where the term cathode always refers to the source of electrons (negative charge
carriers) whether used in reference to a diode or battery.3



Figure 8.9 Diode circuit symbol

Figure 8.10 shows the complete i-υ characteristic of a diode. Note that the diode
current is approximately zero when υD < 0 unless υD is sufficiently large and negative
(reverse-biased) such that reverse breakdown occurs. When υD < −VZ, the diode
conducts current in the reverse-biased direction. Two effects contribute to this
reverse-biased current: the Zener effect and avalanche breakdown. In silicon diodes,
the Zener effect tends to dominate when VZ < 5.6 V while avalanche breakdown
tends to dominate at larger, more negative diode voltages.

Figure 8.210 The diode i-υ characteristic

The root causes of these two effects, while similar, are not the same. The Zener
effect is significant when the depletion region is designed to be heavily doped but
very thin such that for a given potential difference υD, the electric field is large



enough to sever covalent bonds in the depletion region and generate pairs of free
electrons and holes, which are then swept away by the electric field, thus creating a
current. Avalanche breakdown occurs when the potential difference υD is large
enough that the kinetic energy of minority charge carriers is sufficient to break
covalent bonds during collisions. These collisions may liberate free electrons and
holes, which, again, are swept away by the electric field. The process by which
energy is imparted to new charge carriers is called impact ionization. These new
charge carriers may also have enough energy to energize other low-energy electrons,
such that a sufficiently large reverse-biased diode voltage may initiate an avalanche
of liberated charge carriers.

In Zener breakdown the high concentration of charge carriers provides the
means for a substantial reverse-biased current to be sustained, at a nearly constant
Page 445reverse-biased voltage, the Zener voltage VZ. This effect is very useful in
applications where one would like to regulate (hold constant) the voltage across a
load. It should also be noted that a typical silicon diode is not designed for use in
reverse breakdown, where even a modest current at a large VZ will likely generate
more power than the diode can dissipate through heat transfer. The result could be a
melted or burned diode!

8.3 LARGE-SIGNAL MODELS FOR THE
SEMICONDUCTOR DIODE
From the viewpoint of a user of electronic circuits (as opposed to a designer), it is
often sufficient to characterize a device in terms of its i-υ characteristic, using either
load-line analysis or appropriate circuit models to determine the operating currents
and voltages. This section shows how it is possible to use the i-υ characteristics of
the semiconductor diode to construct simple yet useful circuit models. Depending on
the desired level of detail, it is possible to construct large-signal models of the diode,
which describe the gross behavior of the device in the presence of relatively large
voltages and currents; or small-signal models, which are capable of describing the
behavior of the diode in finer detail and, in particular, the response of the diode to
small changes in the average diode voltage and current. From the user’s standpoint,
these circuit models greatly simplify the analysis of diode circuits and make it
possible to effectively analyze relatively “difficult” circuits simply by using the
familiar circuit analysis tools of Chapter 2. The first two major divisions of this
section describe different diode models and the assumptions under which they are
obtained, to provide the knowledge you will need to select and use the appropriate
model for a given application.



MAKE THE CONNECTION

HydraulicCheck Valves
The operation of a diode can be understood intuitively by reference to a very
common hydraulic device that finds application whenever one wishes to restrict the
flow of a fluid to a single direction and to prevent (check) reverse flow. Hydraulic
check valves perform this task in a number of ways. A few examples are illustrated
here.

The first figure below depicts a swing check valve. In this design, flow from left
to right is permitted, as the greater fluid pressure on the left side of the valve forces
the swing door to open. If flow were to reverse, the reversal of fluid pressure (greater
pressure on the right) would cause the swing door to shut.

In this design, flow from left to right is permitted, as the greater fluid pressure on
the left side of the valve forces the swing “door” to open. If flow were to reverse, the
reversal of fluid pressure (greater pressure on the right) would cause the swing door
to shut.

Swing check valve

The second figure below depicts a flapper check valve. The principle is similar to
that described above for the swing check valve in that fluid flow is permitted from



left to right, but not in the reverse direction. The response of the flapper check valve
is faster than the swing check valve due to the shorter travel distance of the flapper.

Flapper check valve

Diode circuits are much easier to understand when the behavior of the diode is
visualized to be similar to that of a check valve, with the pressure difference across
the valve orifice being analogous to the voltage across the diode and the fluid flow
rate being analogous to the current through the diode. The diode circuit symbol is
shown in Figure 8.9. Current flows only from left to right whenever the voltage
across the diode is positive or forward biased, and no current flows when the diode
voltage is negative or reverse biased.

Ideal Diode Model
The simplest large-signal diode model is the ideal diode, which approximates a
diode as a simple on/off device (like a check valve in hydraulic circuits). The circuit
symbol for an ideal diode, its i-υ approximation, and the i-υ characteristic of a typical
diode are shown in Figure 8.11. An ideal diode behaves as an open-circuit when
reverse-biased (υD < 0) and as a short-circuit when forward-biased Page 446(υD ≥ 0).
In spite of its simplicity, the ideal diode model can be very useful in circuit analysis.

Ideal diodes are represented by the solid black triangle symbol shown in Figure
8.11.



Figure 8.11 Large-signal on/off ideal diode model

A general method for analyzing diode circuits is illustrated using the circuit
shown in Figure 8.12, which contains a 1.5-V battery, an ideal diode, and a 1-kΩ
resistor. The method is simply to assume that the ideal diode is forward-biased(υD ≥
0) and thus equivalent to a short-circuit, as indicated in Figure 8.13. Under this
assumption, υD = 0 such that the loop current is iD = 1.5 V/1 kΩ = 1.5 mA. Since the
resulting direction of the current and the diode voltage are consistent with the
assumption of a conducting diode (υD ≥ 0, iD > 0), the assumption is correct. If the
assumption had resulted in diode current and voltage that contradict the assumption,
then the assumption would have been deemed incorrect, and the opposite assumption
of a nonconducting diode could be tested, and presumably found to be true.

Figure 8.12 Circuit containing ideal diode

Figure 8.13 Circuit of Figure 8.12, assuming that the ideal diode conducts

To test the opposite assumption, assume the ideal diode is reverse-biased (υD < 0)
and thus equivalent to an open-circuit, as shown in Figure 8.14. Since the loop does
not form a closed path, the current iD must be zero and thus Ohm’s law requires the
voltage across the resistor to also be zero. Then, KVL requires that υD = 1.5 V.



However, this result contradicts the assumption that the ideal diode is reverse-biased.
Thus, the assumption is deemed incorrect.

Figure 8.14 Circuit of Figure 8.12, assuming that the ideal diode does not
conduct

The method can be applied to more complicated circuits involving multiple
diodes by simply testing all the possible combinations of forward- and reverse-biased
assumptions for the diodes. In such cases, it is helpful to consider which
combinations Page 447are more likely to yield a correct solution and test those
combinations first. With practice, such educated guesses should become more and
more effective in reducing the number of tests necessary for any particular problem.
Remember that it is only necessary to find one set of assumptions that does not result
in a contradiction.

Offset Diode Model
While the ideal diode model is useful in approximating the large-scale characteristics
of a physical diode, it does not account for the diode offset voltage. A better model is
the offset diode model, which consists of an ideal diode in series with a battery, as
shown in Figure 8.15, where the battery voltage equals the offset voltage (for silicon
diodes Vγ = 0.6 V unless otherwise indicated). The effect of the battery is to shift the
characteristic of the ideal diode to the right on the voltage axis, as shown in Figure
8.16.

Figure 8.15 Offset diode as an extension of the ideal diode model
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1.
2.

3.
4.

Figure 8.16 Offset diode states

The behavior of a diode in the offset diode model is described as follows:

F O C U S  O N  P R O B L E M  S O LV I N G

DETERMINING THE CONDUCTION STATE OF
IDEAL DIODES

Assume a diode conduction state (forward- or reverse-biased) for each diode
Replace each diode with an ideal diode model (short-circuit if forward-bia
open-circuit if reverse-biased).
Solve for the diode currents and voltages, using linear circuit analysis.
If the entire solution is consistent with the assumptions, then the in
assumptions were correct; if not, at least one of the initial diode conduction s
assumptions is wrong. Change at least one of the assumed diode conduc
states, and solve the new circuit. Continue to iterate this process until a solu



is found that is consistent with the assumptions. Be careful to keep track of
conduction state combinations that have been tested.

EXAMPLE 8.1 Determining the Conduction State of anIdeal Diode
Problem

Determine whether the ideal diode of Figure 8.17 is conducting.

Figure 8.17 Figure for Example 8.1.

Solution
Known Quantities: VS = 12 V; VB = 11 V; R1 = 5  Ω; R2 = 10   Ω; R3 = 10  Ω.

Find: The conduction state of the diode.
Assumptions: Use the ideal diode model.
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Analysis: Assume initially that the ideal diode does not conduct, and replace it with
an open-circuit, as shown in Figure 8.18. The voltage across R2 can then be
computed by using the voltage divider rule:



Figure 8.18 Circuit with ideal diode assumed "off".

Applying KVL to the right-hand-side mesh (and observing that no current flows in
the circuit since the diode is assumed off), we obtain

The result indicates that the diode is reverse-biased and confirms the initial
assumption. Thus, the diode is not conducting.

As further illustration, assume that the diode conducts. In this case, the diode is
replaced with a short-circuit, as shown in Figure 8.19. The resulting circuit can be
solved by node analysis, noting that υ1 = υ2 because of the short-circuit.

Figure 8.19 Circuit with ideal diode assumed "on".

With υ1 = υ2 = 8.75 V, the current through the branch containing the diode is:



However, this negative current violates the forward-biased assumption about the
diode. Thus, the forward-biased conducting assumption is incorrect and the diode
must not be conducting.

EXAMPLE 8.2 Determining the Conduction State of an Ideal Diode
Problem

Determine whether the ideal diode of Figure 8.20 is conducting.

Figure 8.20 Circuit for Example 8.2.

Solution
Known Quantities: VS = 12 V; VB = 11 V; R1 = 5  Ω; R2 = 4  Ω.

Find: The conduction state of the diode.
Assumptions: Use the ideal diode model.
Analysis: Assume initially that the ideal diode does not conduct, and replace it with
an open-circuit, as shown in Figure 8.21. The current through the resulting series
loop is:
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The voltage at node υ1 is



Figure 8.21 Circuit with ideal diode assumed "off".

The result indicates that the diode is strongly reverse-biased, since υD = 0 − υ1 = −
11.44 V, and is in accord with the initial assumption. Thus, the diode is not
conducting.

EXAMPLE 8.3 Using the Offset Diode Model
Problem

Use the offset diode model to determine the value of υ1 for which diode D1 first
conducts in the circuit of Figure 8.22.

Figure 8.22 Circuit for Example 8.3.

Solution
Known Quantities: VB = 2 V; R1 = 1 kΩ; R2 = 500 Ω; Vγ = 0.6 V.

Find: The lowest value of υ1 for which diode D1 conducts.

Assumptions: Use the offset diode model.



Analysis: Start by replacing the diode with the offset diode model, as shown in
Figure 8.23. If υ1 is negative, the diode will certainly be off. The point at which the
diode turns on as υ1 is increased can be determined by analyzing the circuit with the
diode assumed to be off. In a laboratory experiment, υ1 could be progressively
increased until the diode conducts, that is, until the current through R1 is nonzero.
With the diode off, KVL yields:

Figure 8.23 Circuit including diode offset model.

Thus, the condition required for the diode to conduct is:

Comments: The same solution method can be used for problems involving the ideal
diode model or the offset diode model.
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CHECK YOUR UNDERSTANDING
If the resistor R2 is replaced with an open-circuit in the circuit of Figure 8.17, will the
diode conduct?

CHECK YOUR UNDERSTANDING

Answer: Yes



a.
b.
c.
d.

Repeat the analysis of Example 8.2, assuming that the diode is conducting, and show
that this assumption leads to inconsistent results.

CHECK YOUR UNDERSTANDING
Determine which of the diodes conduct in the circuit shown below for each of the
following voltages. Treat the diodes as ideal.

υ1 = 0 V; υ2 = 0 V
υ1 = 5 V; υ2 = 5 V
υ1 = 0 V; υ2 = 5 V
υ1 = 5 V; υ2 = 0 V

CHECK YOUR UNDERSTANDING
Determine which of the diodes conduct in the circuit shown below. Each diode has
an offset voltage of 0.6 V.

Answers: (a) Neither; (b) both; (c) D2 only; (d) D1 only

Answer: Both diodes conduct.
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8.4 SMALL-SIGNAL MODELS FOR THE
SEMICONDUCTOR DIODE
As one examines the diode i-υ characteristic more closely, it becomes apparent that
the short-circuit approximation is not adequate to represent the small-signal behavior
of the diode. The term small-signal behavior usually signifies the response of the
diode to small time-varying signals that may be superimposed on the average diode
current and voltage. Figure 8.8 provides a more detailed view of a silicon Page
451diode i-υ curve. Clearly, the short-circuit approximation is not very accurate
when a diode’s behavior is viewed on a finer scale. To a first-order approximation,
however, the i-υ characteristic is linear for voltages greater than the offset voltage.
Thus, it seems reasonable to model a conducting diode as a resistor. Load-line
analysis can be exploited to determine the diode small-signal resistance, which is
related to the slope of its i-υ characteristic.

Consider the circuit of Figure 8.24, which represents the Thévenin equivalent
circuit of an arbitrary linear resistive circuit connected to a diode. KVL yields the
governing equation:

The constitutive relation for the diode is:

Figure 8.24 Diode circuit used to illustrate load-line analysis

These two equations in two unknowns cannot be solved analytically since one of
the equations is transcendental; that is, it contains the unknown υD in exponential
form. Transcendental equations of this type can be solved graphically or numerically.
Only a graphical solution is considered here.

Consider a plot of the two preceding equations in the iD–υD plane. The diode
equation gives rise to the familiar curve of Figure 8.8. The load-line equation,
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obtained from KVL, is the equation of a line with slope −1/RS, open-circuit voltage
VS, and short-circuit current VS/RS. That is:

The superposition of these two curves gives rise to the plot of Figure 8.25, where the
solution to the two equations is found graphically to be the pair of values (IQ, VQ).
The intersection of the two curves is called the quiescent (operating) point, orQ
point. The voltage υD = VQ and the current iD = IQ are the actual diode voltage and
current when the diode is connected as in the circuit of Figure 8.24. Note that this
method is also useful for circuits containing a larger number of elements, where the
diode is treated as the load and provided that Thévenin’s theorem can be used to
simplify the remaining source network.

Figure 8.25 Graphical solution of equations 8.13 and 8.14

Piecewise Linear Diode Model
The graphical solution of diode circuits can be somewhat tedious, and its accuracy is
limited by the resolution of the graph. However, it does provide insight into the
piecewise linear diode model in which the diode is treated as an open-circuit in the
“off” state and as a linear resistor in series with a battery of value Vγ in the “on” state.
Figure 8.26 provides a graphical illustration of this model. The straight line that
approximates the on state of the diode is chosen to be tangent to the operating point
Q. Thus, in the neighborhood of the Q point, the diode in this model acts as a linear
small-signal resistance, with slope given by 1/rD, where:



1.

2.
3.

4.

Figure 8.26 Graphical solution of equations 8.13 and 8.14

The diode offset voltage is defined as the intersection of the tangent line at Q with
the voltage axis. Thus, rather than represent the diode as a short-circuit in its Page
452forward-biased state, it can be treated as a linear resistor rD. The piecewise linear
model offers the convenience of a linear representation once the state of the diode is
established, and of a more accurate model than either the ideal or the offset diode
model. This model is very useful in illustrating the performance of diodes in real-
world applications.

F O C U S  O N  P R O B L E M  S O LV I N G

DETERMINING THE OPERATING POINT OF A
DIODE

Reduce the circuit to a Thévenin or Norton equivalent circuit with the diod
the load.
Determine the diode load line equation (equation 8.12).
Solve numerically two simultaneous equations in two unknowns (the load-
equations and the diode equation) for the diode current and voltage.
or
Solve graphically by finding the intersection of the diode curve (e.g., from a 
sheet) with the load-line curve. The intersection of the two curves is the d
operating point Q.



EXAMPLE 8.4 Using Load-Line Analysis and Diode Curves
toDetermine the Operating Point of a Diode
Problem

Determine the operating point of the 1N914 diode in the circuit of Figure 8.27, and
compute the total power output of the 12-V battery.

Figure 8.27 Graphical solution of equations 8.13 and 8.14
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Solution
Known Quantities: VBAT = 12 V; R1 = 50 Ω; R2 = 10  Ω; R3 = 20 Ω; R4 = 20 Ω.

Find: The diode operating voltage and current and the power supplied by the battery.
Assumptions: Use the diode nonlinear model, as described by its i-υ curve (Figure
8.28).

Figure 8.28 The 1N914 diode i-υ curve

Analysis: Consider the diode in Figure 8.27 to be the load and everything else
attached to it as its source network. Replace the source network with its Thévenin
equivalent (Figure 8.29) and determine the load line as shown in Figure 8.30. The



Thévenin equivalent resistance and the Thévenin (open-circuit) voltage seen by the
diode are:

Figure 8.29 Equivalent circuit with diode as the load.

Figure 8.30 Superposition of load line and diode i-υ characteristic
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The short-circuit current is VS/RS = 41 mA. The intersection of the diode curve and
the load line is the quiescent or operating point Q of the diode, which is given by the
values VQ = 1.0 V and IQ = 21 mA.

To determine the battery power output, observe that the power supplied by the
battery is PB = 12 × IB and that IB is equal to the current through R1. Upon further
inspection, the battery current must, by KCL, be equal to the sum of the currents
through R2 and the diode. The current through the diode is IQ. To determine the



current through R2, observe that the voltage across R2 is equal to the sum of the
voltages across R3, R4, and D1:

and therefore the current through R2 is IR2 = VR2/R2 = 0.184 A.

Finally:

Comments: Graphical solutions are not the only means of solving the nonlinear
equations that result from using a nonlinear diode model. The same equations could
be solved numerically by using a nonlinear equation solver.

EXAMPLE 8.5 Computing the Incremental (Small-Signal)Resistance
of a Diode
Problem

Determine the incremental resistance of a diode, using the diode equation.

Solution
Known Quantities: I0 = 10−14 A; VT = 25 mV (at T = 300 K); IQ = 50 mA.

Find: The diode small-signal resistance rD.

Assumptions: Use the approximate diode equation (equation 8.8).
Analysis: The approximate diode equation is:

This expression can be used along with equation 8.13 to compute the incremental
resistance:



To calculate the numerical value of the above expression, first compute the quiescent
diode voltage corresponding to the quiescent current IQ = 50 mA:

Substitute the numerical value of VQ in the expression for rD to obtain:

Comments: It is important to realize that while the incremental resistance of a diode
at an operating point can be computed for any particular circuit problem, the diode
cannot be treated simply as a resistor. The small-signal resistance of the diode is used
in the piecewise Page 455linear diode model to account for the fact that there is a
dependence between diode voltage and current (i.e., the diode i-υ characteristic is not
a vertical line for voltages above the offset voltage—see Figure 8.26). It is also
important to realize that the incremental resistance of a diode will change if the
operating point changes since the incremental resistance is, after all, the slope of the
i-υ characteristic at the operating point.

EXAMPLE 8.6 Using the Piecewise Linear Diode Model
Problem

Determine the load voltage υo in the rectifier circuit of Figure 8.31, using a piecewise
linear approximation.

Figure 8.31 Circuit for Example 8.6.



Solution
Known Quantities: .
Find: The load voltage υo.

Assumptions: Use the piecewise linear diode model (Figure 8.26).

Figure 8.32 Piecewise linear model of forward-biased diode inserted in
circuit of Figure 8.31

Analysis: Use KVL to determine the requirement for diode conduction. For the
circuit in this example, KVL yields:

Observe that when υS is negative, the diode will be off; it will act as an open-circuit;
the voltages υ1, υ2, and υo will be zero; and υD = υS. At the onset of conduction the
diode is forward-biased but the diode current is still zero. Under this condition υ1, υ2,
and υo are zero (Ohm’s law) and the ideal diode forward voltage drop is zero (as
always) such that υD = υS = Vγ = 0.6 V. Thus, the condition for conduction is:

Once the diode conducts, the difference between υS and Vγ is divided among the three
series resistors according to the voltage division rule. Thus:
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Figure 8.33 Piecewise linear model of forward-biased diode inserted in
circuit of Figure 8.31

The source and load voltage are plotted in Figure 8.33(a). The transfer characteristic
of the circuit is shown as a plot of υo versus υS in Figure 8.33(b).

CHECK YOUR UNDERSTANDING
Use load-line analysis to determine the operating point Q of the diode circuit shown
below. The diode has the i-υ characteristic shown in Figure 8.30. Graph the load line
using the short-circuit current VS/RS as the ordinate intercept and −1/RS as the slope
of the load line.

CHECK YOUR UNDERSTANDING
Compute the incremental resistance of the diode of Example 8.5 if the current
through the diode, IQ, is 250 mA.

Answer: VQ = 1.11 V, IQ = 27.7 mA
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CHECK YOUR UNDERSTANDING
Consider the half-wave rectifier circuit shown below where υi = 18 cos t V and R = 4 
Ω. Sketch the output voltage waveform if the piecewise linear diode model is used to
represent the diode, with Vγ = 0.6 V and rD = 1  Ω. What is the peak value of the
output waveform?

8.5 RECTIFIER CIRCUITS
The need for converting one form of electric energy to another arises frequently in
practice. The most readily available form of electric power is alternating current, as
generated and delivered by electric power utilities. However, DC power is frequently
required for applications ranging from the control of electric motors to the operation
of consumer electronic circuits, such as MP3 players, tablet computers, and
smartphones. An important part of the process of converting an AC signal to direct
current is rectification, which is the process of converting an electrical signal so that
all its parts have the same sign. Of particular interest is the process of converting an
AC signal (e.g., a typical 120 V rms line voltage) with zero average (DC) value to a
signal with a nonzero DC value. For example, power supplies use rectification to
produce a DC output from the readily available AC line voltage. The basic principle
of rectification is well illustrated using ideal diodes, particularly when the magnitude
of the AC voltage is large compared to the diode offset voltage Vγ.

Answer: rD = 0.1  Ω

Answer: υo,peak = 13.92 V



•

•

•
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(8.15)

This section introduces the following three types of rectifier circuits:

Half-wave rectifier

Full-wave rectifier

Bridge rectifier

The Half-Wave Rectifier
Consider the circuit of Figure 8.34, where an AC source υi is connected to an ideal
diode and a resistive load in a series loop. The diode will conduct only when it is
forward-biased (υD ≥ 0), which occurs during the positive half-cycle of the sinusoidal
voltage. During that interval the ideal diode acts as a short-circuit such that υo = υi
and iD = υi/R. During the negative half-cycle of the sinusoid the ideal diode is
reverse-biased (υD < 0) and acts as an open-circuit. The loop current iD is then zero,
and, by Ohm’s law, the output voltage υo is also zero. The input voltage υi and the
resulting output voltage υo are shown in Figure 8.35, where the Page 458frequency is
assumed to be ω = 2πf = 2π(60  Hz). Notice that although the input voltage has a zero
average (DC) value, the rectified output voltage υo has a non-zero average (DC)
value, which is computed, in general, as:

where T is the period of the output waveform. For example, assume 
. Then:

Figure 8.34 Ideal diode acting as a half-wave rectifier



Figure 8.35 Ideal diode half-wave rectifier input and output

The circuit of Figure 8.34 is known as a half-wave rectifier, because only the
positive half of the input waveform appears across the output. This result is not
particularly satisfying nor efficient since half of the input waveform is lost. Luckily,
it is possible to do better using a full-wave rectifier.

The Full-Wave Rectifier
The half-wave rectifier is not an efficient AC-DC converter because, by not
conducting current during the negative half-cycle of an AC waveform, half of the
available energy is not utilized. The full-wave rectifier shown in Figure 8.36 offers a
substantial improvement. The first section of the full-wave rectifier circuit includes
an AC source and a center-tapped transformer with 1:2N turns ratio. The purpose of
the transformer is to step up (N > 1) or step down (N < 1) the primary voltage υS prior
to rectification. The voltage amplitude across each half of the secondary coil is n υ S.
In addition to scaling the source voltage, the transformer isolates the rectifier circuit
from the AC source voltage since there is no direct electrical connection between the
input and output of a transformer.
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(8.17)

(8.18)

Figure 8.26 Center-tapped AC transformer and a full-wave rectifier with
two ideal divides
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In most applications, the amplitude of the secondary voltage (the input voltage to
the rectifier) is much larger than the offset voltage of the diodes. When this condition
is true, the diodes can be approximated as ideal without significantly compromising
the result of the analysis. The key to the operation of the full-wave rectifier is to note
that as the sign of υS periodically alternates between positive and negative, the two
diodes alternate in turns between forward- and reverse-biased states. For instance,
during the positive half-cycle of υS, the top diode is forward-biased while the bottom
diode is reverse-biased. Alternately, during the negative half-cycle of υS, the top
diode is reverse-biased while the bottom diode is forward-biased. Therefore, the
output current io satisfies the following two relations:

Wow! The direction of io does not alternate! It is always positive as shown.

The source voltage, the output voltage, and the currents i1 and i2 are shown in
Figure 8.37 for a load resistance R = 1 Ω and N = 1. Notice that the output voltage is
exactly the superposition of the output of two half-wave rectifiers 180° out of phase.
Thus, the DC output of the full-wave rectifier should be twice that of the half-wave
rectifier. This observation can be confirmed by computing the DC value of the full-
wave rectifier output.



Figure 8.37 Full-wave rectifier current and voltage waveforms (R = 1 Ω)

Keep in mind that this result is approximate because the impact of the diode offset
voltage was ignored by assuming ideal diodes. When the offset voltage is included,
there will be periods typically brief when both diodes are reverse-biased and the
output voltage is zero. The net effect is to reduce the output waveform shown in
Figure 8.37 by Vγ. However, those portions of the adjusted waveform that would
otherwise be negative (between 0 and −Vγ) are, in fact, zero because both diodes are
reverse-biased for the brief periods when .
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The Bridge Rectifier
Another rectifier circuit commonly available “off the shelf” as a single integrated
circuit is the bridge rectifier, which employs four diodes in the bridge configuration
shown in Figure 8.38.

Figure 8.38 Bridge rectifier with four ideal diodes



The analysis of the bridge rectifier is best understood by observing that as the
sign of υS periodically alternates between positive and negative, pairs of the four
bridge diodes alternate in turns between forward- and reverse-biased states, as shown
in Figure 8.39. During the positive half-cycle of υS, diodes D1 and D3 are forward-
biased while diodes D2 and D4 are reverse-biased. Alternately, during the negative
half-cycle of υS, diodes D1 and D3 are reverse-biased while diodes D2 and D4 are
forward-biased. It is important to note that the current i through R is directed from
node c to node d during both half-cycles.

Figure 8.39 Operation of bridge rectifier

The input and rectified output waveforms are shown in Figure 8.40(a) and (b) for
the case of ideal diodes and a 30-V peak AC source input. If each diode is assumed
to have an offset voltage Vγ = 0.6 V, the effect is to reduce the output waveform by
2Vγ = 1.2 V, as shown in Figure 8.40(c). The 2Vγ reduction occurs during both half-
cycles. During the positive half-cycle of υS, the path from node a to node b contains
two forward-biased diodes D1 and D3. Alternately, during the negative half-cycle of
υS, the path from node b to node a also contains two forward-biased diodes D2 and
D4. Each of these forward-biased diodes requires a “toll” of Vγ.

As with the full-wave rectifier, no portion of the rectified output waveform is
negative even when reduced by 2Vγ. Instead, during those periods when 

, all four diodes are reverse-biased and the rectified output waveform
is zero.

In most practical applications of rectifier circuits, the signal waveform to be
rectified is the 60-Hz, 110 V rms line voltage. As shown in Figures 8.37 and 8.40, the
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fundamental frequency of the rectified output waveform is twice that of the Page
461input waveform. Thus, for a 60-Hz input waveform, the fundamental ripple
frequency is 120 Hz or 754 rad/s. A low-pass filter is required such that:

Figure 8.40 Dashed line represents diode offset model, solid line diode
ideal model. (a) Unrectified source voltage; (b) rectified load voltage (ideal
diodes); (c) rectified load voltage (ideal and offset diodes).

Figure 8.41 shows the resulting waveforms.

Figure 8.41 Bridge rectifier followed by a low-pass filter, and the resulting
waveforms

DC Power Supplies
The rectification of an AC input waveform is just one of four fundamental steps
needed to convert an AC input to a practical DC output. In a typical DC power
supply these steps are, in order:



Step 1: Scale (step up or step down) the amplitude of the AC input waveform.
This step is commonly accomplished by a transformer although high-frequency
switch-mode circuits can also provide scaling of a DC output.
Step 2: Rectify the scaled AC input waveform. This step may be accomplished
by a full-wave or bridge rectifier. Rectification can also be accomplished by
more exotic devices, such as gate turnoff thyristors (GTOs) and insulated-gate
bipolar transistors (IGBTs).
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Step 3: Filter the rectified output waveform to remove remaining AC
components known as ripple. This step can be accomplished by an RC low-pass
(antiripple) filter in a simple DC power supply, as shown in Figure 8.41, or by
more sophisticated active low-pass filters.
Step 4: Regulate the filtered DC output voltage to maintain the desired DC value
for a large range of loads. The Zener diode provides a very inexpensive and
simple form of voltage regulation. Linear voltage regulators, which have very
good noise characteristics, and switched-mode regulators, which have very high
energy efficiency, are available as integrated circuits (e.g., the 78xx linear
series).

These steps are represented in the generic depiction of a DC power supply shown
in Figure 8.42.

Figure 8.42 DC power supply

EXAMPLE 8.7 Using the Offset Diode Model in a Half-Wave Rectifier
Problem

Compute and plot the rectified load voltage υR in the circuit of Figure 8.43.



Solution
Known Quantities: υS(t) = 3 cos ωt; Vγ = 0.6 V.

Find: An analytical expression for the load voltage.
Assumptions: Use the offset diode model.
Analysis: Replace the diode with the offset diode model, as shown in the lower half
of Figure 8.43, and use the method developed earlier for ideal diode problems.

Figure 8.43 Circuit for Example 8.7.

First, assume that the diode is reverse-biased and replace it with an open-circuit,
as shown in Figure 8.44(a). Since the current through R is zero, the diode voltage υD
is found from KVL to be:

When the source voltage is greater than V γ = 0.6 V, the diode is forward-biased such
that it behaves as a short-circuit in series with a small offset voltage drop, as shown
in Figure 8.44(b). The loop current i and the voltage υR across R are given by:
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Thus, the half-wave rectifier circuit behavior is summarized by:



Figure 8.44 Circuit for Example 8.7 with diode “off” and “on”.

The resulting rectified waveform υR(t) is plotted along with υS(t) in Figure 8.45. The
effect of the offset voltage is to lower the positive portion of the rectified waveform
by Vγ. The period T+ during which the rectified waveform is positive is slightly
shorter than half the period T of the input waveform. For ideal diodes, the maximum
amplitude of the rectified waveform equals the amplitude of the input waveform and
T + = T/2.

Figure 8.45 Source waveform (…) and rectified waveform (—) for the
circuit of Figure 8.43

Comments: The rectified waveform is shifted downward by an amount equal to the
offset voltage Vγ. The shift is visible in the case of this example because Vγ is a
substantial fraction of the source voltage. If the source voltage had peak values of
tens or hundreds of volts, such a shift would be negligible, and an ideal diode model
would serve just as well.



EXAMPLE 8.8 Half-Wave Rectifiers
Problem

A half-wave rectifier, similar to that in Figure 8.34, is used to provide a DC supply to
a 50-Ω load. If the AC source voltage is 20 V rms, find the peak and average current
in the load. Assume an ideal diode.

Solution
Known Quantities: Value of circuit elements and source voltage.
Find: Peak and average values of load current in half-wave rectifier circuit.
Schematics, Diagrams, Circuits, and Given Data: υS = 20 V rms, R = 50  Ω.

Assumptions: Ideal diode.
Analysis: According to the ideal diode model, the peak load voltage is equal to the
peak sinusoidal source voltage. Thus, the peak load current is
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To compute the average current, integrate the half-wave rectified sinusoid:

EXAMPLE 8.9 Bridge Rectifier
Problem

A bridge rectifier, similar to that in Figure 8.38, is used to produce a 50-V, 5-A DC
supply. What is the resistance of the load R that will result in a 5-A DC output
current? What is the required source voltage υS (in V rms) to achieve the desired DC
output voltage? Assume ideal diodes.



Solution
Known Quantities: Value of circuit elements and source voltage.
Find: Source voltage υS (in V rms) and the load resistance R.

Schematics, Diagrams, Circuits, and Given Data: 
Assumptions: Ideal diodes.
Analysis: The load resistance that will result in an average direct current of 5 A is:

which is the lowest value of R for which the DC supply will be able to provide the
required current. To compute the required source voltage, we observe that the
average load voltage can be found from the expression

Hence:

CHECK YOUR UNDERSTANDING
Compute the DC value of the rectified waveform for the circuit of Figure 8.34 for υi
= 52 cos ωt V.
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CHECK YOUR UNDERSTANDING

Answer: 16.55 V



1.

2.

In Example 8.8, what is the peak current if an offset diode model is used with Vγ =
0.6 V?

CHECK YOUR UNDERSTANDING
Show that the DC output voltage of the full-wave rectifier of Figure 8.36 is 2Nυ
Speak/π.

CHECK YOUR UNDERSTANDING
Compute the peak voltage output of the bridge rectifier of Figure 8.38, assuming
diodes with 0.6-V offset voltage and a 110 V rms AC supply.

Conclusion
This chapter introduces the topic of electronic devices by presenting the
semiconductor diode. Upon completing this chapter, you should have mastered the
following learning objectives:

Understand the basic principles underlying the physics of semiconductor devices
in general and of the pn junction in particular. Become familiar with the diode
equation and i-υ characteristic. Semiconductors have conductive properties that
fall between those of conductors and insulators. These properties make the
materials useful in the construction of many electronic devices that exhibit
nonlinear i-υ characteristics. Of these devices, the diode is one of the most
commonly employed.
Use various circuit models of the semiconductor diode in simple circuits. These
are divided into two classes: the large-signal models useful to study rectifier
circuits and the small-signal models useful in signal processing applications.

Answer: 0.554 A

Answer: 154.36 V



3.

4.

5.

6.

The semiconductor diode acts as a one-way current valve, permitting the flow of
current only when it is biased in the forward direction. The behavior of the diode
is described by an exponential equation, but it is possible to approximate the
operation of the diode by means of simple circuit models. The simplest (ideal)
model treats the diode either as a short-circuit (when it is forward-biased) or as
an open-circuit (when it is reverse-biased). The ideal model can be extended to
include an offset voltage, which represents the contact potential at the diode pn
junction. A further model, useful for small-signal circuits, includes a resistance
that models the forward resistance of the diode. With the aid of these models it is
possible to analyze diode circuits by using the DC and AC circuit analysis
methods of earlier chapters.
Study practical full-wave rectifier circuits, and learn to analyze and determine
the practical specifications of a rectifier by using large-signal diode models. One
of the most important properties of the diode is its ability to rectify AC voltages
and currents. Diode rectifiers can be of the half-wave and full-wave types. Full-
wave rectifiers can be constructed in a two-diode configuration or in a four-
diode bridge configuration. Diode rectification is an essential element of DC
power supplies. Page 466Another important part of a DC power supply is the
filtering, or smoothing, that is usually accomplished by using capacitors.
Understand the basic operation of Zener diodes as voltage references, and use
simple circuit models to analyze elementary voltage regulators. In addition to
rectification and filtering, the power supply requires output voltage regulation.
Zener diodes can be used to provide a voltage reference that is useful in voltage
regulators.
Use the diode models presented in Section 8.2 to analyze the operation of
various practical diode circuits in signal processing applications. In addition to
power supply applications, diodes find use in many signal processing and signal
conditioning circuits. Of these, the diode peak detector, the diode limiter, and the
diode clamp are explored in this chapter.
Understand the basic principle of operation of photodiodes, including solar
cells, photosensors, and light-emitting diodes. Semiconductor material
properties can also be affected by light intensity. Certain types of diodes, known
as photodiodes, find applications in light detectors, solar cells, or light-emitting
diodes.

HOMEWORK PROBLEMS
Section 8.1: Electrical Conduction in Semiconductor

Devices;



8.1

a.

b.

c.

8.2

Section 8.2: The pn Junction and the Semiconductor Diode
In a semiconductor material, the net charge is zero. This requires the density of
positive charges to be equal to the density of negative charges. Both charge
carriers (free electrons and holes) and ionized dopant atoms have a charge
equal to the magnitude of one electronic charge. Therefore the charge
neutrality equation (CNE) is:

where

The carrier product equation (CPE) states that as a semiconductor is doped, the
product of the charge carrier densities remains constant:

For intrinsic silicon at T = 300 K:

The semiconductor material is n- or p-type depending on whether donor or
acceptor doping is greater. Almost all dopant atoms are ionized at room
temperature. If intrinsic silicon is doped:

Determine:

If this is an n- or p-type extrinsic semiconductor.

Which are the major and which are the minority charge carriers.

The density of majority and minority carriers.

If intrinsic silicon is doped, then



a.

b.

c.

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Determine:

If this is an n- or p-type extrinsic semiconductor.

Which are the majority and which are the minority charge carriers.

The density of majority and minority carriers.

Describe the microscopic structure of semiconductor materials. What are the
three most commonly used semiconductor materials?

Describe the thermal production of charge carriers in a semiconductor and how
this process limits the operation of a semiconductor device.
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Describe the properties of donor and acceptor dopant atoms and how they
affect the densities of charge carriers in a semiconductor material.

Physically describe the behavior of the charge carriers and ionized dopant
atoms in the vicinity of a semiconductor pn junction that causes the potential
(energy) barrier that tends to prevent charge carriers from crossing the
junction.

Section 8.3–8.4: Circuit Models for the Semiconductor
Diode

Consider the circuit of Figure P8.7. Determine whether the diode is
conducting. Assume VA = 12 V, VB = 10 V, and that the diode is ideal.

Figure P8.7

Repeat Problem 8.7 for VA = 12 V and VB = 15 V.

Consider the circuit of Figure P8.9. Determine whether the diode is
conducting. Assume VA = 12 V, VB = 10 V, VC = 5 V and that the diode is ideal.



8.10

8.11

8.12

8.13

a.

b.

c.

8.14

Figure P8.9

Repeat Problem 8.9 for VB = 15 V.

Repeat Problem 8.9 for VC = 15 V.

Repeat Problem 8.9 for VB = 15 V and VC = 10 V.

For the circuit of Figure P8.13, sketch iD(t) using:

The ideal diode model.

An ideal diode model with offset (Vγ = 0.6 V).

The piecewise linear approximation diode model with rD = 1 kΩ and Vγ =
0.6 V.

Figure P8.13

For the circuit of Figure P8.14, find the range of Vin for which D1 is forward-
biased. Assume an ideal diode.



8.15

a.

b.

Figure P8.14

One of the more interesting applications of a diode, based on the diode
equation, is an electronic thermometer. The concept is based on the empirical
observation that if the current through a diode is nearly constant, the offset
voltage is nearly a linear function of the diode temperature, as shown in
Figure P8.15(a).

Show that iD in the circuit of Figure P8.15(b) is nearly constant in the face
of variations in the diode voltage υD. To do so, compute the percent
change in iD for a given percent change in υD. Assume that υD changes by
10 percent from 0.6 V to 0.66 V.

On the basis of the graph of Figure P8.15(a), write an equation for υD(T°)
of the form
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8.16

8.17
8.18

Figure P8.15

Find expressions for the voltage υo in Figure P8.16, where D is an ideal
diode, for positive and negative values of υS. Sketch a plot of υo versus υS.

Figure P8.16

Repeat Problem 8.16, using the offset diode model.

Find the power dissipated in diode D, and the power dissipated in R in Figure
P8.18. Use the exponential diode equation and assume R = 2  kΩ, VS = 5 V,
VD = 900 mV, , and I0 = 15 nA.



8.19

8.20

a.

b.

8.21

8.22

Figure P8.18

Determine the Thévenin equivalent network seen by diode D in Figure P8.19,
and use it to determine the diode current iD. Also, solve for the currents i1 and
i2. Assume R1 = 5 kΩ, R2 = 3  kΩ, Vcc = 10 V, and Vdd = 15 V.

Figure P8.19

In Figure P8.20, assume a sinusoidal source VS = 50 V rms, R = 170   Ω, and
Vγ = 0.6 V. Use the offset diode model for a silicon diode to determine:

The maximum forward current.

The peak reverse voltage across the diode.

Figure P8.20

Determine voltages Vo assuming the diodes are ideal in each of the
configurations shown in Figure P8.21.

Figure P8.21

In the circuit of Figure P8.22, find the range of Vin for which D1 is forward-
biased. Assume ideal diodes.



8.23

8.24

Figure P8.22
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Determine which diodes are forward-biased and which are reverse-biased in
the configurations shown in Figure P8.23. Assuming a 0.7-V drop across each
forward-biased diode, determine υout.

Figure P8.23

Sketch the output waveform and the voltage transfer characteristic for the
circuit of Figure P8.24. Assume an ideal diode, υS(t) = 8 sin(πt), V1 = 3 V, R1
= 8   Ω, and R2 = 5   Ω.

Figure P8.24



8.25

8.26

8.27

a.

b.

8.28

8.29

a.

Repeat Problem 8.24, using the offset diode model with Vγ = 0.55 V.

Repeat Problem 8.24 for υS (t) = 1.5 sin (2, 000πt), V1 = 1 V, and R1 = R2 = 1 
kΩ. Use the piecewise linear model with rD = 200   Ω.

The silicon diode shown in Figure P8.27 is described by:

where at T = 300 K

Determine the current iD at the operating point Q:

Using the diode offset model.

By graphically solving the circuit characteristic (i.e., the DC load-line
equation) and the device characteristic (i.e., the diode equation).

Figure P8.27

Repeat Problem 8.27 using the following data:

where at T = 300 K

A diode with the i-υ characteristic shown in Figure 8.8 is connected in series
with a 5-V voltage source (in the forward-bias direction) and a load resistance
of 200 Ω. Determine:

The load current and voltage.



b.

c.

8.30

a.

b.

c.

8.31

8.32

The power dissipated by the diode.

The load current and voltage if the load is changed to 100 Ω and 500 Ω.

A diode with the i-υ characteristic shown in Figure 8.28 is connected in series
with a 2-V source (in the forward-bias direction) and a 200-Ω load resistance.
Determine:

The load current and voltage.

The power dissipated by the diode.

The load current and voltage if the load is changed to 100 Ω and 300 Ω.
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The silicon diode shown in Figure P8.27 is described by:

where at T = 300 K

The DC operating (quiescent) point Q and the AC small-signal equivalent
resistance at Q are:

Determine the AC voltage across the diode and the AC current through it.

The silicon diode shown in Figure P8.32 is in series with two voltage sources
and a resistor, where:

Determine the minimum value of VS1 at which the diode will be forward-
biased and conduct charge.



8.33

8.34

a.

b.

c.

8.35
a.

b.

c.

d.

e.

Figure P8.32

Section 8.5: Rectifier Circuits
Find the average value of the output voltage υo shown in Figure P8.33.
Assume υin = 10 sin (ωt) V, C = 80 nF, and Vγ = 0.5 V.

Figure P8.33

The circuit of Figure P8.34 is driven by a sinusoidal source υS (t) = 6 sin
(314t) V. Determine the average and peak diode currents, using:

The ideal diode model.

The offset diode model.

The piecewise linear model with resistance rD.

Assume Ro = 200   Ω, rD = 25   Ω, and Vγ = 0.8 V.

Figure P8.34

A half-wave rectifier produces an average voltage of 50 V at its output.

Draw a schematic diagram of the circuit.

Sketch the output voltage waveform.

Determine the peak value of the outputvoltage.

Sketch the input voltage waveform.

What is the rms voltage at the input?



8.36

8.37

8.38

a.

b.

8.39

A half-wave rectifier is used to provide a DC supply to a 80-Ω load. If the AC
source voltage is 32 V rms, find the peak and average current in the load.
Assume an ideal diode.

The bridge rectifier in Figure P.8.37 is driven by a sinusoidal voltage source
υs(t) = 6 sin (314t) V. Determine the average and peak forward current
through each diode and Ro = 200  Ω. Assume ideal diodes.

Figure P8.37
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In the full-wave power supply shown in Figure P8.38 the silicon diodes are
1N4001 with a rated peak reverse voltage of 25 V.

Determine the actual peak reverse voltage across each diode.

Explain why these diodes are or are not suitable for the specifications
given.

Figure P8.38

In the full-wave power supply shown in Figure P8.38,



a.

b.

8.40

a.

b.

8.41

a.

The silicon diodes are 1N914 switching diodes (but used here for AC-DC
conversion) with the following performance ratings:

The derating factor is 3 mW/°C for 25°C < T ≤ 125°C and 4 mW/°C for 125°C
< T ≤ 175°C.

Determine the actual peak reverse voltage across each diode.

Are these diodes suitable for the specifications given? Explain.

Refer to Problem 8.38 and assume a load voltage waveform as shown in
Figure P8.40. Also assume:

Determine:

The turns ratio n.

The capacitor C.

Figure P8.40

Refer to Problem 8.38. Assume:

Determine:

The turns ratio n.



b.

8.42

8.43

a.

b.

c.

8.44

a.

b.

The capacitor C.

Repeat Problem 8.37, using the diode offset model with Vγ = 0.8 V.

You have been asked to design a bridge rectifier for a power supply. A step-
down transformer has already been chosen. It will supply 12 V rms to your
rectifier. The bridge rectifier is shown in Figure P8.43.

If the diodes have an offset voltage of 0.6 V, sketch the input source
voltage υS(t) and the output voltage υo(t), and state which diodes are on
and which are off in the appropriate cycles of υS(t). The frequency of the
source is 60 Hz.

If Ro = 1,000 Ω and a filtering capacitor has a value of 8 μF, sketch the
output voltage υo(t).

Repeat part b, with the capacitance equal to 100 μF.

Figure P8.43
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In the bridge rectifier of the power supply shown in Figure P8.44 the silicon
diodes are 1N4001 with a rated peak reverse voltage of 50 V.

Determine the actual peak reverse voltage across each diode.

Are these diodes suitable for the specifications given? Explain.



8.45

a.

b.

8.46

8.47

8.48

a.

b.

Figure P8.44

Refer to Problem 8.44. Assume the diodes have a rated peak reverse voltage
of 10 V and:

Determine the actual peak reverse voltage across the diodes.

Explain why these diodes are or are not suitable for the specifications
given.

Refer to Problem 8.44. Assume:

Determine the value of the average and peak current through each diode.

Repeat Problem 8.37, using the piecewise linear diode model with Vγ = 0.8 V
and resistance RD = 25 Ω.

Refer to Problem 8.44. Assume:

Determine:

The turns ratio n.

The capacitor C.
Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.



1Semiconductors can also be made of more than one element, in which case the
elements are not necessarily from group IV.

2Another reported relation [A.B. Sproul and M.A. Green, J. Appl. Phys. 70, 846
(1991)] is n  with a value at 300 K of approximately 1.0 × 1010

carriers/cm3.

3The positive terminal of a battery is referred to as the cathode because internally it is
the source of negative ions traveling toward the negative terminal.
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C H A P T E R
9

BIPOLAR
JUNCTIONTRANSISTORS:

OPERATION, CIRCUIT
MODELS, AND APPLICATIONS

ver the last half-century, transistor technology has revolutionized the
manner in which power and information are transmitted and utilized
within our society. The impact of this technology is difficult to
overstate, and examples of it are ubiquitous. Moreover, the

technology and the products that depend upon it continue to develop at an
exponential rate. It is astounding to consider that the first Macintosh
personal computer was introduced by Apple Computer Co. in January 1984
with 64 kB of ROM, 128 kB of RAM, a motherboard running at 8 MHz, a
display with 384 × 256 pixel resolution, all for the modest price of $2,495,
which is roughly equivalent to $5,500 in 2012. In the same year, IBM
released its second-generation AT (advanced technology) personal computer,
which featured the 16-bit, 6-MHz Intel 80286 microprocessor, a 20-MB hard



drive. Less than 30 years later, the specifications of a modest desktop
computer include a 64-bit, 3.0-GHz processor, a 1.3-GHz data bus with 6
GB of RAM, and a monitor resolution of 1600 × 900.
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Of course, advances in analog and digital technology have not been
limited to personal computers. In general, communication systems of all
kinds have been revolutionized. Until 1983, interpersonal
telecommunications were limited to land-line phone calls. The only
asynchronous form of telecommunication was provided by analog telephone
tape recorders and by letter and package carriers such as the U.S. Postal
Service, UPS, and FedEx. While these services continue to play an
important role in our society, new forms of communication, particularly
real-time asynchronous communications, have exploded. On a daily, if not
hourly, basis we now transmit, exchange, and broadcast digital images,
video, text, and voice using handheld mobile devices. It is not unreasonable
to describe these “smart” phones as pocket-sized supercomputers.
According to the Pew Research Center’s Internet & American Life Project,
as of May 2011, roughly 35 percent of American adults owned a smartphone
of one type or another. Today that number has risen to 81 percent.

Fundamentally, all this progress has relied on advances in transistor
technology. Given the broad impact of this technology, it would seem
essential that engineers of all stripes possess a basic understanding of
transistors and how they are used to produce the two building blocks of all
communication and power devices. These two building blocks are the
switch and the amplifier. Chapters 9 and 10 are dedicated to revealing how
transistors are utilized to produce various types of switches and amplifiers.
Chapter 9 focuses on a family of transistors known as bipolar junction
transistors (BJTs). The underlying physics is discussed in sufficient detail
to provide a comfortable basis for understanding the three modes of BJT
operation. Practical examples are provided to illustrate important BJT
circuits and their analysis using linear circuit models.

 Learning Objectives



1.

2.

3.

4.

5.

Students will learn to...
Understand the basic principles of amplification and switching. Section
9.1.
Understand the physical operation of bipolar transistors; determine the
operating point of a bipolar transistor circuit. Section 9.2.
Understand the large-signal model of the bipolar transistor, and apply it
to simple amplifier circuits. Section 9.3.
Select the operating point of a bipolar transistor circuit; understand the
principle of small-signal amplifiers. Section 9.4.
Understand the operation of a bipolar transistor as a switch, and analyze
basic analog and digital gate circuits. Section 9.5.

9.1 AMPLIFIERS AND SWITCHES
A transistor is a three-terminal semiconductor device that can perform two
functions that are fundamental to the design of electronic circuits:
amplification and switching. Amplification consists of using an external
power source to produce a scaled reproduction of a signal. Switching
consists of using a relatively small input current or voltage to control a
larger output current or voltage.
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Four different linear amplifier models are shown in Figure 9.1.
Controlled voltage and current sources generate an output proportional to an
input current or voltage; the proportionality constant μ is called the internal
gain of the transistor. Bipolar junction transistor (BJTs) are well modeled as
current-controlled devices.1



Figure 9.1 Controlled-source models of linear amplifiers

Transistors are also operated in a nonlinear mode, as voltage- or current
controlled switches. Figure 9.2 depicts the idealized operation of the
transistor as a switch, suggesting that the switch is closed (on) whenever a
control voltage or current is greater than zero and is open (off) otherwise.
More realistic conditions on transistors acting in a switch mode are
discussed later in this chapter and Chapter 10.

Figure 9.2 Models of ideal transistor switches
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EXAMPLE 9.1 Model of Linear Amplifier
Problem

Determine the voltage gain of the amplifier circuit model shown in Figure
9.3.

Figure 9.3 Circuit for Example 9.1.

Solution
Known Quantities: Amplifier internal input and output resistances ri and ro;
amplifier internal gain μ; source and load resistances RS and R.

Find: 
Analysis: Apply voltage division to determine υin:

Then, the output of the controlled voltage source is:

and the output voltage can also be found using voltage division:

Finally, the amplifier voltage gain can be computed:



Comments: Note that the voltage gain computed above is always less than
the transistor internal voltage gain μ. One can easily show that if  and 

, then . In general, the amplifier gain always depends on the ratio
of the source RS to input ri resistances and the ratio of output ro to load R
resistances.

CHECK YOUR UNDERSTANDING
Repeat Example 9.1 for a current-controlled voltage source (CCVS) as
shown in Figure 9.1(d). What is the amplifier voltage gain? Under what
conditions would G = μ/RS?
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Repeat Example 9.1 for the current-controlled current source (CCCS) of
Figure 9.1(a).What is the amplifier voltage gain?

Repeat Example 9.1 for the voltage-controlled current source (VCCS) of
Figure 9.1(c). What is the amplifier voltage gain?

9.2 THE BIPOLAR JUNCTION TRANSISTOR
A BJT is formed by joining three sections of alternating p- and n-type
material. An npn transistor is a BJT with a thin, lightly doped p-type base
region sandwiched between a heavily doped n-type emitter region and a



large, lightly doped n-type collector region. The BJT counterpart to the npn
is the pnp transistor, which utilizes the same doping scheme except that the
n and p regions are swapped with respect to the npn. In both of these BJT
types, the heavily doped emitter region is often labeled n+ or p+ to
distinguish it from the lightly doped collector. Figure 9.4 illustrates the
construction, symbols, and nomenclature for the two types of BJTs. Notice
that there are the two pn junctions in a BJT: the emitter-base junction
(EBJ) and the collector-base junction (CBJ). The operating mode of a BJT
depends upon whether these junctions are reverse- or forward-biased, as
indicated in Table 9.1.

Figure 9.4 Bipolar junction transistors

Table 9.1 BJT operating modes
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Although the construction of a BJT results in two opposing pn junctions,
it is important to avoid modeling a BJT as two identical but opposing
diodes. The EBJ always behaves as a true diode; however, because of the
thin base region and the lightly doped collector region, the CBJ does not.
Figure 9.5 depicts the basic geometry of a cross section of a BJT. The base
region is shown much thicker (compared to the emitter and collector) for the
sake of clarity. There are two key points to note from the figure: (1) The



base is a very thin envelope around the emitter, and (2) the collector is much
larger than the emitter and the base because it envelopes both and is itself
relatively thick compared to the emitter. The result of this geometry is that
the collector can receive large numbers of mobile charge carriers without
any significant impact upon its density of charge carriers.

Figure 9.5 Cross section of an npn transistor. Notice that the
collector is much larger and much more lightly doped than the
emitter. The base is, in fact, very thin compared to the emitter and
collector.

Cutoff Mode (EBJ Reverse-biased; CBJ Reverse-
biased)
When both pn junctions are reverse-biased, no current is present across
either junction and the path from collector to emitter can be approximated as
an open-circuit. In fact, small reverse currents due to minority carriers are
present across the junctions, but for most practical applications these reverse
currents are negligible. In silicon-based BJTs, the offset voltage for the EBJ
is the same 0.6 V presented in Chapter 8 for single silicon diodes. Thus, in
cutoff mode, when υBE < 0.6 V, the transistor acts as a switch in its off
(open-circuit) condition.

Active Mode (EBJ Forward-biased; CBJ Reverse-
biased)
Figure 9.6 shows a Norton source connected across the base and emitter
terminals of an npn transistor and the resulting i-υ characteristic of its EBJ.
Notice that iB ≈ 0 when υBE ≤ 0.6 V, which is cutoff mode. However, when
the EBJ is forward-biased such that υBE ≥ 0.6 V, current is conducted as in a
typical diode. Majority carriers in the emitter and base drift across the EBJ



under the influence of the forward-bias voltage in excess of the potential
barrier of the depletion region. However, since the emitter is heavily doped
while the base is lightly doped, the current IE across the EBJ is dominated
by the majority carriers from the emitter.

Figure 9.6 The i-υ characteristic of the emitter-base junction of a
typical npn transistor
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The i-υ characteristics of the EBJ for npn and pnp transistors are
identical except that the abscissas are υBE and υEB, respectively. The
discussion below is based upon the behavior of an npn transistor; however,
the behavior of a pnp transistor is completely analogous to that of an npn
transistor, except that positive and negative charge carriers are interchanged
and the EBJ is forward-biased from emitter to base rather than from base to
emitter.

The behavior of a pnp transistor is completely analogous to that of an
npn transistor, except that positive and negative charge carriers are
interchanged and the EBJ is forward-biased from emitter to base rather
than from base to emitter.



(9.1)

(9.2)

For an npn BJT, the majority carriers in the emitter are electrons while
the majority carriers in the base are holes, as indicated in Figure 9.7. Some
of these electrons recombine with holes in the base; however, since the base
is lightly doped, most of these electrons remain mobile minority carriers in
the p-type base. As these mobile electrons cross the EBJ, their growing
concentration in the base causes them to diffuse toward the CBJ. The
equilibrium concentration of these mobile electrons throughout the base
region is a maximum at the EBJ and is given by:

Figure 9.7 Flow of emitter electrons into the collector in an npn
transistor

where υBE is the forward-bias voltage from base to emitter and (np)o is the
thermal equilibrium concentration of electrons in the base. Since the base is
very thin, the equilibrium concentration gradient across the base is nearly
linear, as depicted in Figure 9.8, such that the electron diffusion rate from
the EBJ to the CBJ can be approximated as:



(9.3)

Figure 9.8 Equilibrium concentration gradient of free electrons in
the p-type base of a forward-biased NPN transistor

where A is the cross-sectional area of the EBJ, W is the width of the base
(not including the width of the two bounding depletion regions), and Dn is
the diffusivity of electrons in the base. It is important to note that this
electron diffusion rate is Page 480temperature dependent and that it
represents a diffusion current directed from the CBJ to the EBJ because of
the convention that the direction of positive current is the direction of flow
of positive charge carriers. Once these diffusing electrons reach the CBJ
they are swept into the collector by the reverse-bias voltage across the CBJ.
Thus, the collector current iC is:

where NA is the doping concentration of holes in the base and IS is known as
the scale current because it scales with the cross-sectional area A of the
EBJ. Typical values of IS range from 10−12 A to 10−15 A.

The base current iB (from base to emitter) is comprised of those
majority carriers in the base (e.g., holes for an npn transistor) that traverse
the EBJ. Some of these carriers recombine with the majority carriers in the



(9.4)

(9.5)

emitter (e.g., electrons for an npn transistor); however, those majority
carriers lost to recombination are replaced by additional majority carriers
supplied by V1. Because the concentration of these majority carriers is
proportional to , the base current is proportional to the collector
current iC such that:

where β is known as the forward common-emitter current gain with
typical values ranging from 20 to 200. Although β can vary significantly
from one transistor to another, most practical electronic devices only require
that β ≫ 1. Figure 9.7 depicts the flow of charge carriers from emitter to
base to collector and from base to emitter, as discussed above, for an npn
transistor. A BJT is a bipolar device because its current is comprised of both
electrons and holes.2

The parameter β is not often found in a data sheet. Instead, the forward
DC value of β is listed as hFE, which is the large-signal current gain. A
related parameter, hfe, is the small-signal current gain.

Finally, to satisfy KCL, the emitter current iE must be the sum of the
collector and base currents and, therefore, must also be proportional to 

. Thus:

where IES is the reverse saturation current and α is the common-base
current gain with a typical value close to, but not exceeding, 1.

Saturation Mode (EBJ Forward-biased; CBJ
Forward-biased)
A BJT remains in active mode as long as the CBJ is reverse-biased; that is,
as long as V2 > 0, electrons diffusing across the base will be swept away into
the collector Page 481once they reach the CBJ. However, when the CBJ is



forward-biased (V2 < 0), these diffusing electrons are no longer swept away
into the collector but instead accumulate at the CBJ such that the
concentration of minority carrier electrons there is no longer zero. The
magnitude of this concentration increases as V2 decreases, such that the
concentration gradient across the base decreases. The result is that the
diffusion of minority carrier electrons across the base decreases; in other
words, the collector current iC decreases as the forward bias of the CBJ
increases.

It is important to realize that as the concentration gradient across the
base decreases and the rate of diffusion across the base decreases, the rate of
increase of the concentration near the CBJ slows and the concentration
gradient across the base approaches zero asymptotically. This asymptotic
process expresses itself as an upper limit on the forward-bias voltage across
the CBJ. Figure 9.9 defines three voltages across the terminals of an npn
transistor. In saturation, the action of the transistor limits υCB such that υCE is
always positive, although small, with a typical value of 0.2 V. In fact,
saturation mode is often best determined by the value of υCE, which has a
value of approximately 0.2 V for a silicon-based BJT.

Figure 9.9 Definition of BJT voltages and currents

In saturation, the collector current is no longer proportional to the base
current and the collector-emitter voltage VCE for a silicon-based BJT is



(9.6)

(9.7)

(9.8)

small (< 0.4 V). An increasing base current drives a BJT further into
saturation, and VCE approaches the saturation limit of VCE sat ≈ 0.2 V.

Key BJT Characteristics
The voltages and currents shown in Figure 9.9 for an npn transistor are
related by KCL and KVL.

The BJT currents are temperature dependent because they are proportional
to both  and . These currents are also proportional to the cross-
sectional area A of the EBJ and inversely proportional to the effective width
W of the base.

The relationships between these voltages and currents are commonly
represented by a graph of iC versus υCE, with iB treated as a parameter. A
typical example of such a graph is shown in Figure 9.10. The operating
mode of a BJT is completely specified by these three variables. The three
modes of operation are indicated in the figure. Cutoff and saturation modes
occur when iC and υCE are very small, respectively.



Figure 9.10 Typical characteristic lines of a BJT

For any fixed value of iB, the slope of the transistor characteristic is very
small in active mode. In the ideal case, this slope would be zero; however,
the effective width of the base decreases with υCE such that the
concentration gradient of charge carriers in the base increases and, thus, the
collector current increases as well. This increase in iC with υCE is known as
the Early effect or base-width modulation.
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It is important to realize that the operating values of iB, iC, and υCE, and
the operating mode itself, are determined by the external circuitry attached
to the BJT. An important objective of this chapter is to provide a method to
design the external circuitry so as to dictate and control the operating mode
of a BJT. To understand the development of such a method, it is essential to
keep in mind the key characteristics of the cutoff, active, and saturation
modes, which are the same for both npn and pnp transistors, and which are
summarized in the following box.

Cutoff mode: Both the EBJ and CBJ are reverse-biased such that all
three currents iC, iB, and iE are approximately zero. In cutoff mode, a BJT
acts as an open switch between the collector and emitter.

Active mode: The EBJ is forward-biased while the CBJ is reverse-
biased.

The BJT currents are related by:

In active mode, these currents are largely independent of υCB and the
BJT acts as a linear amplifier.



Saturation mode: Both the EBJ and CBJ are forward-biased such that
υBE ≈ 0.7 V and υCE ≈ 0.2 V. The collector current iC is highly sensitive to
small changes in υCE, and, since υCE is small, iC is largely determined by
external circuitry attached to the collector terminal. In saturation mode,
the BJT approximates a closed switch between the collector and emitter.

Determining the Operating Mode of a BJT
A few simple voltage measurements permit a quick determination of the
state of a transistor. Consider, for example, an npn transistor placed in the
circuit of Figure 9.11, where:
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Figure 9.11 Determination of the operating mode of a BJT

and

Assume that the measured collector, emitter, and base terminal voltages are:

The method used in determining the state of a transistor is to assume an
operating mode and then test the assumption against the known data. It is



usually best to first assume cutoff mode and check whether the EBJ is
reverse-biased. The voltage across the EBJ is:

Thus, the EBJ is forward-biased, not reverse-biased, and the transistor is not
in cutoff mode.

One can next assume either active or saturation mode and test the
assumption. For this example, assume saturation mode and test whether the
CBJ is forward-biased. The voltage across the CBJ is:

Thus, the CBJ is reverse-biased and the transistor is in active mode. The
same determination could be made by evaluating the voltage across the
collector-emitter terminals.

The requirement for saturation mode is VCE < 0.4 V, which is clearly not
satisfied.

Since the transistor is in active mode, it is possible to calculate the
common-emitter current gain β. The base current is:

The collector current is:

Thus, the current amplification factor is:
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The operating point of the transistor in the given circuit can be located
on a characteristic plot such as that in Figure 9.10. It is important to note
that the operating mode of the transistor is determined by the attached
circuitry. In this example, the values of VB, VC, and VE were measured.
However, for analytic problems, these values can be calculated using KCL,
KVL, Ohm’s law, and the known characteristics of the three possible modes
of operation.

EXAMPLE 9.2 Determining the Operating Mode of a BJT
Problem

Determine the operating mode of the BJT in the circuit of Figure 9.11.

Solution
Known Quantities: Base, collector, and emitter voltages with respect to
ground.
Find: Operating mode of the transistor.
Schematics, Diagrams, Circuits, and Given Data: V1 = VB = 1.0 V; V2 = VE
= 0.3 V; V3 = VC = 0.6 V; RB = 40 kΩ; RC = 1 kΩ; RE = 26 Ω.

Analysis: Compute VBE and VBC to determine the bias conditions of the EBJ
and CBJ, which determine the mode of operation of the transistor.

Since both junctions are forward-biased, the transistor is in saturation mode.
Also, notice that VCE = VC − VE = 0.3 V is less than 0.4 V, which indicates
that the BJT is operating near or in saturation.



The operating point of this transistor can be located in Figure 9.10 by
calculating:

and

Notice that the operating point in Figure 9.10 is near the elbow in the IB =
75.0 μA curve at VCE = 0.3 V.

Comments: KCL requires IE = IC + IB. The latter sum is 11.475 mA,
whereas IE is 0.3 V/26 Ω = 11.5 mA. The difference between these two
currents is due entirely to numerical approximations. In fact, KCL is—as it
must be—satisfied exactly.

It is important to notice that by only changing RE from 26 to 161 Ω, the
operating mode of the transistor is changed from saturation mode to active
mode.

CHECK YOUR UNDERSTANDING
Describe the operation of a pnp transistor in active mode by analogy with
that of the npn transistor.
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CHECK YOUR UNDERSTANDING
For the circuit of Figure 9.11, the voltmeter readings are V1 = 3 V, V2 = 2.4
V, and V3 = 2.7 V. Determine the operating mode of the transistor.



9.3 BJT LARGE-SIGNAL MODEL
The i-υ characteristics of a BJT indicate that it acts as a current-controlled
current source (CCCS) in the cutoff and active operating modes. In those
two modes, the base current dictates the behavior of the BJT. These
characteristics form part of a large-signal model for the BJT that describes
its behavior in terms of the amplitudes of the base and collector currents.
Like all models, the large-signal model does not account for every
characteristic of a BJT. In particular, it does not account for the Early effect
nor temperature effects. However, this model does provide a useful and
simple starting point for the analysis of transistor circuits.

It is worth noting that Section 9.4 introduces the small-signal model for
a BJT that approximates the behavior of a transistor in the presence of small
variations in current or voltage. In simple terms, the large- and small-signal
models relate BJT variables (I, V) and (ΔI, ΔV).

Large-Signal Model of the npn BJT
In cutoff mode, the BE junction is reverse-biased, the base and collector
currents are approximately zero, and therefore the transistor acts as a virtual
open-circuit. In practice, there is always a leakage current, denoted by ICEO,
through the collector, even when VBE = 0 and IB = 0.

In active mode, the BE junction is forward-biased, and the collector
current is proportional to the base current, where the constant of
proportionality is β.

Answer: Saturation



(9.9)

Since β ≫ 1, this relationship indicates that the collector current is
controlled by a relatively small base current.

Finally, in saturation mode, the base current is sufficiently large that the
collector-emitter voltage VCE reaches its saturation limit, and the collector
current is no longer proportional to the base current. In fact, the collector-
emitter pathway acts like a virtual short-circuit, except for the small
potential drop VCEsat ≈ 0.2 V.

All three of these operating modes are described by the simple circuit
models shown in Figure 9.12. Each of these individual models approximates
one of the three operating modes indicated in Figure 9.10. Notice that the
large-signal model treats the forward-biased BE junction as an offset diode.

Figure 9.12 An npn BJT large-signal model

Selecting an Operating Point for a BJT
The family of curves shown for the collector i-υ characteristic in Figure 9.10
reflects the dependence of the collector current on the base current. For each
value of the base current iB, there exists a corresponding iC-υCE curve. Thus,
by selecting the base current and collector current (or collector-emitter



(9.10)

(9.11)

(9.12)

voltage), an operating point Q for Page 486the transistor is determined. Q is
defined in terms of the quiescent (or idle) currents and voltages that are
present at the terminals of the device under DC conditions. The circuit of
Figure 9.13 illustrates an ideal (not practical) DC bias circuit, used to set
the operating point Q such that VCE ≈ VCC/2. (A practical bias circuit is
discussed later in this chapter.) The underlying principle is to pick RC and RB
such that under quiescent DC conditions the BJT is maintained in active
mode for all anticipated variations in IB, IC, and VCE under operating
(nonquiescent) conditions.

Figure 9.13 A simple ideal bias circuit for a BJT amplifier

KVL can be applied to yield the following equations:

and

or

Note that equation 9.11 represents a load line for the source network of VCC
in series with RC. When VCE = 0, the collector current is IC = VCC/RC; when
IC = 0, the collector-emitter voltage is VCE = VCC. These two conditions
represent the virtual short- and open-circuit cases for the collector-emitter
pathway, that is, the saturation and cutoff modes of the BJT, respectively.



The load line can be superimposed upon the plot of BJT characteristics as
shown in Figure 9.14. The slope of the load line is −1/RC. The operating
point Q is the intersection of the load line with one of the BJT characteristic
lines. The particular characteristic line is determined by the base current IB,
as given by equation 9.9. The particular load line shown in Figure 9.14
assumes VCC = 15 V, VCC/RC = 40 mA, and IB = 150 μA.

Figure 9.14 Load-line analysis of a simplified BJT amplifier

Once the operating point is established, the BJT is considered biased
and prepared to operate as a linear amplifier. It is important to note that in
circuit diagrams transistors are usually designated Q1, Q2, etc. The use of Q
to denote transistors is related to the use of Q to denote an operating point,
but the two uses serve two different purposes.
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FOCUS ON MEASUREMENTS



Large-Signal Amplifier for Diode Thermometer
Problem:

A diode can be used as the temperature transducer in an electronic
thermometer (see the Focus on Measurements box, “Diode Thermometer,”
in Chapter 8). In this example, a diode element again acts as a temperature
transducer within the transistor amplifier circuit shown in Figure 9.15.

Solution:

Known Quantities—Diode and transistor amplifier bias circuits; diode
voltage versus temperature response.

Find—Collector resistance and transistor output voltage versus temperature.

Schematics, Diagrams, Circuits, and Given Data—VCC = 12 V; large-
signal β = 188.5; VBE = 0.75 V; RS = 500 Ω; RB = 10 kΩ.

Assumptions—A 1N914 diode and a 2N3904 transistor are used in the
circuit.



Figure 9.15 Large-signal amplifier for diode thermometer

Analysis—The diode temperature response characteristic is shown in Figure
9.16(a). The midrange diode thermometer output voltage is approximately
1.1 V. Thus, the Page 488operating point of the transistor amplifier should
be designed so that υD ≈ 1.1 V to reduce the risk of distortion due to
nonlinearities elsewhere in the diode temperature response characteristic.
Since the collector supply VCC = 12 V, choose the quiescent operating point
Q such that VCEQ is half of VCC, or 6 V in this example. In this way, VCEQ
has roughly VCC/2 headroom to vary, up or down, as the diode temperature
varies.

Figure 9.16 (a) Diode voltage temperature dependence; (b)
amplifier output

With υD = 1.1 V at the quiescent point, the quiescent base current is:



The collector current can be computed as:

Finally, KVL can be applied to find a relationship for the resistance RC:

Once the circuit is designed according to these specifications, the output
voltage can be determined by computing the base current as a function of
the diode voltage (which is a function of temperature); from the base
current, we can compute the collector current and use the collector equation
to determine the output voltage υout = υCE. The result is plotted in Figure
9.16(b).

Comments—Note that the transistor amplifies the slope of the temperature
by a factor of approximately 6. Observe also that the common-emitter
amplifier used in this example causes a sign inversion in the output (the
output voltage now decreases for increasing temperatures while the diode
voltage increases). Finally, note that the design assumes that the impedance
of the voltmeter is infinite, which is a reasonable assumption because a
typical voltmeter has a very large input resistance compared to the transistor
output resistance. If the output measured by the voltmeter were connected to
another circuit, one would have to pay close attention to the input resistance
of the second circuit to ensure that it did not load the transistor circuit and
thereby affect its behavior.
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EXAMPLE 9.3 LED Driver
Problem

Design a transistor switch to control an LED as shown in Figure 9.17. The
LED is required to turn on and off with the on/off signal from a digital
output port of a microcontroller that is in series with the transistor base.

Figure 9.17 LED driver circuit

Solution
Known Quantities: Microcontroller output resistance and output signal
voltage and current levels; LED offset voltage, required current, and power
rating; BJT current gain and base-emitter junction offset voltage.
Find: (a) Collector resistance RC such that the transistor is in saturation
when the microcontroller outputs 5 V; (b) power dissipated by LED.
Schematics, Diagrams, Circuits, and Given Data:



Assumptions: Use the large-signal models for cutoff and saturation as
shown in Figure 9.12. In saturation, VCE ≈ VCEsat = 0.2 V.

Analysis: When the microcontroller output voltage is zero, the BJT is in
cutoff mode since the base current is zero. When the microcontroller output
voltage is VON = 5 V, the transistor should be in saturation mode so that the
LED sees a virtual short-circuit from collector to emitter. Figure 9.18(a)
depicts the equivalent base-emitter circuit when the microcontroller output
voltage is VON = 5 V. Figure 9.18(b) depicts the collector circuit, and Figure
9.18(c), the same collector circuit with the large-signal model for the
transistor in place of the BJT. Apply KVL to obtain:

or

Figure 9.18 (a) BE circuit for LED driver; (b) equivalent collector
circuit of LED driver, assuming that the BJT is in the linear active
mode; (c) LED driver equivalent collector circuit, assuming that
the BJT is in saturation mode
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A typical LED requires at least 15 mA to be on. In this example, the LED
current is specified as 30 mA to ensure that the LED is reasonably bright



when on. The collector resistance RC needed to provide this current is ≈ 113
Ω.

To confirm that the transistor is in saturation when the microcontroller
voltage is 5 V, the ratio IC/IB should be less than β. For the given
specifications, the base current is:

Thus:

In active mode, the ratio IC/IB = β = 95. For sufficiently large values of the
base current, the transistor leaves active mode and enters saturation. In
saturation, the ratio IC/IB is no longer constant and is always less than β.
Clearly, this condition is satisfied when the microcontroller output is on. For
any particular transistor, the value of β can be significantly different from its
typical value given in a generic data sheet. Thus, in practice, it is a good idea
to make sure that IC/IB ≪ βtyp. In this example, 7 ≪ 95 such that it is
reasonably certain that the transistor will be in saturation for the design
specification of RC ≈ 113 Ω.

The power dissipated by the LED is:

Since the power rating of the LED has not been exceeded, the design is
complete.

Comments: The large-signal model of the BJT is easy to apply because the
BE and CE junctions are approximated as short-circuits in series with an
independent voltage source. Remember to first check the operating mode of
the transistor by assuming a mode and then verifying that the assumption is
not contradicted by the resulting voltages across the EBJ, CBJ, and CEJ.



EXAMPLE 9.4 Simple BJT Battery Charger (Current Source)
Problem

Design a constant-current battery charging circuit by selecting values of
VCC, R1, R2 (a potentiometer) that will cause the transistor Q1 to act as a
current-controlled current source (CCCS) with a selectable range 

.

Solution
Known Quantities: Transistor large-signal parameters; NiCd battery
nominal voltage.
Find: VCC, R1, R2.

Schematics, Diagrams, Circuits, and Given Data: Figure 9.19. VCC = 12 V;
Vγ = 0.6 V; β = 100.

Assumptions: Assume that the transistor can be represented by the large-
signal model.
Analysis: To determine the operating mode of the transistor, assume one of
the three possible modes and check for any contradictions. First, if cutoff
mode is assumed, iB = 0 and iC = 0. Clearly, this mode is not useful for
charging. Moreover, KVL requires VBE + iB(R1 + R2) = VCC, or since iB = 0,
VBE = VCC = 12 V. Thus, the EBJ would be forward-biased if iB = 0. This
result is a contradiction of the cutoff mode assumption, which therefore
must be incorrect.
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Figure 9.19 Simple battery charging circuit

Second, if the saturation mode is assumed, . However,
KVL requires VCE + 9 V = VCC = 12 V, or VCE = 3 V, which is a
contradiction of the assumed saturation mode.

Thus, the transistor must be in active mode. The base and collector
currents, iB and iC, are given by Ohm’s law and iC = βiB, respectively.

The bounds on the collector current iC, which charges the battery, are:

The potentiometer wiper can be set to any value in the range 0 ≤ α ≤ 1 such
that the resistance seen by the base is . The maximum collector
current is obtained when the wiper is set to the far right position α = 0. Thus,
select R1 by setting  when α = 0.

or



If the value of R1 is restricted to the E12 series of standard resistor values,
the closest standard value is R1 = 12 kΩ, which will result in a slightly lower
maximum collector current. The rated value of the potentiometer  is
found by requiring that  when the wiper is set to the far left
position α = 1. Thus:

or

Again, if the value of  is restricted to the E12 series of standard resistor
values, the closest standard value is , which results in a slightly
higher minimum collector current.

Comments: A practical note on NiCd batteries: a standard 9-V NiCd battery
is made up of eight 1.2-V cells. Thus, the actual nominal battery voltage is
9.6 V. Further, as the battery becomes fully charged, each cell rises to
approximately 1.3 V, leading to a fully charged voltage of 10.4 V.

Page 492

EXAMPLE 9.5 Simple BJT Motor Drive Circuit
Problem

The aim of this example is to design a BJT driver for the Lego® 9V Technic
DC motor, model 43362. Figure 9.20 shows the driver circuit and a picture
of the motor. The motor has a maximum (stall) current of 340 mA. The
minimum current needed to start motor rotation is 20 mA. The aim of the



circuit is to control the current to the motor (and therefore the motor torque,
which is proportional to the current) through the potentiometer .

Solution
Known Quantities: Transistor large-signal parameters; component values.
Find: Values of R1 and .

Schematics, Diagrams, Circuits, and Given Data: Figure 9.20. Maximum
(stall) of 340 mA; minimum (start) current of 20 mA; Vγ = 0.6 V; β = 40;
VCC = 12 V.

Figure 9.20 Motor drive circuit; (a) BJT driver circuit; (b) Lego®

9V Technic motor, model 43362 (Courtesy Philippe "Philo"
Hurbain)

Assumptions: Use the large-signal model with β = 40 for each transistor.
Analysis: This example circuit is a good example of how to stage transistors
to accomplish a task that is difficult or impossible to accomplish with one
transistor alone. Assume that both transistors are in active mode such that iC
= βiB for each transistor. Once a solution is found, the voltages across the
EBJ and CBJ can be checked for compatibility with the active mode
assumption; however, the i-υ characteristic of the motor is needed to do so.
For this example, it is assumed that the active mode assumption is correct.

It is important to recognize that the emitter current from Q1 is the base
current for Q2. Since iE1 = iC1 + iB1 = (β + 1)iB1, iB2 = iE1, and iC2 = βiB2, the
collector current iC2 of Q2 is related to the base current i B1 of Q 1 by:



The base current iB1 of Q1 is given by Ohm’s law.
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Therefore, the range of the motor current is:

The potentiometer wiper can be set to any value in the range 0 ≤ α ≤ 1
such that the resistance seen by the base of Q1 is . The maximum
(stall) current for the motor is obtained when the wiper is set to the far right
position α = 0. Thus, select R1 by setting  when α = 0.

or

If the value of R1 is restricted to the E12 series of standard resistor values,
the closest standard value is R1 = 56 kΩ, which will result in a somewhat
lower maximum motor current. The rated value of the potentiometer  is
found by requiring that  when the wiper is set to the far left
position α = 1. Thus:

Again, if the value of R2max is restricted to the E12 series of standard resistor
values, the closest standard value that is still greater than 833,508 Ω is 

, which results in a slightly lower minimum motor current. The



lower minimum motor current will allow the motor to be turned off by
adjusting the potentiometer. Great!

Comments: This design is simple and permits manual control of the motor
current (and torque). If the motor is to be controlled by a microcontroller,
the circuit should be redesigned to accept an external voltage input.

EXAMPLE 9.6 Calculating an Operating Point for a BJT
Amplifier
Problem

Determine the DC operating point of the BJT amplifier in the circuit of
Figure 9.21.

Figure 9.21 Circuit for Example 9.6.

Solution
Known Quantities: Base and collector resistances RB and RC; base and
collector supply voltages VBB and VCC; BJT characteristic curves; BE
junction offset voltage.
Find: Quiescent currents IBQ and ICQ, and collector-emitter voltage VCEQ.



Schematics, Diagrams, Circuits, and Given Data: RB = 62.7 kΩ; RC = 375
Ω; VBB = 10 V; VCC = 15 V; Vγ = 0.6 V. The BJT characteristic curves from
Figure 9.14.
Assumptions: The transistor is in active mode.
Analysis: KVL provides the load-line equation for the source network VCC
in series with RC.

Page 494

This load line is shown in Figure 9.14. To determine the Q point it is
necessary to know the base current. Applying KVL around the base circuit,
and assuming that the BE junction is forward-biased, the base current is:

The intersection of the load line with the 150-μA base curve is the operating
or quiescent point of the transistor, defined below by the three values:

Comments: Although this example employed two separate voltage sources
VBB and VCC, it is possible to bias a transistor using a single voltage source.
Note that the transistor dissipates power even in its quiescent state; as should
be expected, most of the power is dissipated by RC: PCQ = VCEQ × ICQ = 150
mW.

CHECK YOUR UNDERSTANDING
Repeat the analysis of Example 9.3 for RC = 400 Ω. In which mode is the
transistor operating? What is the collector current?

What is the power dissipated by the LED in Example 9.3 if RC = 30 Ω?



CHECK YOUR UNDERSTANDING
In Example 9.4, what is VCE when the battery is fully charged (10.4 V)? Is
this value consistent with the assumption that the transistor is in active
mode?

CHECK YOUR UNDERSTANDING
Compute the maximum and minimum possible motor currents for the circuit
in Example 9.5 using the selected standard resistor values for R1 and .

CHECK YOUR UNDERSTANDING
In Example 9.6, how would the Q point change if RB was decreased such
that the base current increased to 200 μA?

Answers: Saturation; 8.5 mA; 159 mW

Answer: 

Answer: 
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9.4 A BRIEF INTRODUCTION TO SMALL-
SIGNAL AMPLIFICATION
The purpose of a DC operating point Q for a BJT circuit is to bias the BJT
so that it is prepared to act as a linear amplifier for a relatively small time-
varying input signal.

Typically, a time-varying voltage signal ΔVB is superimposed upon a
much larger DC voltage VBB, as shown in Figure 9.22, such that the base
current is also a time-varying function IB + ΔIB. The primary objective of the
DC biasing is to prevent the variation in the base current ΔIB from driving
the BJT out of active mode. This objective will be achieved if the maximum
variation in the base current  is small compared to the DC bias current
IB and if IB is picked such that the operating point of the BJT is located in
active mode, far from cutoff and saturation. An example of such an
operating point Q is shown in Figure 9.14. In that figure, notice that IB
would have to change by at least ±100 μA from the 150-μA bias current for
the BJT to leave active mode and enter either cutoff or saturation. As the
base current changes, the location of Q simply moves along the load line,
either up and to the left as IB increases, or down and to the right as IB
decreases.

Answer: 



(9.13)

(9.14)

(9.15)

(9.16)

Figure 9.22 Circuit illustrating the amplification effect in a BJT

The phrase small-signal model refers to the fact that the maximum
variation in the amplified signal must be small compared to the DC
bias conditions.

As long as the BJT remains in active mode the collector current will be
roughly proportional to the base current, such that:

Further, as seen in Figure 9.22, KVL around the collector source network
yields:

In the quiescent state (no time-varying input signal), this equation becomes:

Subtract equation 9.15 from equation 9.14 to obtain:



(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

Notice that the variation in the collector-emitter voltage ΔVCE is
proportional to the variation in the base current, where the constant of
proportionality is βRC.

Further analysis applying KVL around the base source network yields:

In the quiescent state, this equation becomes:
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Subtract equation 9.18 from equation 9.17 to obtain:

or

Use this result to substitute for Δ I B in equation 9.15 to obtain:

This equation shows that the time-varying component ΔVBB of the input
voltage is amplified by a factor of βRC/RB to produce a time-varying
component ΔVCE of the output voltage. Notice that the output of the BJT
circuit in Figure 9.22 is considered to be the collector-emitter voltage.

It is important to mention that equation 9.20 shows that the expression
for ΔVCE is proportional to ΔVBB only if ΔVBE is negligibly small compared
to ΔVBB. Keep in mind that when the BJT is in active mode the EBJ is
forward-biased such that the operating point for the EBJ diode is located
along the steep portion of the curve shown in Figure 9.6. As a result, ΔVBE



tends to be quite small for changes in IB. Whether ΔVBE is negligible
requires more analysis than is appropriate here. Besides, there are other
nonideal behaviors of a BJT that prevent the amplifier from being
completely linear. The key point is that if the BJT is properly biased, these
nonideal effects can be kept small.

An example of the amplification process described above is illustrated in
Figure 9.23, where a time-varying sinusoidal collector current IC + ΔIC is
shown to the right of the horizontal time axis and the resulting time-varying
sinusoidal collector-emitter voltage VCE + ΔVCE is shown below the VCE
axis. Notice that the base current oscillates between 110 and 190 μA,
causing the collector current to correspondingly fluctuate between 15.3 and
28.6 mA. Thus, the BJT acts as a current amplifier.

Figure 9.23 Amplification of sinusoidal oscillations in a BJT

A Practical Self-Biasing BJT Circuit
In practice, the circuit shown in Figure 9.22 can be used to bias a BJT;
however, it has some weaknesses that can create serious problems in
applications. In Page 497particular, variations in temperature can cause the
operating point Q to shift significantly, and perhaps result in thermal
runaway. Even if temperature effects are compensated for by other means,
the Q points for two apparently identical reproductions of this circuit can be
significantly different if the β values for the two BJTs are significantly
different, as is often the case even in BJTs of the same type and lot.



(9.22)

(9.23)

A much better self-biasing circuit that automatically compensates for
such parameter variations is shown in Figure 9.24. This circuit also has the
added advantage of needing only one common power supply VCC. Notice
that VCC appears across both (R1, R2) and (RC, RE) such that the circuit can
be redrawn as shown in Figure 9.25(a). The Thévenin equivalent network
seen by the base is shown in Figure 9.25(b), where:

and

Figure 9.24 Practical single power supply BJT self-bias DC
circuit

Notice that the circuit in Figure 9.25(b) closely resembles the circuit in
Figure 9.22. The important difference is the presence of RE between the
emitter and the node along the bottom portion of the diagram.



(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

Figure 9.25 (a) DC self bias circuit; (b) equivalent circuit form.

KVL can be applied around the base and collector networks to yield:

and

where

These two equations can be solved to obtain:
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and

The latter equation is the load line for the bias circuit. Notice that the
effective load resistance seen by the collector circuit is now:

rather than simply RC.

The role of RE is to provide negative feedback to a change in the
operating point Q due to, for example, a change in temperature that, in turn,
changes β of the transistor. Refer to Figure 9.25(b) for the case of a change
Δβ. The most immediate effect is a change in the collector current ΔIC = Δβ



IB. In turn, this change results in a change in the emitter current ΔIE = ΔIC +
ΔIB. It is here that RE plays its part. The change in the emitter current results
in a change in the voltage across RE of ΔIE RE, which then brings about a
change in the voltage VBE across the EBJ. Finally, this change in VBE brings
about a change in the base current due to the fact that the EBJ is a diode. At
this point, it is important to realize that the change in base current always
tends to offset the original change in the collector current because ΔIC =
βΔIB. In other words, if Δβ is positive, then ΔIB will be negative, and vice
versa. Thus, while a change in β tends to move the operating point Q, the
effect of RE is to restrain Q from moving.

EXAMPLE 9.7 A BJT Small-Signal Amplifier
Problem

With reference to the BJT amplifier of Figure 9.26 and to the collector
characteristic curves of Figure 9.23, determine (1) the DC operating point of
the BJT, (2) the nominal current gain β at the operating point, and (3) the AC
voltage gain G = ΔVo/ΔVB.

Figure 9.26 Circuit for Example 9.7.



1.
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Solution
Known Quantities: Base, collector, and emitter resistances; base and
collector supply voltages; collector characteristic curves; BE junction offset
voltage.
Find: (1) DC (quiescent) base and collector currents IBQ and ICQ and
collector-emitter voltage VCEQ , (2) β = ΔIC/ΔIB , and (3) G = ΔVo/ΔVB .

Schematics, Diagrams, Circuits, and Given Data: RB = 10 kΩ; RC = 375 Ω;
VBB = 2.1 V; VCC = 15 V; Vγ= 0.6 V. The collector characteristic curves are
shown in Figure 9.28.
Assumptions: Assume that the BE junction resistance is negligible
compared to the base resistance. Assume that each voltage and current can
be represented by the superposition of a DC (quiescent) value and an AC
component, for example, υ0 = V0Q + ΔV0 .

Analysis:
DC operating point. If the resistance of the BE junction is assumed to
be much smaller than RB, any change in the voltage across the EBJ is
negligible such that υBE = VBEQ = Vγ . Figure 9.27 shows the resulting
DC equivalent base circuit. KVL yields:

The quiescent base current can be computed as:

The load-line equation for the collector circuit is given by KVL as:



2.

Figure 9.27 DC equivalent base circuit or Example 9.7.

The load line and its intersection Q with the IB = 150 μA line is shown
in Figure 9.28. At the operating or quiescent point Q, VCEQ = 7.2 V, ICQ
= 22 mA, and IBQ = 150 μA.

Figure 9.28 Operating point on the characteristic curve

AC gain. The current gain is determined from the characteristic curves
of Figure 9.28. The collector current values corresponding to base
currents of 190 and 110 μA are 28.6 and 15.3 mA, respectively. These
collector current excursions ΔIC from the Q point correspond to the
effects of an oscillation ΔIB in the base current. Thus, the current gain
of the BJT amplifier can be computed as:

which is the nominal current gain of the transistor.
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3.

•

•

AC voltage gain. To determine the AC voltage gain G = ΔVo/ΔVB,
express ΔVo as a function of ΔVB. Observe that .
Thus:

The principle of superposition allows ΔIB to be computed from the
KVL equation for the base circuit.

However, due to the assumed small EBJ resistance, ΔVBE is negligible.
Thus:

Substitute this result into the expression for ΔVo to find:

or

Comments: The circuit examined in this example is not self-biasing, but it
demonstrates most of the essential features of BJT amplifiers, which are
summarized below.

Transistor amplifier analysis is greatly simplified by applying the
principle of superposition to consider the DC bias circuit and the
AC equivalent circuits separately.

Once the bias point Q has been determined, the current gain can
also be determined. Its value is somewhat dependent on the location
of Q.



• The AC voltage gain of the amplifier is strongly dependent on RB
and RC. Note that the AC voltage gain ΔV o is negative! This
inversion corresponds to a 180° phase shift for a sinusoidal AC
input.

It is important to master this example when studying this section.

EXAMPLE 9.8 Practical BJT Bias Circuit
Problem

Determine the DC bias point of the transistor in the circuit of Figure 9.24.

Solution
Known Quantities: Base, collector, and emitter resistances; collector supply
voltage; nominal transistor current gain; BE junction offset voltage.
Find: DC (quiescent) base and collector currents IBQ and ICQ and collector-
emitter voltage VCEQ.

Schematics, Diagrams, Circuits, and Given Data: R1 = 100 kΩ; R2 = 50
kΩ; RC = 5 kΩ; RE = 3 kΩ; VCC = 15 V; Vγ = 0.7 V, β = 100.

Analysis: We first determine the equivalent base voltage from equation 9.7,
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and the equivalent base resistance from equation 9.8,



Now we can compute the base current from equation 9.11,

and knowing the current gain of the transistor β, we can determine the
collector current:

Finally, the collector-emitter junction voltage can be computed with
reference to equation 9.12:

Thus, the Q point of the transistor is given by:

CHECK YOUR UNDERSTANDING
In Example 9.7, find the new Q point if RC is increased to 680 Ω.

CHECK YOUR UNDERSTANDING

Answer: Since VBB and RB are unchanged and the change in VBEQ
is negligible, IBQ will remain approximately equal to 150 μA. By
observation, VCEQ ≈ 0.5 V is much smaller and the BJT is close to
saturation. The new collector current ICQ ≈ 20 mA.



In the circuit of Figure 9.25, find the value of VBB that yields a collector
current IC = 6.3 mA. What is the corresponding collector-emitter voltage?
Assume that VBE = 0.6 V, RB = 50 kΩ, RE = 200 Ω, RC = 1 kΩ, β = 100, and
VCC = 14 V.

What percentage change in collector current would result if β were changed
to 150 in Example 9.8? Why does the collector current increase less than 50
percent?

9.5 GATES AND SWITCHES
In describing the properties of transistors, it was suggested that, in addition
to serving as amplifiers, three-terminal devices can be used as electronic
switches in which one terminal controls the flow of current between the
other two. It had also Page 502been hinted in Chapter 8 that diodes can act
as on/off devices as well. In this section, we discuss the operation of diodes
and transistors as electronic switches, illustrating the use of these electronic
devices as the switching circuits that are at the heart of analog and digital
gates. Transistor switching circuits form the basis of digital logic circuits,
which are discussed in greater detail in Chapter 11. The objective of this
section is to discuss the internal operation of these circuits and to provide
the reader interested in the internal workings of digital circuits with an
adequate understanding of the basic principles.

An electronic gate is a device that, on the basis of one or more input
signals, produces one of two or more prescribed outputs; as will be seen
shortly, one can construct both digital and analog gates. A word of
explanation is required, first, regarding the meaning of the words analog and
digital. An analog voltage or current—or, more generally, an analog signal

Answers: VBB = 5 V, VCE = 6.43 V; 3.74 percent. Because RE
provides negative feedback action that will keep IC and IE nearly
constant



—is one that varies in a continuous fashion over time, in analogy (hence the
expression analog) with a physical quantity. An example of an analog signal
is a sensor voltage corresponding to ambient temperature on any given day,
which may fluctuate between, say, 30 and 50°F. A digital signal, on the other
hand, is a signal that can take only a finite number of values; in particular, a
commonly encountered class of digital signals consists of binary signals,
which can take only one of two values (for example, 1 and 0). A typical
example of a binary signal would be the control signal for the furnace in a
home heating system controlled by a conventional thermostat, where one
can think of this signal as being on (or 1) if the temperature of the house has
dropped below the thermostat setting (desired value), or off (or 0) if the
house temperature is greater than or equal to the set temperature (say, 68°F).
Figure 9.29 illustrates the appearance of the analog and digital signals in this
furnace example.

Figure 9.29 Illustration of analog and digital signals

The discussion of digital signals will be continued and expanded in
Chapter 11. Digital circuits are an especially important topic because a large
part of today’s industrial and consumer electronics is realized in digital
form.

Diode Gates



You will recall that a diode conducts current when it is forward-biased and
otherwise acts very much as an open-circuit. Thus, the diode can serve as a
switch if properly employed. The circuit of Figure 9.30 is called an OR
gate; it operates as follows. Let voltage levels greater than, say, 2 V
correspond to a “logic 1” and voltages less than 2 V represent a “logic 0.”
Suppose, then, that input voltages υA and υB can be equal to either 0 V or 5
V. If υA = 5 V, diode DA will conduct; if υA = 0 V, DA will act as an open-
circuit. The same argument holds for DB. It should be apparent, then, that
the voltage across the resistor R will be 0 V, or logic 0 if both υA and υB are
0. If either υA or υB is equal to 5 V, though, the corresponding diode will
conduct, and—assuming an offset model for the diode with Vγ = 0.6 V—we
find that υo = 4.4 V, or logic 1. Similar analysis yields an equivalent result if
both υA and υB are equal to 5 V.

Figure 9.30 Diode OR gate



This type of gate is called an OR gate because υo is equal to logic 1 (or
“high”) if either υA or υB is on while it is logic 0 (or “low”) if neither υA nor
υB is on. Other functions can also be implemented; however, the discussion
of diode gates will be limited to this simple introduction because diode gate
circuits, such as the one of Figure 9.30, are rarely, if ever, employed in
practice. Most modern digital circuits employ transistors to implement
switching and gate functions.
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BJT Gates

In discussing large-signal models for the BJT, we observed that the i-υ
characteristic of this family of devices includes a cutoff mode, where
virtually no current flows through the transistor. On the other hand, when a
sufficient amount of current is injected into the base of the transistor, a
bipolar transistor will reach saturation, and a substantial amount of collector
current will flow. This behavior is quite well suited to the design of
electronic gates and switches and can be visualized by superimposing a load
line on the collector characteristic, as shown in Figure 9.31.



(9.29)

(9.30)

(9.31)

Figure 9.31 BJT switching characteristic

The operation of the simple BJT switch is illustrated in Figure 9.31, by
means of load-line analysis. The load-line equation of the collector circuit is:

and

Thus, when the input voltage υin is low (say, 0 V), the transistor is in cutoff
mode and its currents are very small. Then:

such that the output is “logic high.”

When υin is large enough to drive the transistor into the saturation mode,
a substantial amount of collector current will flow and the collector-emitter
voltage will be reduced to the small saturation value VCEsat, which is
typically a fraction of a volt. This corresponds to the point labeled B on the
load line. For the input voltage υin to drive the BJT of Figure 9.31 into
saturation, a base current of approximately 50 μA will be required. Suppose,
then, that the voltage υin could take the values 0 or 5 V. Then if υin = 0 V, υo
will be nearly equal to VCC, or, again, 5 V. If, on the other hand, υin = 5 V
and RB is, say, equal to 89 kΩ [so that the base current required for
saturation is iB = (υin − Vγ)/RB = (5 − 0.6)/89,000 ≈ 50 μA], the BJT is in
saturation, and υo = VCEsat ≈ 0.2 V.

Thus, whenever υin corresponds to a logic high (or logic 1), υo takes a
value close to 0 V, or logic low (or 0); conversely, υin = “0” (logic “low”)
leads to υo = “1.” The values of 5 and 0 V for the two logic levels 1 and 0
are quite common in practice and are the standard values used in a family of



logic circuits denoted by the acronym TTL, which stands for transistor-
transistor logic.3 One of the more common TTL blocks is the inverter
shown in Figure 9.31, so called because it “inverts” the input by providing a
low output for a high input, and vice versa. This type of inverting, or
“negative,” logic behavior is quite typical of BJT gates (and of transistor
gates in general).

EXAMPLE 9.9 TTL NAND Gate
Problem

Refer to Figure 9.32 and complete the table below to determine the logic
gate operation of a TTL NAND gate, which acts as an inverted AND gate
(thus the prefix n in NAND, which stands for NOT).

Figure 9.32 TTL NAND gate
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Solution
Known Quantities: Resistor values; VBEon and VCEsat for each transistor.

Find: υo for each of the four combinations of υ1 and υ2.

Schematics, Diagrams, Circuits, and Given Data: R1 = 5.7 kΩ; R2 = 2.2
kΩ; R3 = 2.2 kΩ; R4 = 1.8 kΩ; VCC = 5 V; VBEon = Vγ = 0.7 V; VCEsat = 0.2
V.
Assumptions: Treat the BE and BC junctions of Q1 as offset diodes. Assume
that the transistors are in saturation when conducting.
Analysis: The inputs to the TTL gate, υ1 and υ2, are applied to the emitter of
transistor Q1. The transistor is designed so as to have two emitter circuits in
parallel. Transistor Q1 is modeled by the offset diode model, as shown in
Figure 9.33. Consider each of the four cases.

Figure 9.33 Offset diode model of transistor Q1



1.

2.

3.

4.

υ1 = υ2 = 0 V. With the emitters of Q1 connected to ground and the base
of Q1 at 5 V, the BE junction will clearly be forward-biased and Q1 is
on. This result means that the base current of Q2 (equal to the collector
current of Q1) is negative, and therefore Q2 must be off. If Q2 is off, its
emitter current must be zero, and therefore no base current can flow into
Q3, which is in turn also off. With Q3 off, no current flows through R3,
and therefore υo = 5 − υR3 = 5 V.
υ1 = 5 V; υ2 = 0 V. With reference to Figure 9.33, diode D2 is still
forward-biased, but D1 is now reverse-biased because of the 5-V
potential at υ2. Thus, the EBJ conducts current and Q1 is on. The
remainder of the analysis is the same as in case 1, and Q2 and Q3 are
both off, leading to υo = 5 V.
υ1 = 0 V; υ2 = 5 V. By symmetry with case 2, one emitter branch is
conducting, Q1 is on, Q2 and Q3 are off, and υo = 5 V.
υ1 = 5 V; υ2 = 5 V. Here, diodes D1 and D2 are both reverse-biased,
there is no emitter current, and Q1 is off. Note, however, that although
D1 and D2 are reverse-biased, D3 is forward-biased, and a base current
exists for Q2; thus, Q2 is on and its emitter current turns on Q3. To
determine the output voltage, assume that Q3 is operating in saturation
such that:

KVL can be applied to the collector circuit to find:

or

A reasonable question is, Can Q2 also be in saturation? If it is, then R2
and R4 are virtually in series and the base voltage of Q3 can be
computed by voltage division.



Page 505

Since the emitter of Q3 is tied directly to the reference node (V = 0), the
voltage across the EBJ of Q3 would also be 2.25 V. But this value is
incompatible with the assumption that Vγ ≈ 0.7 V for silicon-based
transistors. Thus, Q2 cannot be in saturation. But since it is on, it must
be in active mode.

The results for all four cases are summarized in the table below. The
output values are consistent with TTL logic; the output voltage for case 4 is
sufficiently close to zero to be considered zero for logic purposes.

Comments: While exact analysis of TTL logic gate circuits could be tedious
and involved, the method demonstrated in this example—to determine
whether transistors are on or off—leads to a very simple analysis. When
working with logic devices, the primary interest is in logic levels rather than
exact values; thus, approximations are appropriate.

CHECK YOUR UNDERSTANDING
Use the BJT switching characteristic of Figure 9.31 to find the value of RB
required to drive the transistor to saturation. Assume a base current of 50 μA
when the minimum υin to turn on the transistor is 2.5 V.

Answer: 



1.

2.

3.

4.

5.

Conclusion
This chapter introduces the bipolar junction transistor, and by way of the
simple circuit model demonstrates its operation as an amplifier and a switch.
Upon completing this chapter, you should have mastered the following
learning objectives:

Understand the basic principles of amplification and switching.
Transistors are three-terminal electronic semiconductor devices that can
serve as amplifiers and switches.
Understand the physical operation of bipolar transistors; determine the
operating point of a bipolar transistor circuit. The bipolar junction
transistor has four modes of operation. These can be readily identified
by simple voltage measurements.
Understand the large-signal model of the bipolar transistor, and apply
it to simple amplifier circuits. The large-signal model of the BJT is very
easy to use, requiring only a basic understanding of DC circuit analysis,
and can be readily applied to many practical situations.
Select the operating point of a bipolar transistor circuit. Biasing a
bipolar transistor consists of selecting the appropriate values for the DC
supply voltage(s) and for the resistors that comprise a transistor
amplifier circuit. When biased in the forward active mode, the bipolar
transistor acts as a current-controlled current source and can amplify
small currents injected into the base by as much as a factor of 200.
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Understand the operation of a bipolar transistor as a switch, and
analyze basic analog and digital gate circuits. The operation of a BJT
as a switch is very straightforward, and consists of designing a
transistor circuit that will go from cutoff to saturation when an input
voltage changes from a high to a low value, or vice versa. Transistor
switches are commonly used to design digital logic gates.



9.1

9.2
a.

b.

c.

d.

9.3

HOMEWORK PROBLEMS
Section 9.2: The Bipolar Junction Transistor

For each transistor shown in Figure P9.1, determine whether the BE
and BC junctions are forward- or reverse-biased, and determine the
operating mode.

Figure P9.1

Determine the mode of operation for the following transistors:

npn, VBE = 0.8 V, VCE = 0.4 V

npn, VCB = 1.4 V, VCE = 2.1 V

pnp, VCB = 0.9 V, VCE = 0.4 V

npn, VBE = −1.2 V, VCB = 0.6 V

Given the circuit of Figure P9.3, determine the operating point of the
transistor. Let β = 100 ÷ 200, RB = 100 kΩ, Rc = 200 Ω, and VCC = 7
V.



9.4

a.

b.

c.

9.5

9.6

Figure P9.3

Refer to Figure 9.4 and assume that for a pnp transistor the emitter
and base currents are IE = 5 mA and IB = 0.2 mA, respectively. The
voltage drops across the emitter-base and collector-base junctions are
VEB = 0.67 V and VCB = 7.8 V. Find:

VCE.

The collector current.

The total power dissipated in the transistor, defined here as P =
VCEIC + VBEIB.

For the circuit shown in Figure P9.5, determine the emitter current IE
and the collector-base voltage VCB, as defined in Figure 9.9. Assume
Vγ = 0.62 V.

Figure P9.5

Given the circuit of Figure P9.6, determine VCE and IC. Assume β =
80, R1 = 15 kΩ, R2 = 25 kΩ, Rc = 2 kΩ, VBB = 5 V, VCC = 10 V, and
VAA = −4 V.



9.7

9.8

Figure P9.6
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Given the circuit of Figure P9.7, determine the emitter current IE and
the collector-base voltage VCB. Assume the offset voltage is Vγ = 0.6
V.

Figure P9.7

Given the circuit of Figure P9.8, determine VCE and IC. Assume R1 =
50 kΩ, R2 = 10 kΩ, RC = 600 Ω, RE = 400 Ω, VBE = 0.9 V, IB = 25 μA,
I2 = 200 μA, and VCC = 18 V.



9.9

a.

b.

9.10

Figure P9.8

The collector characteristics for a certain transistor are shown in
Figure P9.9.

Find the ratio IC/IB for VCE = 10 V and IB = 100, 200, and 600
μA.

If the maximum allowable collector power dissipation is P =
iCυCE = 0.5 W for IB = 500 μA, find VCE.

Figure P9.9

Given the circuit of Figure P9.10, determine the current IR. Let RB =
30 kΩ, RC1 = 1 kΩ, RC2 = 3 kΩ, R = 7 kΩ, V BB 1 = 4 V, V BB 2 = 3
V, VCC = 10 V, β1 = 40, and β2 = 60.

Figure P9.10



9.11

9.12

9.13

a.

b.

For the circuit shown in Figure P9.11, determine IR. Let RB = 50 kΩ,
RC = 1 kΩ, R = 2 kΩ, VBB = 2 V, VCC = 12 V, and β = 120.

Figure P9.11

For the circuit shown in Figure P9.12, determine whether the
transistor is in saturation. Let RB = 8 kΩ, RE = 260 Ω, RC = 1.1 kΩ,
VCC = 13 V, VBB = 7 V, and β = 100.

Figure P9.12
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For the circuit shown in Figure P9.8, VCC = 20 V, RC = 5 kΩ, and RE
= 1 kΩ. Determine the operating mode of the transistor if:

IC = 1 mA, IB = 20 μA, VBE = 0.7 V

IC = 3.2 mA, IB = 0.3 mA, VBE = 0.8 V



c.

9.14

9.15

9.16

IC = 3 mA, IB = 1.5 mA, VBE = 0.85 V

For the circuit shown in Figure P9.14, find the minimum input
voltage υin required to saturate the transistor. Assume VCC = 5 V, RC
= 2 kΩ, RB = 50 kΩ, VCEsat = 0.1 V, VBEsat = 0.6 V, and β = 50.

Figure P9.14

An npn transistor, such as that in Figure 9.9, is operated in active
mode with iC = 60iB and with junction voltages of VBE = 0.6 V and
VCB = 7.2 V. If ∣IE∣ = 4 mA, find (a) IB and (b) VCE.

Use the collector characteristics of the 2N3904 npn transistor shown
in Figure P9.16(a) and (b) to determine IC and VCE of the transistor
in Figure P9.16(c). Is the transistor in the active mode? If so,
determine its value of β.



Figure P9.16

Section 9.3: BJT Large-Signal Model



9.17

9.18

9.19

9.20

9.21

9.22

9.23

Refer to Example 9.3 and Figure 9.17. Assume that all given values
are unchanged except that the application requires ILED = 10 mA.
Find the range of collector resistance RC values that will permit the
transistor to supply the required current.

Refer to the Focus on Measurements box, “Large-Signal Amplifier
for Diode Thermometer,” and Figure 9.15. Assume RB = 33 kΩ,
VCEQ = 6 V, υD = 1.1 V, and VBEQ = 0.75 V. Find the value of RC that
is required to achieve the given Q point.

Refer to Example 9.3 and Figure 9.17. Assume that all given values
are unchanged except that RC = 340 Ω, ILED ≥ 10 mA, and that the
maximum base current supplied by the microprocessor is 5 mA. Find
the range of values of RB that satisfy these requirements.

Use the same data given in Problem 9.19, but assume that RB = 10
kΩ. Find the minimum value of β that satisfies the requirements.
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Repeat Problem 9.20 for the case of a microprocessor operating on a
2.8-V supply (that is, VON = 2.8 V).

Consider the LED driver circuit of Figure 9.17. This circuit is now
used to drive an automotive fuel injector (an electromechanical
solenoid valve). The differences in the circuit are as follows: The
collector resistor and the LED are replaced by the fuel injector,
which can be modeled as a series RL circuit. The voltage supply for
the fuel injector is 13 V (instead of 5 V). For the purposes of this
problem, it is reasonable to assume R = 12 Ω and L ∼ 0. Assume that
the maximum current that can be supplied by the microprocessor is 1
mA, that the current required to drive the fuel injector must be at
least 1 A, and that the transistor saturation voltage is VCEsat = 1 V.
Find the minimum value of β required for the transistor.

Refer to Problem 9.22. Assume β = 7,000. Find the allowable range
of RB.



9.24

9.25

9.26

Given the circuit of Figure P9.8, find the minimum value of RC such
that transistor operates in active mode and dissipates less than 15
mW. Let VCC = 10 V, R1 = R2 = 40 kΩ, RE = 1.5 kΩ, VBE = 0.7 V, β =
70, and VCEsat = 0.25 V.

The circuit shown in Figure P9.25 is a 9-V battery charger. The
purpose of the Zener diode is to provide a constant voltage across
resistor R2, such that the transistor will source a constant emitter (and
therefore collector) current. Select the values of R2, R1, and VCC such
that the battery will be charged with a constant 40-mA current.

Figure P9.25

The circuit shown in Figure P9.26 is a variation of that shown in
Figure P9.25. Analyze the operation of the circuit, and explain how
this circuit will provide a decreasing charging current (taper current
cycle) until the NiCd battery is fully charged (10.4 V—see note in
Example 9.4). Choose appropriate values of VCC and R1 that would
result in a practical design. Use standard resistor values.



9.27

9.28

9.29

Figure P9.26

The circuit shown in Figure P9.27 is a variation of the motor driver
circuit of Example 9.5. The external voltage υin represents the analog
output of a microcontroller and alternates between 0 and 5 V.
Complete the design of the circuit by selecting the value of the base
resistor Rb such that the motor will see the maximum design current
when υin = 5 V. Use the design specifications given in the example.

Figure P9.27

For the circuit shown in Figure 9.21, RC = 1 kΩ, VBB = 5 V, βmin =
50, and VCC = 10 V. Find the range of RB so that the transistor is in
saturation.

For the circuit shown in Figure 9.21, VCC = 5 V, RC = 1 kΩ, RB = 10
kΩ, and βmin = 50. Find the range of values of VBB so that the
transistor is in saturation.



9.30

9.31

9.32

For the circuit shown in Figure 9.13, Vγ = 0.6 V, RB = 100 kΩ, IBB =
26 μA, RC = 2 kΩ, VCC = 10 V, and β = 100. Find IC, IE, VCE, and
VCB.
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Section 9.4: The Small-Signal Model and AC
Amplification

The circuit shown in Figure P9.31 is a common-emitter amplifier
stage. Determine the DC Thévenin equivalent of the network
between the base node and the reference node. Use it to redraw the
circuit.

Figure P9.31

The circuit shown in Figure P9.32 is a common-collector (or emitter
follower) amplifier stage implemented with an npn silicon transistor
and a single DC supply VCC = 12 V. Determine VCEQ at the DC
operating (Q) point.



9.33

9.34

Figure P9.32

Shown in Figure P9.33 is a common-emitter amplifier stage
implemented with an npn silicon transistor and two DC supplies VCC
= 12 V and VEE = 4 V. Determine VCEQ and the mode of operation.

Figure P9.33

Shown in Figure P9.34 is a common-emitter amplifier stage
implemented with an npn silicon transistor and a single DC supply
VCC = 12 V. Determine VCEQ and the mode of operation.



9.35

a.

b.

c.

d.

Figure P9.34

For the circuit shown in Figure P9.35 υS is a small sine wave signal
with average value of 3 V. If β = 100 and RB = 60 kΩ,

Find the value of RE so that IE is 1 mA.

Find RC so that VC is 5 V.

For Ro = 5 kΩ, find the small-signal equivalent circuit of the
amplifier.

Find the voltage gain.
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Figure P9.35



9.36

a.

b.

c.

d.

e.

9.37

The circuit in Figure P9.36 is similar to a common collector when RC
is small. Assume RC = 200 Ω.

Find the operating point Q of the transistor.

Find the voltage gain υo/υin.

Find the current gain io/iin.

Find the input resistance ri = υin/iin.

Find the output resistance ro = υo/io.

Figure P9.36

An automobile fuel injector system is depicted in Figure P9.37(a).
The internal circuitry of the injector can be modeled as shown in
Figure P9.37(b). The injector will inject gasoline into the intake
manifold when Iinj ≥ 0.1 A. A voltage pulse train υsignal is shown in
Figure P9.37(c). For a cold engine at start-up, the pulse width τ is
determined by:

where



a.

b.

The characteristics of VCIT and KC are shown in Figure P9.37(d).
Assume the transistor Q1 saturates at VCE = 0.3 V and VBE = 0.9 V.
Find the period of the fuel injector pulse if:

Vbatt = 13 V, TC = 100°C

Vbatt = 8.6 V, TC = 20°C



Figure P9.37
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9.38

9.39

The circuit shown in Figure P9.38 is used to switch a relay that turns
a light off and on under the control of a microcontroller. The relay
dissipates 0.5 W at 5 VDC. It switches on at 3 VDC and off at 1.0
VDC. What is the maximum frequency with which the light can be
switched? The inductance of the relay is 5 mH, and the transistor
saturates at 0.2 V, Vγ = 0.8 V.

Figure P9.38

A Darlington pair of transistors is shown in Figure P9.39. The
transistor parameters for large-signal operation are Q1: β = 130; Q2:
β = 70. Calculate the overall current gain.

Figure P9.39



9.40

a.

b.

c.

9.41

9.42

9.43

Assume the transistor shown in Figure P9.8 has Vγ = 0.6 V. Also
assume RC = 1.5 kΩ and VCC = 18 V, RE = 1.0 kΩ. Determine values
for R1 and R2 such that:

The DC collector-emitter voltage VCEQ is 5 V.

The DC collector current ICQ will vary no more than 10 percent
as β varies from 20 to 50.

Values of R1 and R2 that will permit maximum symmetrical swing
in the collector current. Assume β = 100.

Section 9.5: BJT Switches and Gates
Show that the circuit of Figure P9.41 functions as an OR gate if the
output is taken at υo1.

Figure P9.39

Show that the circuit of Figure P9.41 functions as a NOR gate if the
output is taken at υo2.

Show that the circuit of Figure P9.43 functions as an AND gate if the
output is taken at υo1.



9.44

9.45

Figure P9.43
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Refer to the circuit in Figure P9.14. The input voltage waveform is
shown in Figure P9.44. Determine υo assuming β = 90, RB = 40 kΩ,
RC = 2 kΩ, and VCC = 4 V.

Figure P9.44

For the circuit shown in Figure P9.14, assume β > 10, and the
minimum value of υin for a high input is 2.0 V. Find the range for
resistor RB that guarantees the transistor is on.



9.46

a.

b.

9.47

Figure P9.46 shows a circuit with two transistor inverters connected
in series, where

Find υB, υo, and the state of transistor Q1 when υin is low (0 V).

Find υB, υo, and the state of transistor Q1 when υin is high (5 V).

Figure P9.46

For the circuit shown in Figure P9.47, determine υo(t), where υin(t) is
as shown in Figure P9.44. Let β = 120, RB = 10 kΩ, RC1 = RC2 = 1
kΩ, and VCC = 4 V.

Figure P9.47



9.48

9.49

9.50

For the circuit shown in Figure P9.48, determine υo(t), where υin(t) is
as shown in Figure P9.44. Let β = 90, RB = 3 kΩ, RC = 5 kΩ, and
VCC = 6 V.

Figure P9.48

The basic circuit of a TTL gate is shown in Figure P9.49. Determine
its logic function.

Figure P9.49

Figure P9.50 shows a three-input TTL NAND gate. Assuming that
all the input voltages are high, find υB1, υB2, υB3, υC2, and υo. Also
indicate the operating mode of each transistor.
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9.51

9.52

Figure P9.50

Show that two or more emitter-follower outputs connected to a
common load, as shown in Figure P9.51, result in an OR operation;
that is, υo = υ1 + υ2. Here, the + sign represents a logical OR
operation.

Figure P9.51

Verify that the circuit of Figure P9.52 is a NAND gate. Assume that
a low state is 0.2 V, a high state is 5 V, and βmin = 40.



Figure P9.52

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy
Stock Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements”
weighing scales: Media Bakery.

1Another family of transistors, the field-effect transistors (FETs), are well
modeled as voltage controlled devices. See Chapter 10.

2By contrast, a field-effect transistor (FET) is a unipolar device. See Chapter
10.

3TTL logic values are actually quite flexible, with υHIGH as low as 2.4 V and
υLOW as high as 0.4 V.
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C H A P T E R
10

FIELD-EFFECT TRANSISTORS:
OPERATION, CIRCUIT MODELS,

AND APPLICATIONS

hapter 10 introduces the family of field-effect transistors, or FETs, in
which an external electric field is used to control the conductivity of a
channel, causing the FET to behave either as a voltage-controlled resistor
or as a voltage-controlled current source. FETs are the dominant transistor

family in today’s integrated electronics, and although these transistors come in
several different configurations, it is possible to understand the operation of the
different devices by focusing principally on one type. Two large families of FETs
are the JFETs (junction FETs) and the MOSFETs (metal-oxide semiconducting
FETs). Both families can be further classified by a mode (enhancement or
depletion) and a channel type (n or p). In this chapter, the focus is on the
enhancement-mode MOSFET with either an n-type channel (NMOS) or p-type
channel (PMOS). The very important CMOS technology, which combines both
NMOS and PMOS, is also introduced.
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1.
2.

3.
4.

5.
6.

1.
2.
3.

 Learning Objectives
Students will learn to...

Understand the classification of field-effect transistors. Section 10.1.
Learn the basic operation of enhancement-mode MOSFETs by understanding
their i-υ curves and defining equations. Section 10.2.
Learn how enhancement-mode MOSFET circuits are biased. Section 10.3.
Understand the concept and operation of FET large-signal amplifiers. Section
10.4.
Understand the concept and operation of FET switches. Section 10.5.
Analyze FET switches and digital gates. Section 10.5.

10.1 FIELD-EFFECT TRANSISTOR CLASSES
There are three major classes of field-effect transistors:

Enhancement-mode MOSFETs
Depletion-mode MOSFETs
Junction field-effect transistors, or JFETs

Each of these classes is comprised of n and p-channel devices, where the n or p
designation indicates the nature of the doping in the semiconductor channel. The
acronym MOSFET stands for metal-oxide semiconductor field-effect
transistor, and although the specific materials and processes used in fabricating
transistors has, of course, evolved over time, the acronym continues to be used to
describe all enhancement-mode and depletion-mode FETs.

Figure 10.1 shows typical circuit symbols for the n- and p-channel devices
within each of the three transistor classes. These transistors have similar
behaviors and applications; for the sake of brevity, only the enhancement-mode
MOSFET is discussed in detail in this chapter. All the FETs are unipolar devices
in that current is conducted by only one type of charge carrier, either holes or
electrons, unlike BJTs that conduct current using both holes and electrons. Also,
whereas both FETs and BJTs are three-terminal devices, the BJTs are asymmetric
devices because the collector and emitter are not interchangeable. However, in
FETs, the analogous terminals, known as the drain and source, are completely
symmetric and therefore interchangeable.



Figure 10.1 Classification of field-effect transistors

10.2 ENHANCEMENT-MODE MOSFETS
Figure 10.2 depicts the circuit symbol and the construction of a typical n-channel
enhancement-mode MOSFET. The device has four regions: the gate, the drain,
the source, and the bulk.1 Each of these regions has its own conducting terminal.
The bulk and source terminals are often electrically connected, in which case the
bulk terminal is not shown in the circuit symbol. The gate consists of a
conducting plate separated from the p-type bulk by a thin (10−9 m) insulating
layer, usually silicon oxide SiO2.2 The drain and source regions are both
composed of n+ material.



Figure 10.2 The n-channel enhancement MOSFET construction and
circuit symbol
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Consider the case when the gate and source terminals are connected to a
reference node and the drain terminal is connected to a positive voltage supply
VDD, as shown in Figure 10.3(a). The bulk terminal is also connected to the
reference node, by virtue of its connection to the source terminal, and so the pn+

junction between the bulk and drain is reverse-biased. Likewise, the voltage
across the pn+ junction between the bulk and the source is zero, and thus that
junction is also reverse-biased. Thus, a path between drain and source consists of
two reverse-biased pn+ junctions such that the current from drain to source is
effectively zero. In this case, the resistance from drain to source is on the order of
1012 Ω.

Figure 10.3 Channel formation in NMOS transistor: (a) With zero gate
voltage, the source-bulk and bulk-drain junctions are both reverse-
biased, and the channel acts as an open-circuit. (b) When a positive gate



voltage is applied, positive majority carriers in the bulk (i.e., holes) are
repelled by the gate leaving behind negatively charged atoms. Also,
negative majority carriers from the source and drain (i.e., electrons) are
drawn toward the gate. The result is a conducting n-type channel
between the source and drain regions.

When the voltage from gate to source is zero, the n-channel
enhancementmode MOSFET acts as an open-circuit. Thus, enhancement-
mode devices are referred to as normally off and their channels as normally
open.
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Suppose now that a positive DC voltage VGG is applied to the gate as shown
in Figure 10.3(b). Positive majority charge carriers in the bulk (i.e., holes) are
repelled in the region nearest the gate. At the same time, negative majority charge
carriers in the source and drain (i.e., electrons) are drawn to the same region. The
result is a narrow n-type channel beneath the insulating layer that separates the
gate from the bulk. For a given drain voltage, the higher the gate voltage, the
higher the concentration of negative charge carriers in the channel, and the higher
its conductivity. The term enhancement mode refers to the influence of the gate
voltage in enhancing the conductivity of the channel. The term field effect refers
to the effect of the electric field from gate to bulk that is associated with the gate
voltage.

Depletion-mode devices also exist, in which an externally applied field
depletes the channel of charge carriers by reducing the effective channel width.
Depletion-mode MOSFETs are normally on (i.e., the channel is conducting) and
are turned off (i.e., the channel is not conducting) by an external gate voltage.

Both enhancement- and depletion-mode MOSFETs are available with either
n- or p-type channels. Enhancement-mode devices do not have a conducting
channel built in; however, one can be created by the action of the gate. On the
other hand, depletion-mode devices do have a built-in conducting channel that
can be depleted by the action of the gate. Depending upon the mode and channel
type, FETs can be active high or active low devices, where high and low refer to
the voltage of the gate relative to a common reference. Table 10.1 summarizes



these results. n- and p-channel MOSFETs are referred to as NMOS and PMOS
transistors, respectively.

Table 10.1

Operating Regions and the Threshold Voltage Vt

When the gate-to-bulk voltage of an NMOS transistor (see Figure 10.4) is less
than a threshold voltage Vt, a channel will not form between the source and drain.
The result is that no current can be conducted from drain to source and the
transistor is in the cutoff region. Typical values of Vt are between 0.3 and 1.0 V,
although it can be significantly larger.

Figure 10.4 Regions of operation of NMOS transi

When the gate-to-bulk voltage is greater than the threshold voltage Vt at any
point between the source and drain, a conducting n-type channel is formed at that
point. If, as usual, the source and bulk are both connected to a common reference,
then the gate-to-bulk voltage is the same as the gate-to-source voltage υGS. If the



(10.1)

(10.2)

drain is also connected to the same common reference such that υDS = 0, then a
channel of uniform thickness will be formed from drain to source when υGS > Vt.
It is common to introduce the overdrive voltage υOV = υGS − Vt, which is the gate-
to-source voltage in excess of what is necessary to create a channel. Note that υOV
> 0 is another way to write υGS > Vt.
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Note that if υDS = 0, then , the channel has a uniform
thickness, and its resistance per unit channel length is also uniform. In this state,
known as the ohmic region, the channel effectively acts as a variable resistor
whose resistance is dictated by the gate voltage. In other words, for a given value
of υGS, the channel current iD is proportional to υDS. This linear relationship
between iD and υDS is valid for small values of υDS.

When υGS > Vt and the drain-to-source voltage υDS is no longer small but held
at a positive value VDD , the channel is thinner near the drain than near the source,
as depicted in Figure 10.3(b). In addition, as long as υGD > Vt, the channel will
still exist from source to drain. This condition is equivalent to the requirement
that . In this state, the channel resistance per unit length is no longer
uniform, the channel current iD is proportional to , and the transistor is in the
triode region.

It is important to realize that the ohmic region is simply one part of the triode
region when .

Eventually, if υDS is continually increased, it will exceed υOV such that the
channel thickness at the drain goes to zero. In fact, the depletion region of the
bulkdrain junction has expanded sufficiently, due to the increase in υDS, to take
the place of the channel. This condition is often called channel pinch-off.
Although the channel thickness is now zero, current is still conducted in the
channel because the voltage at the drain is large enough to drive mobile electrons
in the channel across the depletion region. However, any increase in υDS beyond
υOV is confined to the depletion region such that the voltage across the channel



(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

length remains constant. The result is that the channel current is independent of
υDS and depends only upon υOV. In this state, the transistor is in the saturation
region.

These operating regions and their dependence upon υGD and υGS are depicted
in Figure 10.4.

Channel Current iD and the Conductance Parameter
K
The ability of the channel to conduct is dependent on various mechanisms, the
effects of which are captured in a conductance parameter K, defined as:

where W is the cross-sectional width of the channel, L is the channel length, μ is
the mobility of the majority channel charge carrier (electrons in n-channel
devices, holes in p-channel devices), and Cox is the gate-channel capacitance due
to the thin insulating oxide layer. The units of K are A/V2.

With this definition of the conductance parameter, the relationship between iD
and υDS can be expressed in the various operating regions as listed here. In the
cutoff region:

In the triode region:
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When , this expression is approximated by



(10.8)

(10.9)

which is the linear relationship characteristic of the ohmic region. In the ohmic
region, the transistor acts as a voltage-controlled resistor. This property allows
transistors to act as resistors in integrated-circuit (IC) designs. Other applications
of a voltage-controlled resistor are found in tunable (variable-gain) amplifiers and
in analog gates.

In the saturation region:

This relationship is only approximate. This relationship is made more exact by
accounting for the Early effect, which describes the effect of υDS on the effective
length of the channel. This effect is accounted for by incorporating the Early
voltage VA as:

When VA is large compared to υDS, as is often the case, the Early effect is small
and equation 10.9 is well approximated by equation 10.8. When this condition is
true, the transistor acts as a voltage-controlled current source.

The three regions of operation can also be identified in the characteristic
curves shown in Figure 10.5, which can be generated from the circuit of Figure
10.3(b) by varying the gate and drain voltages relative to the source voltage.
Notice that for υGS < Vt the transistor is in the cutoff region and iD = 0. The
boundary between the saturation and triode regions is indicated by the curve 

, which is the locus of all points where the slope of the characteristic
curve first becomes zero as υDS increases. (If the Early voltage VA is not
negligible, then the slope of the characteristic lines in saturation is not zero, but
some small positive constant.) Page 522In the saturation region, the transistor
drain current is nearly constant and independent of υDS. In fact, its value is
proportional to . Finally, in the triode region, the drain current is strongly
dependent on υGS and υDS. As υDS → 0 the slope of each characteristic curve
becomes approximately constant, which is the characteristic of the ohmic region.



(10.10)

(10.11)

Figure 10.5 Characteristic drain curves for an NMOS transistor with Vt
= 2 V and K = 1.5 mA/V2

Operation of the P-channel Enhancement-Mode
MOSFET
The operation of a PMOS enhancement-mode transistor is very similar in concept
to that of an NMOS device. Figure 10.6 depicts a test circuit and a sketch of the
device construction. Note that the roles of the n-type and p-type materials are
reversed and that the charge carriers in the channel are holes, not electrons.
Further, the threshold voltage Vt is now negative. However, if υGS is replaced with
υSG, υGD with υDG, and υDS with υSD, and ∣Vt∣ is used in place of Vt, then the
analysis of the device is completely analogous to that of an NMOS transistor. In
particular, Figure 10.7 depicts the behavior of a PMOS transistor in terms of the
gate-to-drain and gate-to-source voltages, in analogy with Figure 10.4. The
resulting equations for the three modes of operation of the PMOS transistor are
summarized below:

Cutoff region: when  and .

Saturation region: when  and .



(10.12)

Triode region: when  and .

Figure 10.6 The p-channel enhancement-mode field-effect transistor
(PMOS)

Figure 10.7 Regions of operation of PMOS transis

EXAMPLE 10.1 Determining the Operating State of a MOSFET



a.
b.
c.

Problem

Determine the operating state of the MOSFET shown in the circuit of Figure 10.8
for the given values of VDD and VGG if the ammeter and voltmeter shown read the
following values:
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Figure 10.8 Circuit for Example 10.1.

VGG = 1 V; VDD = 10 V; υDS = 10 V; iD = 0 mA; RD = 100 Ω.
VGG = 4 V; VDD = 10 V; υDS = 2.8 V; iD = 72 mA; RD = 100 Ω.
VGG = 3 V; VDD = 10 V; υDS = 1.5 V; iD = 13.5 mA; RD = 630 Ω.

Solution
Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET equations.
Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ.

Schematics, Diagrams, Circuits, and Given Data: Vt = 2 V; K = 18 mA/V2.

Assumptions: None.
Analysis: First, notice that the diode indicator in Figure 10.8 points from bulk to
channel. These arrows always point from p to n; thus, the channel is n-type and
the transistor is an NMOS. The channel is also marked by a dashed line indicating
enhancement mode.



a.

b.

c.

Since the drain current is zero, the MOSFET is in the cutoff region. You
should verify that both the conditions υGS < Vt and υGD < Vt are satisfied.
In this case, . On the other hand, υGD = υG− υD = 4 − 2.8 =
1.2 V < Vt. Thus, the transistor is in the saturation region. We can calculate
the drain current to be . Alternatively, the
drain current can be calculated as:

In the third case, . The drain voltage is measured to be 
, and therefore . In this case, the MOSFET is

in the ohmic, or triode, region. We can now calculate the current to be 
. The drain current can

also be calculated as:
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CHECK YOUR UNDERSTANDING
What is the operating state of the MOSFET of Example 10.1 for the following
conditions?

10.3 BIASING MOSFET CIRCUITS
Now that the basic characteristics of enhancement-mode MOSFETs and the
means for identifying operating regions are known, it is time to develop
systematic procedures for biasing a MOSFET. This section presents two bias

Answer: Saturation



circuits, which are identical to those presented for biasing BJTs. The first,
illustrated in Examples 10.2 and 10.3, uses two distinct voltage supplies. This
bias circuit is easier to understand, but not very practical—as was discussed in the
chapter on BJTs, it is preferable to have a single DC voltage supply and to enable
the circuit to regulate its bias point. These features are presented in the second
bias circuit, described in Examples 10.4 and 10.5.

EXAMPLE 10.2 MOSFET Q-point Graphical Determination
Problem

Determine the Q point for the MOSFET in the circuit of Figure 10.9.

Figure 10.9 An n-channel enhancement MOSFET circuit and
characteristics
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Solution
Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET drain curves.



Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ.

Schematics, Diagrams, Circuits, and Given Data: VGG = 2.4 V; VDD = 10 V; RD
= 100 Ω.
Assumptions: Use the characteristic curves of Figure 10.9.
Analysis: First, notice that the diode indicator in Figure 10.9 points from bulk to
channel. These arrows always point from p to n; thus, the channel is n-type and
the transistor is an NMOS. The channel is also marked by a dashed line indicating
enhancement mode.

To determine the Q point, write the drain circuit equation and apply KVL:

The resulting curve is plotted as a dashed line on the drain curves of Figure 10.9
by noting that the drain current axis intercept is equal to  and that
the drain-source voltage axis intercept is equal to . The Q point is then
given by the intersection of the load line with the  curve. Thus, 
and .

Comments: The determination of a Q point for a MOSFET is easier than for a
BJT because the gate current is essentially zero.

EXAMPLE 10.3 MOSFET Q-point Calculation
Problem

Use the MOSFET characteristic curves shown in Figure 10.9 to determine the Q
point for the conditions listed below.

Solution



Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET equations.
Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ.

Schematics, Diagrams, Circuits, and Given Data: VGG = 2.4 V; VDD = 10 V; Vt =
1.4 V; K = 48.5 mA/V2; RD = 100 Ω.

Assumptions: None.
Analysis: The gate supply VGG ensures that υGSQ = VGG = 2.4 V. Thus, υGSQ > Vt.
We assume that the MOSFET is in the saturation region, and we proceed to use
equation 10.8 to calculate the drain current:
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Applying KVL to the drain loop, we can calculate the quiescent drain-to-source
voltage as:

Now we can verify the assumption that the MOSFET was operating in the
saturation region. Recall that the conditions required for operation in region 2
(saturation) were υGS > Vt and υGD < Vt. The first condition is clearly satisfied.
The second can be verified by recognizing that:

Clearly, the condition υGD < Vt is also satisfied, and the MOSFET is indeed
operating in the saturation region.

EXAMPLE 10.4 MOSFET Self-Bias Circuit
Problem



Figure 10.10(a) depicts a self-bias circuit for a MOSFET. Determine the Q point
for the MOSFET by choosing RS such that υDSQ = 8 V.

Figure 10.10 (a) Self-bias circuit; (b) equivalent circuit for part (a)

Solution
Known Quantities: MOSFET drain and gate resistances; drain supply voltage;
MOSFET parameters Vt and K; desired drain-to-source voltage υDSQ.

Find: MOSFET quiescent gate-source voltage υGSQ, quiescent drain current iDQ,
and quiescent drain-source voltage υDSQ.

Schematics, Diagrams, Circuits, and Given Data: VDD = 30 V; RD = 10 kΩ; R1 =
R2 = 1.2 MΩ; Vt = 4 V; K = 0.2188 mA/V2; υDSQ = 8 V.

Assumptions: Assume operation in the saturation region.



(a)

(b)

(c)

Analysis: First we reduce the circuit of Figure 10.10(a) to the circuit of Figure
10.10(b), in which the voltage divider rule has been used to compute the value of
the equivalent network seen by the gate.

Let all currents be expressed in milliamps and all resistances in kilo-ohms.
Applying KVL around the equivalent gate circuit of Figure 10.10(b) yields:

Since iGQ = 0, due to the infinite input resistance of the MOSFET, the gate
equation simplifies to:

The drain circuit equation is:
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Use equation 10.8 to obtain:

The third equation needed to solve for the three unknowns υGSQ, iDQ, and υDSQ
can be obtained from equation (a) as:

Substitute the result into equation (b) to find:

or



Substitute the above equation for iDQ into equation (c) to obtain a quadratic
equation that can be solved for υGSQ since the desired value of υDSQ is known:

The two solutions for the above quadratic equation are:

Only the first of these two values is acceptable for operation in the saturation
region, since the second root corresponds to a value of υGS lower than the
threshold voltage Vt = 4 V. Substitute the first value into equation (c) to compute
the quiescent drain current:

Use this value in the gate circuit equation (a) to compute the solution for the
source resistance:

Comments: There are two mathematical solutions to this problem because the
drain current equation is a quadratic equation. The physical constraints of the
problem must be used to select the appropriate solution.

EXAMPLE 10.5 Analysis of a MOSFET Amplifier
Problem



Determine the gate and drain-source voltage and the drain current for the
MOSFET amplifier of Figure 10.11.
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Figure 10.11 Circuit for Example 10.5.

Solution
Known Quantities: Drain, source, and gate resistors; drain supply voltage;
MOSFET parameters.
Find: υGS; υDS; iD.

Schematics, Diagrams, Circuits, and Given Data: R1 = R2 = 1 MΩ; RD = 6 kΩ;
RS = 6 kΩ;VDD = 10 V; Vt = 1 V; K = 0.5 mA/V2.

Assumptions: The MOSFET is operating in the saturation region.
Analysis: The gate voltage is computed by applying the voltage divider rule
between resistors R1 and R2 since the gate current is zero:

Assuming saturation region operation, write:

The drain current can be computed from equation 10.8:



or

with solutions

To determine which of these two solutions should be chosen, compute the gate-
source voltage for each one. For iD = 0.89 mA, υGS = 5 − 6iD = −0.34 V. For iD =
0.5 mA, υGS = 5 − 6iD = 2 V. Since υGS must be greater than Vt for the MOSFET
to be in the saturation region, we select the solution

The corresponding drain voltage is therefore found to be

And therefore

Comments: Now that the desired voltages and current have been computed, the
assumption of a saturation operating condition can be verified: υGS = 2 > Vt and
υGD = υGS − υDS =2 − 4 = −2 < Vt. Since the inequalities are satisfied, the
MOSFET is indeed operating in the saturation region.

CHECK YOUR UNDERSTANDING
Determine the operating region of the MOSFET of Example 10.2 when υGS = 3.5
V.

Answer: The MOSFET is in the ohmic region.



(10.13)
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CHECK YOUR UNDERSTANDING
Find the lowest value of RD for the MOSFET of Example 10.3 that will place the
MOSFET in the triode region.

CHECK YOUR UNDERSTANDING
Determine the appropriate value of RS if we wish to move the operating point of
the MOSFET of Example 10.4 to υDSQ = 12 V. Also find the values of υGSQ and
iDQ. Are these values unique?

10.4 MOSFET LARGE-SIGNAL AMPLIFIERS
The objective of this section is to illustrate how a MOSFET can be used as a
large-signal amplifier, in applications similar to those illustrated in Chapter 9 for
bipolar transistors. Equation 10.8 describes the approximate saturation region
relationship between the drain current and gate-source voltage for the MOSFET
in a large-signal amplifier application. Appropriate biasing, as explained in the
preceding section, is used to ensure that the MOSFET is operating in saturation.

Answer: ≈ 185.6 Ω

Answer: The answer is unique. One of the two solutions is υGS = 2.42
V, but this value is less than Vt so it is not valid. The other solution is
υGS = 6.03 V with RS = 9.9 kΩ and iD = 0.9 mA.



(10.14)

(10.15)

MOSFET amplifiers are commonly found in one of two configurations: common-
source and source-follower. Figure 10.12 depicts a basic common-source
configuration. Note that when the MOSFET is in saturation, this amplifier is
essentially Page 530a voltage-controlled current source (VCCS), in which the
drain current is controlled by the gate voltage. Thus, the load voltage υo across the
load Ro is:

Figure 10.12 Common-source MOSFET amplifier

A source-follower amplifier is shown in Figure 10.13(a). Note that the load is
now connected between the source and ground. The behavior of this circuit
depends on the load current and can be analyzed for the resistive load of Figure
10.13 by observing that the load voltage is given by the expression υo = RoiD,
where
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(10.17)

(10.18)

(10.19)

Figure 10.13 (a) Source-follower MOSFET amplifier; (b) drain current
response of a common-source amplifier for a 100-Ω load when K =
0.018 and Vt = 1.2 V

where . Expand the quadratic term to obtain:

This expression can be rearranged to yield:

Use the quadratic equation to solve for the load current:

where

Figure 10.13(b) depicts the drain current response of the source-follower
MOSFET amplifier when the gate voltage varies between the threshold voltage
and 5 V for a Page 531100-Ω load when K = 0.018 and Vt = 1.2 V. Note that the
response of this amplifier is linear in the gate voltage. This behavior is due to the



fact that the source voltage increases as the drain current increases, since the
source voltage is proportional to iD.

EXAMPLE 10.6 Using a MOSFET as a Current Source forBattery
Charging
Problem

Analyze the two battery charging circuits shown in Figure 10.14(a) and (b). Use
the transistor parameters to determine the range of required gate voltages υG to
provide a variable charging current up to a maximum of 0.1 A. Assume that the
terminal voltage of a discharged battery is 9 V, and of a charged battery is 10.5 V.

Figure 10.14 MOSFET battery charger. (a) common-source current
source; (b) common-drain current source

Solution
Known Quantities: Transistor large-signal parameters, NiCd battery nominal
voltage.



a.

Find: VDD, υG, range of gate voltages leading to a maximum charging current of
0.1 A.
Schematics, Diagrams, Circuits, and Given Data: Figure 10.14(a) and (b). Vt =
1.2 V;K = 18 mA/V2, VB = 9 V.

Assumptions: Assume that the MOSFETs are operating in the saturation region.
Analysis:

The conditions for the MOSFET to be in the saturation region are: υGS > Vt
and υGD < Vt. The first condition is satisfied when υG ≥ 1.2 V. Assuming for
the moment that both conditions are satisfied, and that VDD is sufficiently
large, the drain current can be calculated as:

The plot of Figure 10.14(c) depicts the battery charging (drain) current as a
function of the gate voltage. The maximum charging current of 100 mA is
generated at a gate voltage of approximately 3.5 V.

The requirement for the saturation region is that , which is
equivalent to υGD < Vt. But be careful in interpreting this last equation. If υDS >
υGS − Vt, Page 532then υGD may be negative, since the drain voltage could be
larger than the source voltage. Consider that υGD = υG − υD and υD = VDD − VB,
where VB is the battery voltage. Then, the condition υGD < Vt can be rewritten as:

To ensure that the NMOS remains in the saturation region throughout the
range of battery voltage, VDD must be sufficiently large. In this case VDD
should be larger than 12.8 V.



b. The analysis of the second circuit is based on the observation that the voltage
at the source terminal of the MOSFET is equal to the gate voltage minus the
threshold voltage. If the battery is to be charged to 10.5 V, the gate voltage
must be at least 11.7 V to satisfy υGS > Vt. Assume that the battery is initially
discharged (9 V), and calculate the initial charging current.

Also assume that during charging the battery voltage increases linearly from
9 to 10.5 V over a period of 20 min to calculate the charging current as the
battery voltage increases. Note that when the battery is charged, υGS is no
longer larger than Vt and the transistor is cut off. A plot of the drain
(charging) current as a function of time is shown in Figure 10.14(d). Note
that the charging current naturally tapers to zero as the battery voltage
increases.

Comments: In the circuit of part b, please note that the battery voltage is not
likely to actually increase linearly. The voltage rise will begin to taper off as the
battery begins to approach full charge. In practice, this means that the charging
process will take longer than projected in Figure 10.14(d).

EXAMPLE 10.7 MOSFET DC Motor Drive Circuit
Problem

The aim of this example is to design a MOSFET driver for the Lego® 9V
Technic motor, model 43362. Figure 10.15(a) and (b) show the driver circuit and
a picture of the motor, Page 533respectively. The motor has a maximum (stall)
current of 340 mA. The minimum current needed to start motor rotation is 20
mA. The aim of the circuit is to control the current to the motor (and therefore the
motor torque, which is proportional to the current) via the gate voltage.



Figure 10.15 (a) MOSFET DC motor drive circuit; (b) Lego® motors
(Courtesy Philippe “Philo” Hurbain) (c) drain-gate voltage curve for
MOSFET in saturation; (d) Pulse-width modulation (PWM) gate
voltage waveforms

Solution
Known Quantities: Transistor large-signal parameters, component values.
Find: R1 and R2, and the value of υG needed to drive the motor.

Schematics, Diagrams, Circuits, and Given Data: Figure 10.15. Vt = 1.2 V; K =
0.08 A/V2.
Assumptions: Assume that the MOSFET is in the saturation region.
Analysis: The conditions for the MOSFET to be in the saturation region are υGS >
Vt and υGD < Vt. The first condition is satisfied whenever the gate voltage is
above 1.2 V. Thus the transistor will first begin to conduct when υG = 1.2 V.
Assuming for the moment that both conditions are satisfied, and that VDD is
sufficiently large, we can calculate the drain current to be:

The plot of Figure 10.15(c) depicts the DC motor (drain) current as a function of
the gate voltage. The maximum current of 340 mA can be generated with a gate
voltage of approximately 3.3 V. It would take approximately 1.5 V at the gate to
generate the minimum required current of 20 mA.



Comments: This circuit could be quite easily implemented in practice to drive the
motor with a signal from a microcontroller. In practice, instead of trying to output
an analog voltage, a microcontroller is better suited to the generation of a digital
(on/off) signal. For example, the gate drive signal could be a pulse-width
modulated (PWM) 0–5 V pulse train, in which the ratio of the on time to the
period of the waveform time is called the duty cycle. Figure 10.15(d) depicts the
possible appearance of a digital PWM gate voltage input.
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CHECK YOUR UNDERSTANDING
What is the maximum power dissipation of the MOSFET for each of the circuits
in Example 10.6?

CHECK YOUR UNDERSTANDING
What is the range of duty cycles needed to cover the current range of the Lego
motor in Example 10.7?
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10.5 CMOS TECHNOLOGY AND MOSFET
SWITCHES

Answers: 

Answer: 30 to 66 percent



The objective of this section is to illustrate how a MOSFET can be used as an
analog or a digital switch (or gate). Most MOSFET switches are based upon a
complementary MOS, or CMOS, technology, which makes use of the
complementary characteristics of PMOS and NMOS devices to enable energy-
efficient integrated circuits. Further, CMOS circuits are easily fabricated and
require only a single supply voltage, which is a significant advantage.

Digital Switches and Gates
Consider the CMOS inverter of Figure 10.16, in which two enhancement-mode
transistors, one PMOS and one NMOS, are connected to a single supply voltage
(VDD, relative to the reference node). Their gates share a common input voltage
υin. This device is known as an inverter because the output voltage υo ≈ VDD
whenever υin ≈ 0, and vice versa. When used as a logic device, a voltage close to
VDD is known as a logic high, or a 1, whereas a voltage close 0 V is known as a
logic low, or a 0.

Figure 10.16 CMOS inverter

Consider the case when υin is a logic high and assume that Vt ≪ VDD for both
transistors. The gate-to-source voltage for the PMOS transistor is . Since Vo
cannot exceed the supply voltage VDD, the gate-to-source voltage for the PMOS
transistor must be in the range 0 → VDD. In other words, its gate-to-source
voltage cannot be negative, no channel can form, the PMOS is in cutoff, and i =
0.

With regard to the NMOS transistor, the gate-to-source voltage is 
such that a channel is formed. At this point, it is unclear whether the transistor is



in the triode or saturation state; that is, it is unclear whether the gate-to-drain
voltage exceeds Vt. However, since υ in ≈ VDD, the drain voltage would also need
to be near VDD for the gate-to-drain voltage to be less than Vt and the transistor to
be in saturation. For this to occur, the drain current i must be sufficiently large
such that i RD ≈ VDD. But i = 0 because the PMOS transistor is in cutoff. As a
result, the NMOS transistor is in the triode state, its drain current is zero, and the
voltage from drain-to-source υout is zero. This result can be checked for
compatibility with triode current equation 10.6:

Clearly, υDS = 0 is a solution of iD = 0.

The net result is that for a logic high input voltage υin, the output voltage υout
is a logic low. Note that the PMOS transistor is in the cutoff state and acts like an
open-circuit (iD = 0). On the other hand, the NMOS transistor is in the triode state
with an open channel and acts like a short-circuit. These two states can be
represented as ideal open and closed switches, respectively, as shown in Figure
10.17(a).

Figure 10.17 CMOS inverter approximated by ideal switches:(a) When
υin is high, υout is tied to ground; (b) when υin is low, υout istied to VDD.

The same analysis can be applied to the case when υin is a logic low. In this
case, the PMOS transistor sees a large negative gate-to-source voltage and a



(10.20)

(10.21)

(10.22)

channel is formed in the triode state. Inversely, the NMOS transistor sees a gate-
to-source voltage near zero such that no channel is formed in the cutoff state.
Figure 10.17(b) represents this situation in terms of ideal switches. Note that this
circuit does not require the transistors to be biased. Also, note that the drain
current iD is zero in both cases such that a CMOS inverter consumes very little
power.

Page 536

Analog Switches
A common analog gate employs a FET and takes advantage of the fact that its
current can be bidirectional in the ohmic region. Recall that a MOSFET operating
in the ohmic state acts very much as a linear resistor. For example, for an NMOS
enhancement-mode transistor the conditions for the ohmic state can be defined as:

As long as the NMOS satisfies these conditions, it acts as a simple linear resistor
with a channel resistance of:

Thus, the drain current can be simply represented as:

The most important feature of the MOSFET operating in the ohmic region is that
it acts as a voltage-controlled resistor, with the gate-source voltage υGS
controlling the channel resistance RDS. The use of the MOSFET as a switch in the
ohmic region consists of providing a gate-source voltage that can either hold the
MOSFET in the cutoff region (υGS ≤ Vt) or the ohmic region.

Consider the circuit shown in Figure 10.18, where υG can be varied externally
and υin is an analog input signal source that is to be connected to the load Ro at
some appropriate time. When υG ≤ Vt, the FET is in the cutoff region and acts as



an open-circuit. If υGS ≥ Vt such that the MOSFET is in the ohmic region, then υG

> Vt and the transistor acts as a linear resistance RDS. If RDS ≪ Ro, then υo ≈ υin.

Figure 10.18 MOSFET analog switch

MOSFET analog switches are usually produced in integrated-circuit (IC)
form and denoted by the symbol shown in Figure 10.19, where υG is the
controlling voltage (υG in Figure 10.18).

Page 537

Figure 10.19 Symbol for a bilateral FET analog gate

FOCUS ON MEASUREMENTS



MOSFET Bidirectional Analog Gate
The variable-resistor feature of MOSFETs in the ohmic state finds application in
the analog transmission gate. The circuit shown in Figure 10.20 depicts a circuit
constructed using CMOS technology. The circuit operates on the basis of a
control voltage υC that can be either low (say, 0 V) or high (υC > Vt), where Vt is
the threshold voltage for the n-channel MOSFET and −Vt is the threshold voltage
for the p-channel MOSFET. The circuit operates in one of two modes. When the
gate of Q1 is connected to the high voltage and the gate of Q2 is connected to the
low voltage, the path between υin and Vo has a relatively small resistance and the
transmission gate conducts. When the gate of Q1 is connected to the low voltage
and the gate of Q2 is connected to the high voltage, the transmission gate acts as a
very large resistance and is an open-circuit for all practical purposes. A more
precise analysis follows.



Figure 10.20 Analog transmission gate: (a) circuit; (b) circuit symbol.
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Let  and . Assume that the input voltage υin is in the range 
. To determine the state of the transmission gate, we consider only the

extreme cases  and . When υin = 0, υGS1 = υC − υin = V − 0 = V > Vt.
Since V is above the threshold voltage, MOSFET Q1 conducts (in the ohmic
region). Further, . Since the gate-source voltage is not more
negative than the threshold voltage, Q2 is in cutoff and does not conduct. Since
one of the two possible paths between υin and υo is conducting, the transmission
gate is on. Now consider the other extreme, where υin = V. By reversing the
previous argument, we can see that Q1 is now off, since . However,
now Q2 is in the ohmic state, because . In this case, then, it
is Q2 that provides a conducting path between the input and the output of the
transmission gate, and the transmission gate is also on. We have therefore
concluded that when  and , the transmission gate conducts and
provides a near-zero-resistance (typically tens of ohms) connection between the
input and the output of the transmission gate, for values of the input ranging from
0 to V.

Let us now reverse the control voltages and set υC = 0 and . It is
very straightforward to show that in this case, regardless of the value of υin, both
Q1 and Q2 are always off; therefore, the transmission gate is essentially an open-
circuit.

EXAMPLE 10.8 NMOS Switch
Problem

Determine the operating points of the NMOS switch of Figure 10.21 when the
input signal is equal to 0 and 2.5 V, respectively.



Figure 10.21 Circuit for example 10.8.

Solution
Known Quantities: Drain resistor; VDD; input signal voltage.

Find: The Q point for each value of the input signal voltage.
Schematics, Diagrams, Circuits, and Given Data: RD = 125 Ω; VDD = 10 V; υin =
0 V for t < 0; υin = 2.5 V for t ≥ 0.

Assumptions: Use the drain characteristic curves for the NMOS (Figure 10.22).
Analysis: Apply KVL around the drain circuit to find its load line:

If iD = 0, then υDS = 10 V. Likewise, if υDS = 0, then iD = 10/125 = 80 mA.
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Figure 10.22 Drain curves for the NMOS of Figure 10.21



1.

2.

t < 0 s: When the input signal is zero, the gate voltage is zero and the NMOS
is in the cutoff region. The Q point is

t ≥ 0 s: When the input signal is 2.5 V, the gate voltage is 2.5 V and the
NMOS is in the saturation region. The Q point is

This result satisfies KVL because R D i D = 0.06 × 125 = 7.5 V

EXAMPLE 10.9 CMOS Gate
Problem

Determine the logic function implemented by the CMOS gate of Figure 10.23.
Use the table below to summarize the behavior of the circuit.



a.

b.

c.

Figure 10.23 Circuit for Example 10.9.

Solution
Find: The logic value of υout for each combination of υ1 and υ2.

Schematics, Diagrams, Circuits, and Given Data: Vt = 1.7 V; VDD = 5 V.

Assumptions: Treat the MOSFETs as open-circuits when off and as linear
resistors when on.
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Analysis: Note that the state of an NMOS transistor for a high (5 V) gate input is
the same as the state of a PMOS transistor for a low (0 V) gate input; both result
in the formation of a channel with the transistors in the triode (ohmic) state. In
these two cases, the transistors can be represented by simple linear resistors.

On the other hand, the state of an NMOS transistor for a low (0V) gate input
is the same as the state of a PMOS transistor for a high (5V) gate input; both
result in no channel formation with the transistors in the cutoff state. In these two
cases, the transistors can be represented by open-circuits.

υ1 = υ2 = 0 V: With both input voltages equal to zero, M3 and M4 are in cutoff
and are off since υGS < Vt for both transistors. On the other hand, both M1 and
M2 form channels, are on, and act as simple linear resistors. However,
because both M3 and M4 act as open-circuits, there is no current through M1
and M2, which act as pull-up resistors; that is, with no current through M1
and M2, there is no voltage drop across either transistor and, thus, υo = VDD =
5 V, which is a logic high. This situation is depicted in Figure 10.24(a).
υ1 = 0 V; υ2 = 5 V: With υ1 = 0, M1 forms a channel, is on, and acts as a
linear resistor. However, M3 does not form a channel, is off, and acts as an
open-circuit. With υ2 = 5 V, M2 does not form a channel, is off, and acts as an
open-circuit, whereas M4 forms a channel, is on, and acts as a linear resistor.
This situation is depicted in Figure 10.24(b). Notice that there can be no
current through M4 because M2 prevents M4 from seeing the 5-V source. The
result is that υo = 0, which is a logic low.
υ1 = 5 V; υ2 = 0 V: By symmetry with case b, when the values of υ1 and υ2
are inverted, the states of the four transistors are also inverted. As a result,
M1 and M4 are off and act as open-circuits, whereas M2 and M3 are on and



d.

act as linear resistors, as depicted in Figure 10.24(c). Again, an open-circuit,
this time M1, prevents M3 from seeing the 5-V source such that there is no
current through M3. The result is that once again υo = 0, which is a logic low.
υ1 = υ2 = 5 V: Finally, with both input voltages equal to 5 V, M1 and M2 do
not form channels, are off, and act as open-circuits. Although M3 and M4
both form channels, are on, and act as linear resistors, as depicted in Figure
10.24(d), they are unable to see the 5-V supply voltage and, thus, their
currents are zero. Therefore, υo = 0, which is a logic low. Notice that this
situation is the inverse of that in case a.
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Figure 10.24 When υ1 = υ2 = 0, the gate-to-source voltage is low for all
four transistors. The result is that the NMOS transistors M3 and M4 are
off, while the PMOS transistors M1 and M2 are on.

These results are summarized in the table below.

Columns υ1, υ2, and υo represent a two-variable truth table when 0 V and 5 V are
interpreted as FALSE and TRUE conditions, respectively. The results indicate
that the output variable υo is TRUE if and only if both input variables are FALSE.



Otherwise, the output is FALSE. Such a truth table describes a two-input NOR
gate.

CHECK YOUR UNDERSTANDING
What value of RD would ensure a drain-to-source voltage υDS of 5 V in the circuit
of Example 10.8?

CHECK YOUR UNDERSTANDING
Analyze the CMOS gate of Figure 10.25, and find the output voltages for the
following conditions: (a) υ1 = 0, υ2 = 0; (b) υ1 = 5 V, υ2 = 0; (c) υ1 = 0, υ2 = 5 V;
(d) υ1 = 5 V,υ2 = 5 V. Identify the logic function accomplished by the circuit.

Figure 10.25 CMOS gate
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Answer: 83.3 Ω



1.

2.

CHECK YOUR UNDERSTANDING
Show that the CMOS bidirectional gate described in the Focus on Measurements
box, “MOSFET Bidirectional Analog Gate,” is off for all values of υin between 0
and V whenever υC = 0 and .

Conclusion
This chapter has introduced field-effect transistors, focusing primarily on metal-
oxide semiconductor enhancement-mode n-channel devices to explain the
operation of FETs as amplifiers. A brief introduction to p-channel devices is used
as the basis to introduce CMOS technology and to present analog and digital
switches and logic gate applications of MOSFETs. Upon completing this chapter,
you should have mastered the following learning objectives:

Understand the classification of field-effect transistors. FETs include three
major families; the enhancement-mode family is the most commonly used
and is the one explored in this chapter. Depletion-mode and junction FETs
are only mentioned briefly.
Learn the basic operation of enhancement-mode MOSFETs by understanding
their i-υ curves and defining equations. MOSFETs can be described by the i-
υ drain characteristic curves and by a set of nonlinear equations linking the
drain current to the gate-to-source and drain-to-source voltages. MOSFETs
can operate in one of four regions: cutoff, in which the transistor does not
conduct current; triode, in which the transistor can act as a voltage-controlled
resistor under certain conditions; saturation, in which the transistor acts as a
voltage-controlled current source and can be used as an amplifier; and
breakdown when the limits of operation are exceeded.

Answer: 



3.

4.

5.

6.

10.1

10.2

Learn how enhancement-mode MOSFET circuits are biased. MOSFET
circuits can be biased to operate around a certain operating point, known as
the Q point, when appropriate supply voltages and resistors are selected.
Understand the concept and operation of FET large-signal amplifiers. Once
a MOSFET circuit is properly biased in the saturation region, it can serve as
an amplifier by virtue of its voltage-controlled current source property: small
changes in the gate-to-source voltages are translated to proportional changes
in drain current.
Understand the concept and operation of FET switches. MOSFETs can serve
as analog and digital switches: by controlling the gate voltage, a MOSFET
can be turned on and off (digital switch), or its resistance can be modulated
(analog switch).
Analyze FET switches and digital gates. These devices find application in
CMOS circuits as digital logic gates and analog transmission gates.
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HOMEWORK PROBLEMS
Section 10.2: Enhancement-Mode MOSFETs

The transistors shown in Figure P10.1 have . Determine the
operating region.

Figure P10.1

The three terminals of an n-channel enhancement-mode MOSFET are at
potentials of 4, 5, and 10 V with respect to ground. Draw the circuit
symbol, with the appropriate voltages at each terminal, if the device is
operating



a.

b.

10.3

a.

b.

c.

10.4

10.5

10.6

In the ohmic region.

In the saturation region.

An enhancement-type NMOS transistor withVt = 2 V has its source
grounded and a 3-VDC source connected to the gate. Determine the
operating state if

υD = 0.5 V

υD = 1 V

υD = 5 V

In the circuit shown in Figure P10.4, the PMOS transistor has  and k
= 10 mA/V2. Find R and υS for iS = 0.4 mA.

Figure P10.4

An enhancement-type NMOS transistor hasVt = 2.5 V and iD = 0.8 mA
when υGS = υDS = 4 V. Find the value of iD for υGS = 5 V.

The NMOS transistor shown in Figure P10.6 has Vt = 1.5 V and K = 0.4
mA/V2. If υG is a pulse with0 to 5 V, find the voltage levels of the pulse
signalat the drain.



10.7

10.8

Figure P10.6

In the circuit shown in Figure P10.7, a drain voltage of 0.1 V is established.
Find the current iD for Vt = 1 V and k = 0.5 mA/V2.

Figure P10.7

Section 10.3: Biasing MOSFET Circuits
An n-channel enhancement-mode MOSFET, shown in Figure P10.8, is
operated in the ohmic Page 544region. Size the resistors so that the
quiescent drain current IDQ = 4 mA. Let VDD = 15 V, K = 0.3 mA/V2, and
Vt = 3.3 V.



10.9

10.10

10.11

Figure P10.8

Compute the power dissipated by the circuit in Figure P10.9. Let VDD = VSS
= 15 V, R1 = R2 = 90 kΩ, RD = 0.1 kΩ, Vt = 3.5 V, K = 0.816 mA/V2.

Figure P10.9

Find the operating region of the enhancement-type NMOS transistor
shown in Figure P10.8. Let VDD = 20 V, K = 0.2 mA/V2, Vt = 4 V, R1 = 4
MΩ, R2 = 3 MΩ, and RD = 3 kΩ.

Find the operating region of the enhancement-type NMOS transistor
shown in Figure P10.11.Let VDD = 18 V, K = 0.3 mA/V2, Vt = 3 V, R1 =
5.5 MΩ, R2 = 4.5 MΩ, RD = 2 kΩ, and RS = 1 kΩ.



10.12

a.

b.

10.13

Figure P10.11

In the circuit shown in Figure P10.12, the MOSFET operates in the
saturation region, for IS = 0.5 mA and VS = 3 V. This enhancement-type
PMOS has Vt = −1 V, and K = 0.5 mA/V2. Find:

RS.

The largest allowable value of RS for the MOSFET to remain in the
saturation region.

Figure P10.12

The i-υ characteristic of an n-channel enhancement MOSFET is shown in
Figure P10.13(a); a standard amplifier circuit based on the n-channel
MOSFET is shown in Figure P10.13(b). Determine the quiescent current
IDQ and drain-to-source voltage VDS when VDD = 10 V and RD = 5 Ω. In
what region is the transistor operating?

Page 545



10.14

Figure P10.13

Given the enhancement-type NMOS transistor and drain characteristic
shown in Figure P10.14, compute RS and VDD. Let R1 = 200 kΩ andR2 =
100 kΩ.



10.15

10.16

10.17

a.

b.

10.18

a.

b.

Figure P10.14

Given the enhancement-type NMOS transistor shown in Figure P10.8,
compute R1, R2 and RD.Let ID = 2 mA, Vt = 4 V, VDS = 8 V, VDD = 16 V,K
= 0.375 mA/V2, and total dissipated powerPT = 35 mW.

Given the enhancement-type NMOS transistor shown in Figure P10.11,
compute R1, R2, RS and RD. Let ID = 4 mA, VD = 9 V, VDS = 4.5 V, VDD =
18 V,Vt = 4 V, K = 0.625 mA/V2, and maximum total dissipated power
PT,max = 75 mW.

Section 10.4: MOSFET Large-Signal Amplifiers
The power MOSFET circuit of Figure P10.17 is configured as a voltage-
controlled current source (VCCS). Let K = 1.5 A/V2 and Vt = 3 V.

If VG = 5 V, find the range of R for which the VCCS will operate.

If R = 1 Ω, determine the range of VG for whichthe VCCS will operate.

Figure P10.17

The circuit of Figure P10.18 is called a source follower and acts as a
voltage-controlled current source (VCCS).

Determine IS if VG = 10 V, R = 2 Ω, K = 0.5 A/V2 and Vt = 4 V.

If the power rating of the MOSFET is 50 W, how small can R be?



10.19
a.

b.

c.

d.

10.20

a.

b.

c.

Figure P10.18
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The circuit of Figure P10.19 is a class A amplifier.

Determine the output current for the given biased audio tone input υG =
10 + 0.1 cos(500t) V.Let K = 2 mA/V2 and Vt = 3 V.

Determine the output voltage υo.

Determine the voltage gain of the cos(500t) signal.

Determine the DC power consumption of the resistor and the
MOSFET.

Figure P10.19

The circuit of Figure P10.20 is a source-follower amplifier. Let K = 30
mA/V2, Vt = 4 V, and υG = 9 + 0.1 cos(500t) V.

Determine the source current is.

Determine the output voltage υo.

Determine the voltage gain for the cos(500t) signal.



d.

10.21

10.22

Determine the DC power consumption of the MOSFET and the 4-Ω
resistor.

Figure P10.20

Sometimes it is necessary to discharge batteries before recharging. To do
this, an electronic load can be used. A high-power electronic load is
shown in Figure P10.21, for the battery discharge application. With K = 4
A/V2, Vt = 3 V, and VG = 8 V, determine the discharging current ID and the
required MOSFET power rating.

Figure P10.21

A precision voltage source can be created by driving the drain of a
MOSFET. Figure P10.22 shows a circuit that will accomplish this
function. With IRef = 0.01 A, determine the output VG. Let K = 0.006 A/V2

and Vt = 1.5 V.



10.23

10.24

Figure P10.22

To allow more current in a MOSFET amplifier, several MOSFETs can be
connected in parallel. Determine the currents ID and IS in the circuits of
Figure P10.23. Let K = 0.2 A/V2, Vt = 3 V, andVG = VDD.
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Figure P10.23

A push-pull amplifier can be constructed from matched n and p-channel
MOSFETs, as shown in Figure P10.24. Let Kn = Kp = 0.5 A/V2, Vtn = +3
V, Vtp = −3 V, and υin = 0.8 cos(1,000t) V. Determineυo and io.



10.25

10.26

a.

b.

c.

Figure P10.24

Show that the NMOS shown in Figure P10.25 cannot be in triode mode.
Determine its i-υ characteristic to show that it acts as a VCCS.

Figure P10.25

Determine υo and io for the two-stage amplifier shown in the circuit of
Figure P10.26, with identical MOSFETs having K = 1 A/V2 and Vt = 3 V,
for

υG = 4 V.

υG = 5 V.

υG = 4 + 0.1 cos(750t).



10.27

10.28

10.29
10.30
10.31
10.32
10.33
10.34
10.35

10.36

Figure P10.26

Section 10.5: CMOS Technology and MOSFET Switches
For the CMOS NOR gate of Figure 10.23 identify the state of each
transistor for υ1 = υ2 = 5 V. Assume VDD = 5 V.

Repeat Problem 10.27 for υ1 = 5 V and υ2 = 0 V.

Draw the schematic diagram of a two-input CMOS OR gate.

Draw the schematic diagram of a two-input CMOS AND gate.

Draw the schematic diagram of a two-input CMOS NOR gate.

Draw the schematic diagram of a two-input CMOS NAND gate.

Draw the schematic diagram of a three-input CMOS OR gate.

Draw the schematic diagram of a three-input CMOS AND gate.

Draw the schematic diagram of a three-input CMOS gate that realizes the
logic function .
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Show that the circuit of Figure P10.36 functions as a logic inverter.



10.37

10.38

Figure P10.36

Show that the circuit of Figure P10.37 functions as a NOR gate.

Figure P10.37

Show that the circuit of Figure P10.38 functions as a NAND gate.



10.39

Figure P10.38

Determine the logic function implemented by the CMOS gate of Figure
P10.39. Use a table to summarize the behavior of the circuit.

Figure P10.39

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.



1The bulk is also known as the substrate, body, or base.

2In the past, a metal oxide was used, which explains the terminology metal-oxide
semiconductor MOS.
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C H A P T E R
11

DIGITAL LOGIC CIRCUITS

igital computers have played a prominent role in engineering and science for
over half a century, performing a number of essential functions such as
numerical computations and data acquisition. The elements of all digital
computers are combinational and sequential logic circuits, built up from basic

logic gates. The inputs, operations, and outputs of these circuits are described in
terms of the binary number system and boolean algebra. Several practical examples
are presented to demonstrate that even simple combinations of logic gates can
perform useful functions in engineering practice. A number of logic modules are
introduced that are described in terms of simple logic gates and yet provide more
advanced functions, such as read-only memory, multiplexing, and decoding.
Throughout the chapter, simple examples are given to demonstrate the usefulness of
digital logic circuits in various engineering applications.
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 Learning Objectives
Students will learn to...

Understand the concepts of analog and digital signals and of quantization
Section 11.1.



2.
3.

4.
5.

6.

7.

8.

Convert between decimal and binary number systems and use the hexadecimal
system and BCD and Gray codes. Section 11.2.
Write truth tables, and realize logic functions from truth tables by using logic
gates. Section 11.3.
Systematically design logic functions using Karnaugh maps. Section 11.4.
Study various combinational logic modules, including multiplexers, memory and
decoder elements, and programmable logic arrays. Section 11.5.
Study sequential logic modules including flip-flops, latches and counters
Section 11.6.
Understand the operation of digital counters and registers. Counters are a very
important class of digital circuits and are based on sequential logic elements
Registers are the most fundamental form of random-access memory (RAM)
Section 11.7.
Design simple sequential circuits using state transition diagrams. Sequential
circuits can be designed using formal design procedures employing state
diagrams. Section 11.8.

11.1 ANALOG AND DIGITAL SIGNALS
One of the fundamental distinctions in the study of electronic circuits (and in the
analysis of any signals derived from physical measurements) is that between analog
and digital signals. An analog signal is an electric signal whose value varies in
analogy with a physical quantity (e.g., temperature, force, or acceleration). For
example, a voltage proportional to a measured variable pressure or to a vibration
naturally varies in an analog fashion. Figure 11.1 depicts an analog function of time
f(t). We note immediately that for each value of time t, f(t) can take any value among
any of the values in the given range. For example, in the case of the output voltage of
an op-amp, we expect the signal to take any value between +Vsat and −Vsat, where
Vsat is the supply-imposed saturation voltage.



Figure 11.1 Voltage analog of internal combustion engine in-cylinder
pressure

A digital signal, on the other hand, can take only a finite number of values. This
is an extremely important distinction, as will be shown shortly. An example of Page
551a digital signal is a signal that allows display of a temperature measurement on a
digital readout. Let us hypothesize that the digital readout is three digits long and can
display numbers from 0 to 100, and let us assume that the temperature sensor is
correctly calibrated to measure temperatures from 0 to 100°C. Further, the output of
the sensor ranges from 0 to 5 V, where 0 V corresponds to 0°C and 5 V to 100°C.
Therefore, the calibration constant of the sensor is

Clearly, the output of the sensor is an analog signal; however, the display can show
only a finite number of readouts (101, to be precise). Because the display itself can
only take a value out of a discrete set of states—the integers from 0 to 100—we call
it a digital display, indicating that the variable displayed is expressed in digital form.

Now, each temperature on the display corresponds to a range of voltages: each
digit on the display represents one-hundredth of the 5-V range of the sensor, or 0.05
V = 50 mV. Thus, the display will read 0 if the sensor voltage is between 0 and 49
mV, 1 if it is between 50 and 99 mV, and so on. Figure 11.2 depicts the staircase
function relationship between the analog voltage and the digital readout. This
quantization of the sensor output voltage is in effect an approximation. If one
wished to know the temperature with greater precision, a greater number of display
digits could be employed.



Figure 11.2 Digital representation of an analog signal

The most common digital signals are binary signals. A binary signal is a signal
that can take only one of two discrete values and is therefore characterized by
transitions between two states. Figure 11.3 displays a typical binary signal. In binary
arithmetic (which we discuss in Section 11.2), the two discrete values f1 and f0 are
Page 552represented, respectively, by the numbers 1 and 0. In binary voltage
waveforms, these values are represented by two voltage levels. For example, in the
TTL convention (see Chapter 9), these values are (nominally) 5 and 0 V,
respectively; in CMOS circuits, these values can vary substantially. Other
conventions are also used, including reversing the assignment, for example, by
letting a 0-V level represent a logic 1 and a 5-V level represent a logic 0. Note that in
a binary waveform, knowledge of the transition between one state and another (e.g.,
from f0 to f1 at t = t2) is equivalent to knowledge of the state. Thus, digital logic
circuits can operate by detecting transitions between voltage levels. The transitions
are often called edges and can be positive (f0 to f1) or negative (f1 to f0). Virtually all
the signals handled by a computer are binary. From here on, whenever we speak of
digital signals, you may assume that the text is referring to signals of the binary type,
unless otherwise indicated.



Figure 11.3 A binary signal

11.2 THE BINARY NUMBER SYSTEM
The binary number system is a natural choice for representing the behavior of
circuits that operate in one of two states (on or off, 1 or 0, or the like). The diode and
transistor gates and switches studied in Chapters 9 and 10 fall into this category.
Table 11.1 shows the correspondence between decimal and binary number systems
for integer decimal numbers up to 16.

Table 11.1 Conversion from decimal to binary

Binary numbers are based on powers of 2, whereas the decimal system is based
on powers of 10. For example, the number 372 in the decimal system can be
expressed as

while the binary number 10110 corresponds to the following combination of powers
of 2:



It is relatively simple to see the correspondence between the two number systems if
we add the terms on the right-hand side of the previous expression. Let n2 represent
the number n base 2 (i.e., in the binary system), and let n10 be the same number base
10. Then our notation will be as follows:

Note that a fractional number can also be similarly represented. For example, the
number 3.25 in the decimal system may be represented as

while in the binary system the number 10.011 corresponds to

Table 11.1 shows that it takes four binary digits, also called bits, to represent the
decimal numbers up to 15. Usually, the rightmost bit is called the least significant
bit, Page 553or LSB, and the leftmost bit is called the most significant bit, or MSB.
Since binary numbers clearly require a larger number of digits than decimal numbers
do, the digits are usually grouped into sets of 4, 8, or 16. Four bits are a nibble and
eight bits are a byte. A word is the basic unit of data in a digital system. A word may
be two or more bytes depending upon the particular digital architecture.

Addition and Subtraction
The operations of addition and subtraction are based on the simple rules shown in
Table 11.2. Note that, just as is done in the decimal system, a carry is generated
whenever the sum of two digits exceeds the largest single-digit number in the given
number system, which is 1 in the binary system. The carry is treated exactly as in the
decimal system. A few examples of binary addition are shown in Figure 11.4, with
their decimal counterparts.

Table 11.2 Rules for addition



Figure 11.4 Examples of binary addition

The procedure for subtracting binary numbers is based on the rules of Table 11.3.
A few examples of binary subtraction are given in Figure 11.5, with their decimal
counterparts.

Table 11.3 Rules for subtraction

Figure 11.5 Examples of binary subtraction

Multiplication and Division

Whereas in the decimal system the multiplication table consists of 102 = 100 entries,
in the binary system we only have 22 = 4 entries. Table 11.4 represents the complete
multiplication table for the binary number system.

Table 11.4 Rules for multiplication

Division in the binary system is also based on rules analogous to those of the
decimal system, with the two basic laws given in Table 11.5. Once again, we need be
concerned with only two cases, and just as in the decimal system, division by zero is
not contemplated.

Table 11.5 Rules for division



Conversion from Decimal to Binary
The conversion of a decimal number to its binary equivalent is performed by
successive division of the decimal number by 2, checking for the remainder each
time. Figure 11.6 illustrates this idea with an example. The result obtained in Figure
11.6 may be easily verified by performing the opposite conversion, from binary to
decimal:

Figure 11.6 Example of conversion from decimal to binary
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The same technique can be used for converting decimal fractional numbers to their
binary form, provided that the whole number is separated from the fractional part and
each is converted to binary form (separately), with the results added at the end.
Figure 11.7 outlines this procedure by converting the number 37.53 to binary form.
The procedure is outlined in two steps. First, the integer part is converted; then, to
convert the fractional part, one simple technique consists of multiplying the decimal
fraction by 2 in successive stages. If the result exceeds 1, a 1 is needed to the right of
the binary fraction being formed (100101 . . . , in our example). Otherwise, a 0 is
added. This procedure is continued until no fractional terms are left. In this case, the
decimal part is 0.5310, and Figure 11.7 illustrates the succession of calculations.
Stopping the procedure outlined in Figure 11.7 after 11 digits results in the following
approximation:



Figure 11.7 Conversion from decimal to binary

Greater precision could be attained by continuing to add binary digits, at the expense
of added complexity. Note that an infinite number of binary digits may be required to
represent a decimal number exactly.

Complements and Negative Numbers
To simplify the operation of subtraction in digital computers, complements are used
almost exclusively. In practice, this corresponds to replacing the operation X−Y with
the operation X + (−Y). This procedure results in considerable simplification since the
computer hardware need include only adding circuitry. Two types of complements
are used with binary numbers: the ones complement and the twos complement.



The twos complement of an n-bit binary number is obtained by subtracting the
number itself from 2n. Twos complements of the same numbers a and b used in the
preceding illustration are computed as follows:
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A simple rule that may be used to obtain the twos complement directly from a binary
number is the following: Starting at the least significant (rightmost) bit, copy each bit
until the first 1 has been copied, and then replace each successive 1 by a 0 and each 0
by a 1. You may wish to try this rule on the two previous examples to verify that it is
much easier to use than subtraction from 2n.

Different conventions exist in the binary system to represent whether a number is
negative or positive. One convention, called the sign-magnitude convention, makes
use of a sign bit, usually positioned at the beginning of the number, for which a value
of 1 represents a minus sign and a value of 0 represents a plus sign. Thus, an 8-bit
binary number would consist of 1 sign bit followed by 7 magnitude bits, as shown in
Figure 11.8(a). In a digital system that uses 8-bit signed integer words, we could
represent integer numbers (decimal) in the range

or



Figure 11.8 (a) An 8-bit sign-magnitude binary number; (b) an 8-bit ones
complement binary number; (c) an 8-bit twos complement binary number

A second convention uses the ones complement notation. In this convention, a
sign bit is also used to indicate whether the number is positive (sign bit = 0) or
negative (sign bit = 1). However, the magnitude of the binary number is represented
by the true magnitude if the number is positive and by its ones complement if the
number is negative. Figure 11.8(b) illustrates the convention. For example, the
number 9110 would be represented by the 7-bit binary number 10110112 with a
leading 0 (the sign bit): 010110112. On the other hand, the number −9110 would be
represented by the 7-bit ones complement binary number 01001002 with a leading 1
(the sign bit): 101001002.

Most digital computers use the twos complement convention in performing
integer arithmetic operations. The twos complement convention represents positive
numbers by a sign bit of 0, followed by the true binary magnitude; negative numbers
are represented by a sign bit of 1, followed by the twos complement of the binary
number, as shown in Figure 11.8(c). The advantage of the twos complement
convention is that the algebraic sum of twos complement binary numbers is carried
out very simply by adding the two numbers including the sign bit.
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The Hexadecimal System
It should be apparent by now that representing numbers in base-2 and base-10
systems is simply a matter of convenience, given a specific application. Another
frequently used base is 16, which results in the hexadecimal system. In the
hexadecimal (or hex) code, the bits in a binary number are subdivided into groups of
4. Since there are 16 possible combinations for a 4-bit number, the natural digits in
the decimal system (0 through 9) are insufficient to represent a hex digit. To solve



this problem, the first six letters of the alphabet are used, as shown in Table 11.6.
Thus, in hex code, an 8-bit word corresponds to just two digits; for example,

1010 01112 = A716

0010 10012 = 2916

Table 11.6 Hexadecimal code

The ASCII1 character code represents all alphanumeric characters, and others,
commonly used in printed documents to hexadecimal values. This code is used, for
example, to define the visual output associated with char type variables found in all
computer programming languages. The 128 members of the standard ASCII
character set are listed in Appendix D along with their hexadecimal equivalents.

Binary Codes
In this subsection, we describe two common binary codes that are often used for
practical reasons. The first is a method of representing decimal numbers in digital
logic circuits that is referred to as binary-coded decimal, or BCD, representation.
The simplest BCD representation is just a sequence of 4-bit binary numbers that
stops after the first 10 entries, as shown in Table 11.7. There are also other BCD
codes, all reflecting the same principle: Each decimal digit is represented by a fixed-
length binary word. One should realize that although this method is attractive
because of its direct correspondence with the decimal system, it is not efficient.
Consider, for example, the decimal number 68. Its binary representation by direct



conversion is the 7-bit number 1000100. However, the corresponding BCD
representation would require 8 bits:

6810 = 01101000BCD

Table 11.7 BCD code

Another code that finds many applications is the Gray code, which is simply a
reshuffled binary code with the property that any two consecutive numbers differ by
only 1 bit. Table 11.8 illustrates the 3-bit Gray code. The Gray code is useful in Page
557encoding applications because a single bit reading error results in an off-by-one
counting error. Thus, the impact of bit reading errors is more likely to be marginal
than when using other encoding schemes.

Table 11.8 Three-bit Gray code

FOCUS ON MEASUREMENTS



Digital Position Encoders
Position encoders are devices that output a digital signal proportional to their (linear
or angular) position. These devices are very useful in measuring instantaneous
position in motion control applications. Motion control is a technique used when it is
necessary to accurately control the motion of a moving object; examples are found in
robotics, machine tools, and servomechanisms. For example, in positioning the arm
of a robot to pick up an object, it is very important to know its exact position at all
times. Since one is usually interested in both rotational and translational motion, two
types of encoders are discussed in this example: linear and angular position
encoders.

An optical position encoder consists of an encoder pad, which is either a strip
(for translational motion) or a disk (for rotational motion) with alternating black and
white areas. These areas are arranged to reproduce some binary code, as shown in
Figure 11.9, where both the conventional binary and Gray codes are depicted for a 4-
bit linear encoder pad. A fixed array of photodiodes (see Chapter 8) senses the
reflected light from each of the cells across a row of the encoder path; depending on
the amount of light reflected, each photodiode circuit will output a voltage
corresponding to a binary 1 or 0. Thus, a different 4-bit word is generated for each
row of the encoder.



Figure 11.9 Binary and Gray code patterns for linear position encoders

Suppose the encoder pad is 100 mm in length. Then its resolution can be
computed as follows. The pad will be divided into 24 = 16 segments, and each
segment corresponds to an increment of 100/16 mm = 6.25 mm. If greater resolution
were necessary, more bits could be employed: an 8-bit pad of the same length would
attain a resolution of 100/256 mm = 0.39 mm.

A similar construction can be employed for the 5-bit angular encoder of Figure
11.10. In this case, the angular resolution can be expressed in degrees of rotation,
where 25 = 32 sections correspond to 360°. Thus, the resolution is 360°/32 = 11.25°.
Once again, greater angular resolution could be obtained by employing a larger
number of bits.
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Figure 11.10 Binary and Gray code patterns for angular position encoders



1.
2.

EXAMPLE 11.1 Twos Complement Operations
Problem

Perform the following subtractions, using twos complement arithmetic.

X − Y = 1011100 − 1110010
X − Y = 10101111 − 01110011

Solution
Analysis: The twos complement subtractions are performed by replacing the
operation X − Y with the operation X + (−Y ). Thus, we first find the twos
complement of Y and add the result to X in each of the two cases:

Next, we add the sign bit (in boldface type) in front of each number (1 in the first
case since the difference X − Y is a negative number):

Repeating for the second subtraction gives

where the first digit is a 0 because X − Y is a positive number.
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EXAMPLE 11.2 Conversion From Binary to Hexadecimal
Problem

Convert the following binary numbers to hexadecimal form.



1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.

a.
b.
c.
d.
e.
f.
g.
h.

100111
1011101
11001101
101101111001
100110110
1101011011

Solution
Analysis: A simple method for binary to hexadecimal conversion consists of
grouping each binary number into 4-bit groups and then performing the conversion
for each 4-bit word following Table 11.6:

1001112 = 0010201112 = 2716

10111012 = 0101211012 = 5D16

110011012 = 1100211012 = CD16

1011011110012 = 101120111210012 = B7916

1001101102 = 000120011201102 = 13616

11010110112 = 001120101210112 = 35B16

Comments: To convert from hexadecimal to binary, replace each hexadecimal
number with the equivalent 4-bit nibble.

CHECK YOUR UNDERSTANDING
Convert the following decimal numbers to binary form.

39
59
512
0.4475

0.796875
256.75
129.5625



a.
b.
c.
d.
e.
f.
g.
h.
i.

a.
b.
c.

CHECK YOUR UNDERSTANDING
Convert the following binary numbers to decimal.

1101
11011
10111
0.1011
0.001101
0.001101101
111011.1011
1011011.001101
10110.0101011101
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CHECK YOUR UNDERSTANDING
Perform the following additions and subtractions. Express the answer in decimal
form for (a) through (d) and in binary form for (e) through (h).

1001.12 + 1011.012

1001012 + 1001012

0.10112 + 0.11012

Answers: (a) 100111, (b) 111011, (c) 1000000000, (d) 0.011100101000, (e)
0.11001, (f) 0.110011, (g) 100000000.11, (h) 10000001.1001, (i)
1000000000000.11101

Answers: (a) 13, (b) 27, (c) 23, (d) 0.6875, (e) 0.203125, (f) 0.212890625,
(g) 59.6875, (h) 91.203125, (i) 22.3408203125



d.
e.
f.
g.
h.

a.
b.
c.

1011.012 + 1001.112

6410 – 3210

12710 − 6310

93.510 − 42.7510

CHECK YOUR UNDERSTANDING
How many possible numbers can be represented in a 12-bit word?

If we use an 8-bit word with a sign bit (7 magnitude bits plus 1 sign bit) to represent
voltages −5 and +5 V, what is the smallest increment of voltage that can be
represented?

CHECK YOUR UNDERSTANDING
Find the twos complement of the following binary numbers.

11101001
10010111
1011110

Answer: (a) 20.7510, (b) 7410, (c) 1.510, (d) 2110, (e) 1000002, (f)
10000002, (g) 110010.112, (h) 100011.111112

Answers: 4,096; 39 mV

Answer: (a) 00010111, (b) 01101001, (c) 0100010



a.
b.
c.
d.
e.
f.

a.
b.
c.

CHECK YOUR UNDERSTANDING
Convert the following numbers from hexadecimal to binary or from binary to
hexadecimal.

F83
3C9
A6
1101011102

101110012

110111011012

CHECK YOUR UNDERSTANDING
Convert the following numbers from hexadecimal to binary, and find their twos
complements.

F43
2B9
A6
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11.3 BOOLEAN ALGEBRA AND LOGIC GATES

Answers: (a) 111110000011, (b) 001111001001, (c) 10100110, (d) 1AE, (e)
B9, (f) 6ED

Answers: (a) 0000 1011 1101, (b) 1101 0100 0111, (c) 0101 1010
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The mathematics associated with the binary number system (and with the more
general field of logic) is called boolean, in honor of the English mathematician
George Boole, who published a treatise in 1854 entitled “An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities.” The development of a logical algebra, as Boole called it, is one of the
results of his investigations. The variables in a boolean, or logic, expression can take
only one of two values, usually represented by the numbers 0 and 1. These variables
are sometimes referred to as true (1) and false (0). This convention is normally
referred to as positive logic. There is also a negative logic convention in which the
roles of logic 1 and logic 0 are reversed. In this book we employ only positive logic.

Analysis of logic functions, that is, functions of logical (boolean) variables, can
be carried out in terms of truth tables. A truth table is a listing of all the possible
values that each of the boolean variables can take and of the corresponding value of
the desired function. In the following paragraphs we define the basic logic functions
upon which boolean algebra is founded, and we describe each in terms of a set of
rules and a truth table; in addition, we introduce logic gates. Logic gates are physical
devices (see Chapters 9 and 10) that can be used to implement logic functions.

AND and OR Gates
The basis of boolean algebra lies in the operations of logical addition, or the OR
operation; and logical multiplication, or the AND operation. Both of these find a
correspondence in simple logic gates, as we shall presently illustrate. Logical
addition, although represented by the symbol +, differs from conventional algebraic
addition, as shown in the last rule listed in Table 11.9. Note that this rule also differs
from the last rule of binary addition studied in Section 11.2. Logical addition can be
represented by the logic gate called an OR gate, whose symbol and whose inputs and
outputs are shown in Figure 11.11. The OR gate represents the following logical
statement:

Table 11.9 Rules for logical addition (OR)



(11.2)

Figure 11.11 Logical addition and the OR gate

This rule is embodied in the electronic gates discussed in Chapters 9 and 10, in which
a logic 1 corresponds, say, to a 5-V signal and a logic 0 to a 0-V signal.

Logical multiplication is denoted by the center dot · and is defined by the rules of
Table 11.10. Figure 11.12 depicts the AND gate, which corresponds to this operation.
The AND gate corresponds to the following logical statement:

Table 11.10 Rules for logical multiplication (AND)

Figure 11.12 Logical multiplication and the AND gate



One can easily envision logic gates (AND and OR) with an arbitrary number of
inputs; three- and four-input gates are not uncommon.

The rules that define a logic function are often represented in tabular form by
means of a truth table. Truth tables for the AND and OR gates are shown in Figures
11.11 and 11.12. A truth table is nothing more than a tabular summary of all possible
outputs of a logic gate, given all possible input values. If the number of inputs is 3,
the number of possible combinations grows from 4 to 8, but the basic idea is
unchanged. Truth tables are very useful in defining logic functions. A typical logic
design problem might specify requirements such as “the output Z shall be Page
562logic 1 only when the condition (X = 1 AND Y = 1) OR (W = 1) occurs, and shall
be logic 0 otherwise.” The truth table for this particular logic function is shown in
Figure 11.13 as an illustration. The design consists, then, of determining the
combination of logic gates that exactly implements the required logic function. Truth
tables can greatly simplify this procedure.

Figure 11.13 Example of logic function implementation with logic gates

The AND and OR gates form the basis of all logic design in conjunction with the
NOT gate. The NOT gate is essentially an inverter (which can be constructed by
using bipolar or field-effect transistors, as discussed in Chapters 9 and 10,
respectively), and it provides the complement of the logic variable connected to its
input. The complement of a logic variable X is denoted by . The NOT gate has only
one input, as shown in Figure 11.14.



Figure 11.14 Complements and the NOT gate

To illustrate the use of the NOT gate, or inverter, we return to the design example
of Figure 11.13, where we required that the output of a logic circuit be Z = 1 only if X
= 0 AND Y = 1 OR if W = 1. We recognize that except for the requirement X = 0, this
problem would be identical if we stated it as follows: “The output Z shall be logic 1
only when the condition  OR (W = 1) occurs, and shall be logic 0
otherwise.” If we use an inverter to convert X to , we see that the required
condition becomes  OR (W = 1). The formal solution to this
elementary design exercise is illustrated in Figure 11.15.

Figure 11.15 Solution of a logic problem using logic gates

In the course of the discussion of logic gates, we make frequent use of truth
tables to evaluate logic expressions. A set of basic rules will facilitate this task. Table
11.11 lists some of the rules of boolean algebra; each of these can be proved by using
a truth table, as will be shown in examples and exercises. An example proof for rule
16 is given in Figure 11.16 in the form of a truth table. This technique can be
employed to prove any of the laws of Table 11.11. From the simple truth table in
Figure 11.16, which was obtained step by step, we can clearly see that indeed . This
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method for proving the validity of logical equations is called proof by perfect
induction. The 19 rules of Table 11.11 can be used to simplify logic expressions.
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Table 11.11 Rules of boolean algebra

Figure 11.16 Proof of rule 16 by perfect induction

De Morgan’s Laws
Two very important logic rules are known as De Morgan’s laws. These laws state
that AND and OR functions can be interchanged by making appropriate NOT
operations. In terms of Boolean algebra these theorems are:



(11.4)

De Morgan’s laws

Notice the duality that exists between AND and OR operations. One consequence of
De Morgan’s laws may be stated as:

Any logic function can be implemented using only OR and NOT gates or only
AND and NOT gates.

De Morgan’s laws can be visualized in terms of logic gates and the associated truth
tables, as shown in Figure 11.17.

Figure 11.17 De Morgan's laws

Another consequence of De Morgan’s laws is the ability to express any logic
function as a sum of products (SOP) and/or as a product of sums (POS), as shown
in Figure 11.18. The two forms are logically equivalent; however, one may be
simpler to implement with logic gates.



Figure 11.18 Sum-of-products and product-of-sums logic functions

In Figure 11.18, the SOP expression can be expressed as:

If  and , then:

such that the SOP form XY + WZ is equivalent to the complement (or negation) of the
POS form .
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NAND and NOR Gates
In addition to the AND and OR gates we have just analyzed, the complementary
forms of these gates, called NAND and NOR, are very commonly used in practice. In
fact, NAND and NOR gates form the basis of most practical logic circuits. Figure
11.19 depicts these two gates and illustrates how they can be easily interpreted in
terms of AND, OR, and NOT gates by virtue of De Morgan’s laws. You Page 565can
readily verify that the logic function implemented by the NAND and NOR gates
corresponds, respectively, to AND and OR gates followed by an inverter. It is very
important to note that, by De Morgan’s laws, the NAND gate performs a logical
addition on the complements of the inputs, while the NOR gate performs a logical
multiplication on the complements of the inputs. Functionally, then, any logic
function could be implemented with either NOR or NAND gates only.



Figure 11.19 Equivalence of NAND and NOR gates with AND and OR
gates

The next section shows how to systematically approach the design of logic
functions. First, we provide a few examples to illustrate logic design with NAND and
NOR gates.

The XOR (Exclusive OR) Gate
It is rather common practice for a manufacturer of integrated circuits (ICs) to provide
common combinations of logic circuits in a single IC package. We review many of
these common logic modules in Section 11.5. An example of this idea is provided by
the exclusive OR (XOR) gate, which provides a logic function similar, but not
identical, to the OR gate we have already studied. The XOR gate acts as an OR gate,
except when its inputs are all logic 1s; in this case, the output is a logic 0 (thus the
term exclusive). Figure 11.20 shows the logic circuit symbol adopted for this gate and
the corresponding truth table. The logic function implemented by the XOR gate is the
following: either X or Y, but not both. This description can be extended to an
arbitrary number of inputs.

Figure 11.20 XOR gate



The symbol adopted for the exclusive OR operation is ⊕, and so we write

to denote this logic operation. The XOR gate can be obtained by a combination of the
basic gates we are already familiar with. For example, if we observe that the XOR
function corresponds to , we can realize the XOR gate by
means of the circuit shown in Figure 11.21.

Figure 11.21 Realization of an XOR gate

Common IC logic gate configurations, are typically available in both of the two
more common device families, TTL and CMOS.

FOCUS ON MEASUREMENTS

Fail-Safe Autopilot Logic
This example aims to illustrate the significance of De Morgan’s laws and of the
duality of the sum-of-products and product-of-sums forms. Suppose that a fail-safe
autopilot system in a commercial aircraft requires that, prior to initiating a takeoff or



landing maneuver, the following check be passed: Two of three possible pilots must
be available. The three possibilities are the pilot, the copilot, and the autopilot.
Imagine further that there exist switches in the pilot and copilot seats that are turned
on by the weight of the crew, and that a self-check circuit exists to verify the proper
operation of the autopilot system. Let the variable X denote the pilot state (1 if the
pilot is sitting at the controls), Y denote the same condition for the copilot, and Z
denote the state of the autopilot, where Z = 1 indicates that the autopilot is
functioning. Then since we wish two of these conditions to be active before the
maneuver can be initiated, the logic function corresponding to “system ready” is

This can also be verified by the truth table shown below.
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The function f defined above is based on the notion of a positive check; that is, it
indicates when the system is ready. Let us now apply De Morgan’s laws to the
function f, which is in sum-of-products form:

The function g, in product-of-sums form, conveys exactly the same information as
the function f, but it performs a negative check; in other words, g verifies the system
not ready condition. Clearly, whether one chooses to implement the function in one
form or another is simply a matter of choice; the two forms give exactly the same
information.



EXAMPLE 11.3 Simplification of Logical Expression
Problem

Using the rules of Table 11.11, simplify the following function.

Solution
Find: Simplified expression for logical function of four variables.
Analysis:
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EXAMPLE 11.4 Realizing Logic Functions From Truth Tables
Problem

Realize the logic function described by the truth table below.



Solution
Known Quantities: Value of function y(A, B, C) for each possible combination of
logical variables A, B, C.
Find: Logical expression realizing the function y.
Analysis: To determine a logical expression for the function y, first we need to
convert the truth table to a logical expression. We do so by expressing y as the sum of
the products of the three variables for each combination that yields y = 1. If the value
of a variable is 1, we use the uncomplemented variable. If it’s 0, we use the
complemented variable. For example, the second row (first instance of y = 1) would
yield the term . Thus,

Thus, the function is a two-input OR gate, as shown in Figure 11.22.

Figure 11.22 Logic gate for example 11.4.

Comments: The derivation above has made use of two rules from Table 11.11: rules
4 and 18. Could you have predicted that the variable B would not be used in the final
realization?

EXAMPLE 11.5 De Morgan’s Laws and Product-of-Sums Expressions
Problem

Realize the logic function  in product-of-sums form. Implement the
solution, using AND, OR, and NOT gates.

Solution
Known Quantities: Logical expression for the function y(A, B, C).



Find: Physical realization using AND, OR, and NOT gates.
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Analysis: We use the fact that  and apply De Morgan’s laws as follows:

The preceding sum-of-products function is realized using complements of each
variable (obtained using NOT gates) and is finally complemented as shown in Figure
11.23.

Figure 11.23 Logic gate realization of the function of Example 11.5.

Comments: It should be evident that the original sum-of-products expression, which
could be implemented with just one AND and one OR gate, has a much more
efficient realization.

EXAMPLE 11.6 Realizing the AND Function With NAND Gates
Problem

Use a truth table to show that the AND function can be realized using only NAND
gates, and show the physical realization.

Solution
Known Quantities: AND and NAND truth tables.
Find: AND realization using NAND gates.



Assumptions: Consider two-input functions and gates.
Analysis: The truth table below summarizes the two functions:

Clearly, to realize the AND function, we need to simply invert the output of a NAND
gate. This is easily accomplished if we observe that a NAND gate with its inputs tied
together acts as an inverter; you can verify this in the above truth table by looking at
the NAND output for the input combinations 0–0 and 1–1, or by referring to Figure
11.24. The final realization is shown in Figure 11.25.

Figure 11.24 NAND gate as an inverter

Figure 11.25 NAND gate realization of AND logic function
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Comments: NAND (and NOR) gates are well suited to implement functions that
contain complemented products. Complementary logic gates arise naturally from the
inverting characteristics of transistor switches.



EXAMPLE 11.7 Realizing the AND Function With NOR Gates
Problem

Show analytically that the AND function can be realized using only NOR gates, and
determine the physical realization.

Solution
Known Quantities: AND and NOR functions.
Find: AND realization using NOR gates.
Assumptions: Consider two-input functions and gates.
Analysis: We can solve this problem using De Morgan’s laws. The output of an AND
gate can be expressed as . Using De Morgan’s theorem, we write

The above function is implemented very easily if we see that a NOR gate with its
input tied together acts as a NOT gate (see Figure 11.26). Thus, the logic circuit of
Figure 11.27 provides the desired answer.

Figure 11.26 NOR gate as an inverter

Figure 11.27 NOR gate realization of AND logic function

Comments: NOR (and NAND) gates are well suited to implement functions that
contain complemented products. Complementary logic gates arise naturally from the



inverting characteristics of transistor switches. As a result, such gates are commonly
employed in practice.

EXAMPLE 11.8 Realizing a Function With NAND and NOR Gates
Problem

Realize the following function, using only NAND and NOR gates:
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Solution
Known Quantities: Logical expression for y.
Find: Realization of y using only NAND and NOR gates.
Assumptions: Consider two-input functions and gates.
Analysis: Refer to Examples 11.6 and 11.7 and realize the term  using a two-
input NAND gate, and the term  using a two-input NOR gate. The solution is
shown in Figure 11.28.

Figure 11.28 Realization of function in Example 11.8

EXAMPLE 11.9 Half Adder



Problem

Analyze the half adder circuit of Figure 11.29.

Solution
Known Quantities: Logic circuit.
Find: Truth table, functional description.
Schematics, Diagrams, Circuits, and Given Data: Figure 11.29.

Figure 11.29 Logic circuit realization of a half adder

Analysis: The addition of two binary digits was summarized in Table 11.2. It is
important to observe that when both A and B are equal to 1, the sum requires two
digits: the lower digit is a 0, and there also is a carry of 1. Thus, the circuit
representing this operation must give an output consisting of two digits. Figure 11.29
shows a circuit called a half adder that performs binary addition providing two
output bits: the sum S and the carry C.

A logic statement for the rule of addition can be written as follows: S is 1 if A is 0
and B is 1, or if A is 1 and B is 0; C is 1 if A and B are 1. In terms of a logic function,
we can express this statement with the following logical expressions:

The circuit of Figure 11.29 implements this function using NOT, AND, and OR
gates.
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EXAMPLE 11.10 Full Adder
Problem

Analyze the full adder circuit of Figure 11.30.

Solution
Known Quantities: Logic circuit.
Find: Truth table, functional description.
Schematics, Diagrams, Circuits, and Given Data: Figure 11.30.

Figure 11.30 Logic circuit realization of a full adder

Analysis: To perform a complete addition we need a full adder, that is, a circuit
capable of performing a complete 2-bit addition, including taking a carry from a
preceding operation. The circuit of Figure 11.30 uses two half adders, such as the one
described in Example 11.9, and an OR gate to process the addition of 2-bits, A and B,
plus the possible carry from a preceding addition from another (half or full) adder
circuit. The truth table below illustrates this operation.

Comments: To perform the addition of two 4-bit nibbles, we would need a half adder
for the first column (LSB), and a full adder for each additional column, that is, three



full adders.

CHECK YOUR UNDERSTANDING
Prepare a step-by-step truth table for the following logic expressions.

(Hint: Your truth table must have 2n entries, where n is the number of logic
variables.)
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CHECK YOUR UNDERSTANDING
Implement the three logic functions of the previous Check Your Understanding
exercise using the smallest number of AND, OR, and NOT gates only.

Answer: 



Page 573

CHECK YOUR UNDERSTANDING
Implement the three logic functions of the previous Check Your Understanding
exercise using the least number of NAND and NOR gates only. (Hint: Use De
Morgan’s laws and the fact that )

Answer: 

Answer: 



CHECK YOUR UNDERSTANDING
Show that one can obtain an OR gate by using NAND gates only. (Hint: Use three
NAND gates.)

CHECK YOUR UNDERSTANDING
Show that the XOR function can also be expressed as . Realize the
corresponding function using NOT, AND, and OR gates. [Hint: Use truth tables for
the logic function Z (as defined in the exercise) and for the XOR function.]

11.4 KARNAUGH MAPS AND LOGIC DESIGN
In examining the design of logic functions by means of logic gates, we have
discovered that more than one solution is usually available for the implementation of
a given logic expression. It should also be clear by now that some combinations of
gates can implement a given function more efficiently than others. How can we be
assured of having chosen the most efficient realization? Fortunately, there is a
procedure that utilizes a map describing all possible combinations of the variables
present in the logic function of interest. This map is called a Karnaugh map, after
its inventor. Figure 11.31 depicts the appearance of Karnaugh maps for two-, three-,
and four-variable expressions in two different forms. As can be seen, the row and
column assignments for two or more variables are arranged so that all adjacent terms
change by only 1 bit. For example, in the two-variable map, the columns next to
column 01 are columns 00 and 11. Also note that each map consists of 2N cells,
where N is the number of logic variables.



Figure 11.31 Two-, three-, and four-variable Karnaugh maps

Each cell in a Karnaugh map contains a minterm, that is, a product of the N
variables that appear in our logic expression (perhaps in complemented form). For
example, for the case of three variables (N = 3), there are 23 = 8 such combinations,
or minterms: , and .
The content of each cell—that is, the minterm—is the product of the variables
appearing at the corresponding vertical and horizontal coordinates. Page 574For
example, in the three-variable map,  appears at the intersection of  and .
The map is filled by placing a value of 1 for any combination of variables for which
the desired output is a 1. For example, consider the function of three variables for
which we desire to have an output of 1 whenever variables X, Y, and Z have the
following values:



The same truth table is shown in Figure 11.32 together with the corresponding
Karnaugh map.

Figure 11.32 Truth table and Karnaugh map representations of a logic
function

The Karnaugh map provides an immediate view of the values of the function in
graphical form. Further, the arrangement of the cells in the Karnaugh map is such
that any two adjacent cells contain minterms that vary in only one variable. This
property, as will be verified shortly, is quite useful in the design of logic functions by
means of logic gates, especially if we consider the map to be continuously wrapping
around itself, as if the top and bottom, and right and left, edges were touching. For
the three-variable map given in Figure 11.31, for example, the Page 575cell 
is adjacent to  if we “roll” the map so that the right edge touches the left.
Note that these two cells differ only in the variable X, a property that we earlier
claimed adjacent cells have.2

Shown in Figure 11.33 is a more complex, four-variable logic function, which
will serve as an example in explaining how Karnaugh maps can be used directly to
implement a logic function. First, we define a subcube as a set of 2m adjacent cells
with logical value 1, for m = 1, 2, 3, . . . , n. Thus, a subcube can consist of 1, 2, 4, 8,
16, 32, . . . cells. All possible subcubes for the four-variable map of Figure 11.31 are
shown in Figure 11.34. Note that there are no four-cell subcubes in this particular



case. Note also that there is some overlap between subcubes. Examples of four-cell
and eight-cell subcubes are shown in Figure 11.35 for an arbitrary expression.

Figure 11.33 Karnaugh map for a four-variable expression

Figure 11.34 One- and two-cell subcubes for the Karnaugh map of Figure
11.31



Figure 11.35 Four- and eight-cell subcubes for an arbitrary logic function

In general, one tries to find the largest possible subcubes to cover all the 1 entries
in the map. How do maps and subcubes help in the realization of logic functions,
then? The use of maps and subcubes in minimizing logic expressions is best
explained by considering the following rule of boolean algebra:

where the variable Y could represent a product of logic variables [e.g., we could
similarly write  with . This rule is easily proved
by factoring Y

and observing that  always. Then it should be clear that variable X need not
appear in the expression at all.

Let us apply this rule to a more complex logic expression, to verify that it can
also apply to this case. Consider the logic expression
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and factor it as follows:



That is quite a simplification! If we consider, now, a map in which we place a 1 in the
cells corresponding to the minterms , and 

, forming the previous expression, we obtain the Karnaugh map of Figure
11.36. It can easily be verified that the map of Figure 11.36 shows a single four-cell
subcube corresponding to the term .

Figure 11.36 Karnaugh map for the function 

We have not established formal rules yet, but it definitely appears that the map
method for simplifying boolean expressions is a convenient tool. In effect, the map
has performed the algebraic simplification automatically! We can see that in any
subcube, one or more of the variables present will appear in both complemented and
uncomplemented forms in all their combinations with the other variables. These
variables can be eliminated. As an illustration, in the eight-cell subcube case of
Figure 11.37, the full-blown expression would be

Figure 11.37 Illustration of Karnaugh map simplification.

However, if we consider the eight-cell subcube, we note that the three variables X, W,
and Z appear in both complemented and uncomplemented form in all their
combinations with the other variables and thus can be removed from the expression.



1.

2.
3.
4.

This reduces the seemingly unwieldy expression simply to ! In logic design terms, a
simple inverter with Y input is sufficient to implement the expression.

Sum-of-Products and Product-of-Sums Realizations
Logic functions can be expressed in either of two forms: sum of products (SOP) or
product of sums (POS). For example, the following logic expression is in SOP form:

The following rules are useful in determining the minimal sum-of-products
expression.

F O C U S  O N  P R O B L E M  S O LV I N G

SUM-OF-PRODUCTS REALIZATIONS
Begin with isolated cells. These must be used as they are, since no simplifica
is possible.
Find all cells that are adjacent to only one other cell, forming two-cell subcub
Find cells that form four-cell subcubes, eight-cell subcubes, and so forth.
The minimal expression is formed by the collection of the smallest numbe
maximal subcubes.

De Morgan’s laws state that every SOP expression has an equivalent POS form.
A simple example of a POS expression is . For any particular Page
577logical expression one of the two forms may lead to a realization involving a
smaller number of gates. For Karnaugh maps, the POS form is found using the
following rules:



1.
2.

3.

4.

F O C U S  O N  P R O B L E M  S O LV I N G

PRODUCT-OF-SUMS REALIZATIONS
Group 0s in subcubes exactly as is done for 1s when seeking an SOP express
Produce a complemented Karnaugh map by swapping X with  with , an
with .
Each subcube of 0s represents a sum of the complemented Karnaugh m
elements.
Form the product of those sums.

An alternate POS realization method is to represent each subcube of 0s as the
product of the Karnaugh map elements, form the sum of these products, and
complement the entire summation. After some manipulation using De Morgan’s
laws, the result will yield an equivalent POS form. It should be noted that the POS
form yielded by this alternate method may not appear to be equivalent to the form
found using the highlighted method above. In such cases, it is always possible to
show that each form yields the same Karnaugh map. Example 11.16 is a good
example of this point. Examples 11.16 and 11.17 illustrate how one form may result
in a more efficient solution than the other.

Don’t-Care Conditions

Another simplification technique may be employed whenever the value of a logic
function is permitted to be either 1 or 0 for certain combinations of the input
variables. This situation often arises in problem specifications. A good example is the
binary-coded decimal system, in which the six four-bit combinations [1010], [1011],
[1100], [1101], [1110], and [1111] are not permitted. The algorithm used to determine
the value of the BCD nibble should be indifferent to these six combinations. On the
other hand, an error checking algorithm should not be; it should detect an erroneous
input nibble!

Whenever it does not matter whether a position in the map is filled by a 1 or a 0,
a don’t-care entry is used, denoted by an x. When forming subcubes in the Karnaugh
map, each don’t-care entry can be treated as either a 1 or a 0 as necessary to yield the
smallest number of subcubes and therefore the greatest simplification.



FOCUS ON MEASUREMENTS

Safety Circuit for Operation of a Stamping Press
Problem:
In this example, the techniques illustrated in the preceding examples are applied to a
practical situation. To operate a stamping press, an operator must press two buttons
(b1 and b2) 1 m apart from each other and away from the press (this ensures that the
operator’s hands cannot be caught in the press). When the buttons are pressed, the
logical variables b1 and b2 are equal to 1. Thus, we can define a new variable 
; when Page 578A = 1, the operator’s hands are safely away from the press. In
addition to the safety requirement, however, other conditions must be satisfied before
the operator can activate the press. The press is designed to operate on one of two
workpieces, part I and part II, but not both. Thus, acceptable logic states for the press
to be operated are “part I is in the press, but not part II” and “part II is in the press,
but not part I.” If we denote the presence of part I in the press by the logical variable
B = 1 and the presence of part II by the logical variable C = 1, we can then impose
additional requirements on the operation of the press. For example, a robot used to
place either part in the press could activate a pair of switches (corresponding to
logical variables B and C) indicating which part, if any, is in the press. Finally, for the
press to be operable, it must be “ready,” meaning that it has to have completed any
previous stamping operation. Let the logical variable D = 1 represent the ready
condition. We have now represented the operation of the press in terms of four
logical variables, summarized in the truth table of Table 11.12. Note that only two
combinations of the logical variables will result in operation of the press: ABCD =



1011 and ABCD = 1101. You should verify that these two conditions correspond to
the desired operation of the press. Using a Karnaugh map, realize the logic circuitry
required to implement the truth table shown.

Table 11.12 Conditions for operation of stamping press

Solution:
Table 11.12 can be converted to a Karnaugh map, as shown in Figure 11.38. Since
there are many more 0s than 1s in the table, the use of 0s in covering the map will
lead to greater simplification. This will result in a product-of-sums expression. The
four subcubes shown in Figure 11.38 yield the equation

Figure 11.38 Karnaugh map for stamping press operation

By De Morgan’s law, this equation is equivalent to



which can be realized by the circuit of Figure 11.39.
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Figure 11.39 Karnaugh map realization by product-of-sums circuit

For the purpose of comparison, the corresponding sum-of-products circuit is
shown in Figure 11.40. Note that this circuit employs a greater number of gates and
will therefore lead to a more expensive design.

Figure 11.40 Karnaugh map realization by sum-of-products circuit.

EXAMPLE 11.11 Logic Circuit Design Using Karnaugh Maps
Problem

Design a logic circuit that implements the truth table of Figure 11.41.



Figure 11.41 Truth table for example 11.11.

Solution
Known Quantities: Truth table for y(A, B, C, D).
Find: Realization of y.
Assumptions: Two-, three-, and four-input gates are available.
Analysis: We use the Karnaugh map of Figure 11.42, which is shown with values of
1 and 0 already in place. We recognize four subcubes in the map; three are four-cell
subcubes, and one is a two-cell subcube. The expressions for the subcubes are 

 for the two-cell subcube;  for the subcube that wraps around the map; 
 for the 4-by-1 subcube; and  for the square subcube at the bottom of the

map. Thus, the expression for y is
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Figure 11.42 Karnaugh map for Example 11.11

The implementation of the above function with logic gates is shown in Figure
11.43.



Figure 11.43 Logic circuit realization of Karnaugh map of Figure 11.42

Comments: The Karnaugh map highlighting of Figure 11.42 yields an SOP
expression because all the 1s were highlighted.

EXAMPLE 11.12 Deriving a Sum-of-Products Expression From a
Logic Circuit
Problem

Derive the truth table and minimum sum-of-products expression for the circuit of
Figure 11.44.

Figure 11.44 Logic circuit for Example 11.12.

Solution
Known Quantities: Logic circuit representing f(x, y, z).
Find: Expression for f and corresponding truth table.
Analysis: To determine the truth table, we write the expression corresponding to the
logic circuit of Figure 11.44:



The truth table corresponding to this expression and the corresponding Karnaugh
map with sum-of-products covering are shown in Figure 11.45.

Figure 11.45 Truth table corresponding to circuit of Fig. 11.44.

Comments: If we used 0s in covering the Karnaugh map for this example, the
resulting expression would be a POS. Verify that the complexity of the circuit would
be unchanged. Note also that the subcube  is not used because it does
not further minimize the solution.
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EXAMPLE 11.13 Realizing a Sum of Products Using Only NAND
Gates
Problem

Realize the following function in sum-of-products form, using only two-input NAND
gates.

Solution
Known quantities: f(x, y, z).
Find: Logic circuit for f using only NAND gates.
Analysis: The first step is to convert the expression for f into an expression that can
be easily implemented with NAND gates. We observe that direct application of De
Morgan’s laws yields



Thus, we can write the function as

and implement it with five NAND gates, as shown in Figure 11.46.

Figure 11.46

Comments: Note that we used two NAND gates as inverters—one to obtain , the
other to invert the output of the fourth NAND gate, equal to .

EXAMPLE 11.14 Simplifying Expressions by Using Karnaugh Maps
Problem

Simplify the following expression by using a Karnaugh map.
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Solution
Known Quantities: f(x, y, z).
Find: Minimal expression for f.
Analysis: We highlight a three-term Karnaugh map, as shown in Figure 11.47. The 1s
can be covered using just two subcubes: . Thus, the term  is
redundant.



Figure 11.47 Karnaugh map for Example 11.14.

Comments: Notice that the term  is also included implicitly by the two subcubes.
Thus, in this example, the expression  is equivalent to, but more
complicated than, .

EXAMPLE 11.15 Simplifying a Logic Circuit by Using the Karnaugh
Map
Problem

Derive the Karnaugh map corresponding to the circuit of Figure 11.48, and use the
resulting map to simplify the expression.

Figure 11.48 Logic circuit for example 11.15.

Solution
Known Quantities: Logic circuit.
Find: Simplified logic circuit.
Analysis: We first determine the expression f(x, y, z) from the logic circuit:



This expression leads to the Karnaugh map shown in Figure 11.49. Inspection of the
Karnaugh map reveals that the map could have been covered more efficiently by
using four-cell subcubes. The improved map covering, corresponding to the simpler
function , and the resulting logic circuit are shown in Figure 11.50.

Figure 11.49 Karnaugh map corresponding to circuit of Fig. 11.48

Figure 11.50 Karnaugh map for Example 11.15 with improved cell
coverage, and resulting logic circuit.

Comments: In general, the largest possible subcubes in a Karnaugh map correspond
to the minimum possible solution.
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EXAMPLE 11.16 Comparison of Sum-of-Products and Product-of-
Sums Designs



1.

2.

Problem

Realize the function f described by the accompanying truth table, using both 0 and 1
coverings in the Karnaugh map.

Solution
Known Quantities: Truth table for logic function.
Find: Realization in both sum-of-products and product-of-sums forms.
Analysis:

Product-of-sums expression. Product-of-sums expressions use 0s to determine
the logical expression from a Karnaugh map. Figure 11.51 depicts the Karnaugh
map covering with 0s, leading to the expression

Figure 11.51 Product-of-sums Karnaugh map.

Sum-of-products expression. Sum-of-products expressions use 1s to determine
the logical expression from a Karnaugh map. Figure 11.52 depicts the Karnaugh
map covering with 1s, leading to the expression



Figure 11.52 Sum-of-products Karnaugh map.

Comments: The product-of-sums solution requires the use of five gates (two OR,
two NOT, and one AND), while the sum-of-products solution will use six gates (one
OR, two NOT, and three AND). Thus, solution 1 leads to the simpler design.

EXAMPLE 11.17 Product-of-Sums Design
Problem

Realize the function f described by the accompanying truth table in minimal product-
of-sums form. Draw the corresponding Karnaugh map.
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Solution

Known Quantities: Truth table for logic function.
Find: Realization in minimal product-of-sums forms.



Analysis: We cover the Karnaugh map of Figure 11.53 using 0s, and we obtain the
following function:

Figure 11.53 Product-of-sums Karnaugh map for Example 11.17.

Comments: What is the equivalent sum-of-products solution? Find it! Is it simpler?

EXAMPLE 11.18 Using Don’t-Care Conditions to Simplify Expressions
—1
Problem

Use don’t-care entries to simplify the expression

Solution
Known Quantities: Logical expression; don’t-care conditions.
Find: Minimal realization.
Schematics, Diagrams, Circuits, and Given Data: Don’t-care conditions: 

.
Analysis: We cover the Karnaugh map of Figure 11.54 using 1s, and also using x
entries for each don’t-care condition. Treating all the x entries as 1s, we complete the
covering with two four-cell subcubes and one two-cell subcube, to obtain the
following simplified expression:



Figure 11.54

Comments: Note that we could have also interpreted the don’t-care entries as 0s and
tried to solve in product-of-sums form. Verify that the expression obtained above is
indeed the minimal one.
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EXAMPLE 11.19 Using Don’t-Care Conditions to Simplify Expressions
—2
Problem

Find a minimum sum-of-products realization for the expression f(A, B, C).

Solution
Known Quantities: Logical expression, don’t-care conditions.
Find: Minimal realization.
Schematics, Diagrams, Circuits, and Given Data:



Analysis: We cover the Karnaugh map of Figure 11.55 using 1s, and also using x
entries for each don’t-care condition. By appropriately selecting two of the three
don’t-care entries to be equal to 1, we complete the covering with one four-cell
subcube and one two-cell subcube, to obtain the following minimal expression:

Figure 11.55

Comments: Note that we have chosen to set one of the don’t-care entries equal to 0,
since it would not lead to any further simplification.

EXAMPLE 11.20 Using Don’t-Care Conditions to Simplify Expressions
—3
Problem

Find a minimum sum-of-products realization for the expression f(A, B, C, D).

Solution
Known Quantities: Logical expression; don’t-care conditions.
Find: Minimal realization.
Schematics, Diagrams, Circuits, and Given Data:

Analysis: We cover the Karnaugh map of Figure 11.56 using 1s, and using x entries
for each don’t-care condition. By appropriately selecting four of the five don’t-care



entries to be equal to 1, we complete the covering with one four-cell subcube, two
two-cell subcubes, and one one-cell subcube, to obtain the following expression:

Figure 11.56

Comments: Would the product-of-sums realization be simpler? Verify.
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CHECK YOUR UNDERSTANDING
Simplify the following expression, using a Karnaugh map.

Simplify the following expression, using a Karnaugh map.

CHECK YOUR UNDERSTANDING

Answers: 



Verify that the product-of-sums expression for Example 11.16 can be realized with
fewer gates.

CHECK YOUR UNDERSTANDING
Would a sum-of-products realization for Example 11.17 require fewer gates?

CHECK YOUR UNDERSTANDING
Prove that the circuit of Figure 11.53 can also be obtained from the sum of products.

CHECK YOUR UNDERSTANDING
In Example 11.18, assign a value of 0 to the don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.18?
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CHECK YOUR UNDERSTANDING
In Example 11.19, assign a value of 0 to the don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.19?

In Example 11.19, assign a value of 1 to all don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained

Answer: No

Answer: 



in Example 11.19?

CHECK YOUR UNDERSTANDING
In Example 11.20, assign a value of 0 to all don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.20?

In Example 11.20, assign a value of 1 to all don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.20?

11.5 COMBINATIONAL LOGIC MODULES
The basic logic gates described in the previous section are used to implement more
advanced functions and are often combined to form logic modules, which, thanks to
modern technology, are available in compact integrated-circuit packages. In this
section we discuss a few of the more common combinational logic modules,
illustrating how these can be used to implement advanced logic functions.

Multiplexers
Multiplexers, or data selectors, are combinational logic circuits that permit the
selection of one of many inputs. A typical multiplexer (MUX) has 2n data lines, n
address (or data select) lines, and one output. In addition, other control inputs (e.g.,
enables) may exist. Standard, commercially available MUXs allow for n up to 4;

Answers: 

Answers: 



however, two or more MUXs can be combined if a greater range is needed. The
MUX allows for one of 2n inputs to be selected as the data output; the selection of
which input is to appear at the output is made by way of the address lines. Figure
11.57 depicts the block diagram of a four-input MUX. The input data lines are
labeled D0, D1, D2, and D3; the data select, or address, lines are labeled I0 and I1;
and the output is available in both complemented and uncomplemented form and is
thus labeled F or . Finally, an enable input, labeled E, is also provided, as a means
of enabling or disabling the MUX: if E = 1, the MUX is disabled; if E = 0, it is
enabled. The negative logic (MUX off when E = 1 and on when E = 0) is represented
by the small “bubble” at the enable input, which represents a complement operation
(just as at the output of NAND and NOR gates). The enable input is useful whenever
one is Page 588interested in a cascade of MUXs; this would be of interest if we
needed to select a line from a large number, say, 28 = 256. Then two four-input
MUXs could be used to provide the data selection of 1 of 8.

Figure 11.57 4-to-1 MUX

The material described in previous sections is quite adequate to describe the
internal workings of a multiplexer. Figure 11.58 shows the internal construction of a
4-to-1 MUX using exclusively NAND gates (inverters are also used, but the reader
will recall that a NAND gate can act as an inverter if properly connected).



Figure 11.58 Internal structure of the 4-to-1 MUX

In the design of digital systems (e.g., microprocessors), a single line is often
required to carry two or more different digital signals. However, only one signal at a
time can be placed on the line. A MUX will allow us to select, at different instants,
the signal we wish to place on this single line. This property is shown here for a 4-to-
1 MUX. Figure 11.59 depicts the functional diagram of a 4-to-1 MUX, showing four
data lines, D0 through D3, and two select lines, I0 and I1.

Figure 11.59 Functional diagram of four-input MUX

The data selector function of a MUX is best understood in terms of Table 11.13.
In this truth table, the x’s represent don’t-care entries. As can be seen from the truth
table, the output selects one of the data lines depending on the values of I1 and I0,
assuming that I0 is the least significant bit. As an example, I1I0 = 10 selects D2,
which means that the output F will select the value of the data line D2. Therefore F =
1 if D2 = 1 and F = 0 if D2 = 0.

Table 11.13 MUX truth table
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Read-Only Memory (ROM)
Another common technique for implementing logic functions uses a read-only
memory, or ROM. As the name implies, a ROM is a logic circuit that holds
information in storage (“memory”)—in the form of binary numbers—that cannot be
altered but can be “read” by a logic circuit. A ROM is an array of memory cells, each
of which can store either a 1 or a 0. The array consists of 2m × n cells, where n is the
number of bits in each word stored in a ROM. To access the information stored in a
ROM, m address lines are required. When an address is selected, in a fashion similar
to the operation of the MUX, the binary word corresponding to the address selected
appears at the output, which consists of n bits, that is, the same number of bits as the
stored words. In some sense, a ROM can be thought of as a MUX that has an output
consisting of a word instead of a single bit.

Figure 11.60 depicts the conceptual arrangement of a ROM with n = 4 and m = 2.
The ROM table has been filled with arbitrary 4-bit words, just for the purpose of
illustration. In Figure 11.60, if one were to select an enable input of 0 (i.e., on) and
values for the address lines of I0 = 0 and I1 = 1, the output word would be W2 = 0110,
so that b0 = 0, b1 = 1, b2 = 1, b3 = 0. Depending on the content of the ROM and the
number of address and output lines, one could implement an arbitrary logic function.



Figure 11.60 Read-only memory

Unfortunately, the data stored in read-only memories must be entered during
fabrication and cannot be altered later. A much more convenient type of read-only
memory is the erasable programmable read-only memory (EPROM), the content
of which can be easily programmed and stored and may be changed if needed.
EPROMs find use in many practical applications, because of their flexibility in
content and ease of programming. The following example illustrates the use of an
EPROM to perform the linearization of a nonlinear function.

Decoders and Read-Write Memory
Decoders, which are commonly used for applications such as address decoding or
memory expansion, are combinational logic circuits as well. Our reason for
introducing decoders is to show some of the internal organization of semiconductor
memory devices.

Figure 11.61 shows the truth table for a 2-to-4 decoder. The decoder has an
enable input  and select inputs B and A. It also has four outputs, Y0 through Y3.
When the enable input is logic 1, all decoder outputs are forced to logic 1 regardless
of the select inputs.



Figure 11.61 A 2-to-4 decoder

This simple description of decoders permits a brief discussion of the internal
organization of an SRAM (static random-access, or read and write, memory). An
SRAM is internally organized to provide memory with high speed (i.e., short access
time), a large bit capacity, and low cost. The memory array in this memory device
has a column length equal to the number of words W and a row length equal to the
number of bits per word N. To select a word, an n-to-W decoder is needed. Since the
address inputs to the decoder select only one of the decoder’s outputs, the decoder
selects one word in the memory array. Figure 11.62 shows the internal organization
of a typical SRAM.

Figure 11.62 Internal organization of an SRAM

Thus, to choose the desired word from the memory array, the proper address
inputs are required. As an example, if the number of words in the memory array is 8,
a 3-to-8 decoder is needed.
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Gate Arrays and Programmable Logic Devices
Digital logic design is performed today primarily using programmable logic devices
(PLDs). These are arrays of gates having interconnections that can be programmed
to perform a specific logical function. PLDs are large combinational logic modules
consisting of arrays of AND and OR gates that can be programmed using special
programming languages called hardware description languages (HDLs). Figure
11.63 shows the block diagram of one type of high-density PLD. We define three
types of PLDs:

PROM (programmable read-only memory): Offers high speed and low cost for
relatively small designs.
PLA (programmable logic array): Offers flexible features for more complex
designs.
PAL/GAL (programmable array logic/generic array logic): Offers good
flexibility and is faster and less expensive than a PLA.

Figure 11.63 High-density PLD
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To illustrate the concept of a logic design using a PLD, we employ a generic
array logic (ispGAL16V8) to realize an output signal from three ANDed input
signals. The functional block diagram of the GAL is shown in Figure 11.64(a).



Notice that the device has eight input lines and eight output lines. The output lines
also provide a clock input for timing purposes. The sample code is shown in Figure
11.64(b). The code first defines the inputs and outputs; and it states the equation
describing the function to be implemented, O14=I11&I12&I13, defining which
output and inputs are to be used, and the functional relationship. Note that the symbol
& represents the logical function AND.

Figure 11.64 (a) The ispGAL16V8 connection diagram; (b) sample code
for AND function (for ispGAL16V8

A second example of the use of a PLD introduces the concept of timing
diagrams. Figure 11.65 depicts a timing diagram related to an automotive fuel-
injection system, in which multiple injections are to be performed. Three pilot
injections and one primary injection are to be performed. The master control line
enables the entire sequence. The resulting output sequence, shown at the Page
592bottom of the plot and labeled “injector fuel pulse,” is the combination of the
three pilot pulses and the primary pulse. Based on the timing plot of the signals
shown in Figure 11.65(a), we use the following inputs: I11=master control, I12=pilot
inject #1, I13=pilot inject #2, I14=pilot inject #3, I14=primary inject, and the output
O14=injector fuel pulse. You should convince yourself that the required function is

I11 AND [I12 OR I13 OR I14 OR I14]



Figure 11.65 (a) Injector timing sequence; (b) sample code for multiple-
injection sequence

This function is realized by the code in Figure 11.65(b). Note that the symbol |
represents the logical function OR.

FOCUS ON MEASUREMENTS

EPROM-Based Lookup Table for Automotive Fuel-Injection System Control

One of the most common applications of EPROMs is an arithmetic lookup table,
which is used to store computed values of certain functions, eliminating the need to
compute the function. A practical application of this concept is present in every
automobile manufactured in the United States since the early 1980s, as part of the
exhaust emission control system. For the catalytic converter to minimize the
emissions of exhaust gases (especially hydrocarbons, oxides of nitrogen, and carbon



monoxide), it is necessary to maintain the air-to-fuel ratio A/F as close as possible to
the stoichiometric ratio of 14.7 parts of air for each part of fuel. Most modern
engines are equipped with fuel-injection systems that are capable of delivering
accurate amounts of fuel to each individual cylinder—thus, the task of maintaining
an accurate A/F amounts to measuring the mass of air that is aspirated into each
cylinder and computing the corresponding mass of fuel. Many automobiles are
equipped with a mass airflow sensor, capable of measuring the mass of air drawn
into each cylinder during each engine cycle. Let the output of the mass airflow sensor
be denoted by the variable MA, and let this variable represent the mass of air (in
grams) actually entering a cylinder during a particular stroke. It is then desired to
compute the mass of fuel MF (also expressed in grams) required to achieve an A/F of
14.7. This computation is simply

Although this computation is a simple division, its actual calculation in a low-
cost digital computer (such as would be used on an automobile) is rather
complicated. It would be much simpler to tabulate a number of values of MA, to
precompute the variable MF, and then to store the result of this computation in an
EPROM. If the EPROM address were made to correspond to the tabulated values of
air mass, and the content at each address to the corresponding fuel mass (according
to the precomputed values of the expression MF = MA/14.7), it would not be
necessary to perform the division by 14.7. For each measurement of air mass into one
cylinder, an EPROM address is specified and the corresponding content is read. The
content at the specific address is the mass of fuel required by that particular cylinder.

In practice, the fuel mass needs to be converted to a time interval corresponding
to the duration of time during which the fuel injector is open. This final conversion
factor can also be accounted for in the table. Suppose, for example, that the fuel
injector is capable of injecting KF g/s of fuel; then the time duration TF during which
the injector should be open to inject MF g of fuel into the cylinder is given by
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Therefore, the complete expression to be precomputed and stored in the EPROM is



Figure 11.66 illustrates this process graphically.

Figure 11.66 Use of EPROM lookup table in automotive fuel-injection
system

To provide a numerical illustration, consider a hypothetical engine capable of
aspirating air in the range 0 < MA < 0.51 g and equipped with fuel injectors capable
of injecting at the rate of 1.36 g/s. Thus, the relationship between TF and MA is

If the digital value of MA is expressed in decigrams (dg, or tenths of a gram), the
lookup table of Figure 11.67 can be implemented, illustrating the conversion
capabilities provided by the EPROM. Note that to represent the quantities of interest
in an appropriate binary format compatible with the 8-bit EPROM, the units of air
mass and of time have been scaled.

Figure 11.67 Lookup table for automotive fuel-injection application

CHECK YOUR UNDERSTANDING



1.

2.

Which combination of the control lines will select the data line D3 for a 4-to-1
MUX?

Show that an 8-to-1 MUX with eight data inputs (D0 through D7) and three control
lines (I0 through I2) can be used as a data selector. Which combination of the control
lines will select the data line D5?

Page 594

Which combination of the control lines will select the data line D4 for an 8-to-1
MUX?

CHECK YOUR UNDERSTANDING
How many address inputs do you need if the number of words in a memory array is
16?

11.6 LATCHES AND FLIP-FLOPS
A flip-flop is an elementary sequential logic gate. Various types of flip-flops exist;
however, all flip-flops share the following characteristics:

A flip-flop is a bistable device; that is, it can remain in one of two stable states
(0 and 1) until appropriate conditions cause it to change state. Thus, a flip-flop
can serve as a memory element.
A flip-flop has two outputs, one of which is the complement of the other.

Answers: To select D3 use I1I0 = 11; to select D5 use I2I1I0 = 101; to select
D4 use I2I1I0 = 100

Answer: Four



1.
2.
3.
4.

RS Flip-Flop
It is customary to depict flip-flops by their block diagram and their output by a name,
such as Q. Figure 11.68 represents the RS flip-flop, which has two inputs, denoted
by S and R, and two outputs Q and . The value at Q is called the binary output state
of the flip-flop. The two inputs R and S are used to change the state of the flip-flop,
according to the following rules:

When R = S = 0, Q remains unchanged from its present state.
When S = 1 and R = 0, the output is set such that Q = 1.
When S = 0 and R = 1, the output is reset such that Q = 0.
S and R are not permitted to be 1 simultaneously.

Figure 11.68 RS flip-flop symbol and truth table

A timing diagram is a convenient means of describing the transitions that occur
in the output of a flip-flop due to changes in its inputs. Figure 11.69 depicts a table of
transitions for an RS flip-flop Q as well as the corresponding timing diagram.



Figure 11.69 Timing diagram for the RS flip-flop

It is important to note that the RS flip-flop is level-sensitive. This means that the
set and reset operations are completed only after the R and S inputs have reached the
appropriate levels. Thus, in Figure 11.69 the transitions in the Q output occur with a
small delay relative to the transitions in the R and S inputs.

Figure 11.70 illustrates how an RS flip-flop could be constructed from two
inverters and two NAND gates. Consider the case when S = R = 0 such that 

. Then the result of each NAND gate is determined entirely by  and Q.
That is, when one input to a NAND gate is set high to 1, the output of that NAND
gate is the inversion of the other input (refer to the NAND gate truth table in Chapter
11). Thus, when S = R = 0, the outputs of the two Page 595NAND gates in Figure
11.70 are simply  and . In other words, the output states of the RS flip-flop
remain unchanged from their prior states whenever S and R are both set low to 0.

Figure 11.70 NAND gate implementation of the RS flip-flop

When S is set high to 1, the output of the upper NAND gate Q is also set high to
1. Why? Because when S is set high to 1,  is set low to 0, and when one input to a
NAND gate is low, the output of the NAND gate is high regardless of the state of the
other input. Likewise, when R is set high to 1,  is set high to 1.

The only difficulty with the RS flip-flop occurs when both S and R are set high to
1. Clearly, it is an inherent contradiction to suppose that both Q and  are both set
high to 1 at any point in time. Why? Because  is, by definition, the inversion of Q.



Thus, S = R = 1 is not allowed. The RS flip-flop cannot be both set and reset at the
same time. In practice, one could set S = R = 1, but the output will be unstable.

As is true for any logic network, it is possible to find alternate formulations of the
RS flip-flop. One of De Morgan’s laws states that a NAND gate is equivalent to an
OR gate with inverted inputs. Make this replacement in Figure 11.70, and note that
both S and R are now inverted twice prior to their OR gates. That is, two of the OR
gate inputs are S and R. Of course, the other two OR gate inputs  and Q are also
inverted. These two inversions could just as well occur at the outputs of the OR
gates. In other words, the two OR gates become two NOR gates with inputs S + Q
and , as shown in Figure 11.71.

Figure 11.71 NOR gate implementation of the RS flip-flop

Figure 11.72 shows the same two-NOR-gate implementation of the RS flip-flop,
but with an enable input E connected to two AND gates such that the R or S inputs
will be effective only when E = 1. The enable input is often a clock signal used to
synchronize other inputs.

Figure 11.72 The RS flip-flop with enable, preset, and clear lines: (a) logic
diagram, (b) example timing diagram



Figure 11.72 also illustrates two additional features: the preset P and clear C
functions. These features have no effect when set low to 0. However, when P is set
high to 1, the output of the upper NOR gate  is set low to 0 and, thus, Q is set high
to 1. Notice that the preset is not controlled by the enable input. P = 1 always results
in Q = 1. Likewise, when C is set high to 1, the output of the lower NOR gate Q is set
low to 0. Again, notice that the clear is not controlled by the enable input. For this
reason, the preset and clear are said to be asynchronous. It is important to realize
that P = C = 1 is not allowed. The timing diagram of Figure 11.72 illustrates the role
of the enable, preset, and clear inputs. Notice that transitions due to S and R occur
only after E is set high, whereas the effects of P and C are independent of E. The
Page 596flip-flop can be designed so that the P and C inputs are also controlled by E;
in fact, many commercial flip-flops are designed this way so that all inputs are
synchronized with E.

Another extension of the RS flip-flop, called a data latch, or delay, is shown in
Figure 11.73. In this circuit,  such that when E = 1, Q = D. When E is set low to
0, the output Q does not change but retains its value until E is set high again. In other
words, Q is latched when E is set low and unlatched when E is set high. The timing
diagram illustrates that this effect also delays the impact of D on Q until the next time
E is set high.

Figure 11.73 Data latch and associated timing diagram
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D Flip-Flop
The D flip-flop is an extension of the data latch that utilizes two RS flip-flops, as
shown in Figure 11.74(a), and a clock signal to drive their enable inputs. Note that



the clock is inverted prior to E1 such that the latch is enabled when the clock goes
low. However, since Q2 is disabled when the clock is low, the output of the D flip-
flop will not switch to the 1 state until the clock subsequently goes high to enable the
second latch and transfer the state of Q1 to Q2.

Figure 11.74 The D flip-flop: (a) functional diagram; (b) device symbol;
(c) timing waveforms; and (d) IC schematic.

It is important to note the triangular “knife-edge” symbol shown at the CLK input
in Figure 11.74(b). This symbol indicates that the D flip-flop changes state only on a
positive clock transition; that is, a transition from low to high. Internally, Q1 is set on
a negative transition, whereas Q2 (and therefore Q) is set on a positive transition, as
shown in Figure 11.74(c). Thus, this particular D flip-flop is said to be positive edge–
triggered, or leading edge–triggered, as indicated in the following truth table:



•

•

•

•

where the symbol ↑ indicates a positive transition.
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JK Flip-Flop
The symbol and truth table of the JK flip-flop are shown in Figure 11.75. The bubble
at the clock input signifies it is negative or trailing edge–triggered. Its operating
rules are:

When J and K are both low, no change occurs in the state of the flip-flop.

When J = 0 and K = 1, the flip-flop is reset to 0.

When J = 1 and K = 0, the flip-flop is set to 1.

When both J and K are high, the flip-flop will toggle between states at every
negative transition of the clock input, denoted by the symbol ↓.

Figure 11.75 Truth table for the JK flip-flop

The operation of the JK flip-flop can also be explained in terms of two RS flip-
flops as shown in Figure 11.76. When the clock transitions from low to high, the



master is enabled; however, the slave does not receive the master outputs until it is
enabled during a negative clock transition. This behavior is similar to that of an RS
flip-flop, except for the J = 1, K = 1 condition, which is allowed and results in the
outputs being toggled.

Figure 11.76 The JK flip-flop; (a) functional diagram; and (b) IC
schematic.

The JK flip-flop is also known as the universal flip-flop because it can be
configured to behave as an RS or D flip-flop. When both inputs are 0, the outputs
remain in their previous state during a clock transition; when one input is high and
the other is low, the outputs behave as they do for an RS flip-flop. When the inputs
are set so that , the outputs behave as a D flip-flop. When the inputs are set so
that K = J, the outputs behave as a T flip-flop, which is described in Example 11.22.
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EXAMPLE 11.21 RS Flip-Flop Timing Diagram
Problem

Determine the output of an RS flip-flop for the series of inputs given in the table
below.



Solution
Known Quantities: RS flip-flop truth table (Figure 11.68).
Find: Output Q of RS flip-flop.
Analysis: We complete the timing diagram for the RS flip-flop, following the rules
stated earlier to determine the output of the device; the result is summarized below.

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions.

EXAMPLE 11.22 The T Flip-Flop
Problem

Determine the truth table and timing diagram of the T flip-flop of Figure 11.77. Note
that the T flip-flop is a JK flip-flop with its inputs tied together.



Figure 11.77 The T flip-flop symbol and timing waveforms
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Solution
Known Quantities: JK flip-flop truth table (see Figure 11.75).
Find: Truth table and timing diagram for T flip-flop.
Analysis: The T flip-flop is a JK flip-flop with K = J. Thus, the flip-flop will need
only a two-element truth table to describe its operation, corresponding to the top and
bottom entries in the JK flip-flop truth table of Figure 11.75. The truth table is shown
below. A timing diagram is also included in Figure 11.77.

Comments: The T flip-flop takes its name from the fact that it toggles between the
high and low states. Note that the toggling frequency is one-half that of the clock.
Thus the T flip-flop also acts as a divide-by-2 counter.

EXAMPLE 11.23 The JK Flip-Flop Timing Diagram
Problem

Determine the output of a JK flip-flop for the series of inputs given in the table
below. The initial state of the flip-flop is Q0 = 1.

Solution
Known Quantities: JK flip-flop truth table (see Figure 11.75).
Find: Output of JK flip-flop Q as a function of the input transitions.



Analysis: Complete the timing diagram for the JK flip-flop, using the rules of Figure
11.75.

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions. Each vertical line corresponds to a clock transition.

Comments: How would the timing diagram change if the initial state of the flip-flop
were Q0 = 1?
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CHECK YOUR UNDERSTANDING
Derive the detailed truth table and draw a timing diagram for the JK flip-flop, using
the model of Figure 11.76 with two flip-flops. Include each unique internal input in
the table and timing diagram.

11.7 DIGITAL COUNTERS AND REGISTERS
One of the more immediate applications of flip-flops is in the design of counters. A
counter is a sequential logic device that can take one of N possible states, stepping
through these states in a sequential fashion. When the counter has reached its last
state, it resets to 0 and is ready to start counting again. For example, a 3-bit binary
up counter would have 23 = 8 possible states and might appear as shown in the
functional block of Figure 11.78. The clock input steps the counter through the eight
states, one transition per clock pulse. This particular counter also has a reset input,
which can force the counter outputs low: b2b1b0 = 000.



Figure 11.78 Binary up counter functional representation, state table, and
timing waveforms

Although binary counters are very useful in many applications, one is often
interested in a decade counter, that is, a counter that counts from 0 to 9 and then
Page 602resets. A 4-bit binary counter can easily be configured in principle to
provide this function by means of simple logic that resets the counter when it has
reached the count 10012 = 910. As shown in Figure 11.79, if bits b3 and b1 are tied to
a four-input AND gate, along with  and , the output of the AND gate will reset
the counter when the count reaches 10. Additional logic can provide a carry bit
whenever a reset condition is reached, could be passed along to another decade
counter, enabling counts up to 99. Decade counters can be cascaded to represent any
series of decimal digits.



Figure 11.79 Decade counter: (a) counting sequence; (b) functional
diagram; and (c) IC schematic

Although the decade counter of Figure 11.79 is attractive because of its
simplicity, this configuration would never be used in practice, because of
propagation delays, which are due to the finite response time of the internal
transistors. In general, propagation delays are not the same for any two gates or flip-
flops. Thus, if the reset signal—which is presumed to be applied at exactly the same
time to each of the four JK flip-flops in the 4-bit binary counter—does not cause the
flip-flops to reset at exactly the same time, then the binary word appearing at the
output of the counter will change from 1001 to some other number, and the output of
the four-input NAND gate will no longer be high. In such a condition, the flip-flops
that have not already reset will then not be able to reset, and the counting sequence
will be compromised. This problem can be addressed with the aid of state transition
diagrams, which are discussed in the next section.

An implementation of a 3-bit binary ripple counter is shown in Figure 11.80. Its
transition table illustrates how the Q output of each stage becomes the clock input to
the next stage, while each flip-flop is held in the toggle mode. The output transitions
assume that the clock (CLK) is a simple square wave (all JKs are negative edge–
triggered).

Figure 11.80 Ripple counter



This 3-bit ripple counter can be used to provide a divide-by-8 counter by
connecting the outputs to an AND gate, as shown in Figure 11.81. The result is one
output pulse for every eight clock pulses. Note that the clock input signal is also
connected to the AND gate to synchronize the output. This application of ripple
counters is further illustrated in Example 11.24.
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Figure 11.81 Divide-by-8 circuit

A slightly more complex version of the binary counter is the synchronous
counter, in which the input clock drives all the flip-flops simultaneously. Figure
11.82 depicts a 3-bit synchronous counter. In this figure, we have chosen to represent
each flip-flop as a T flip-flop. The clocks to all the flip-flops are incremented
simultaneously. The reader should verify that Q0 toggles to 1 first, and then Q1
toggles to 1, and that the AND gate ensures that Q2 will toggle only after Q0 and Q1
have both reached the 1 state .

Figure 11.82 Three-bit synchronous counter

Other common counters are the ring counter, illustrated in Example 11.25, and
the up-down counter, which has an additional select input that determines whether
the counter counts up or down.
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FOCUS ON MEASUREMENTS

Digital Measurement of Angular Position and Velocity
Another type of angular position encoder, besides the angular encoder in the Focus
on Measurements box, “Digital Position Encoders,” is the slotted encoder shown in
Figure 11.83. This encoder can be used in conjunction with a pair of counters and a
high-frequency clock to determine the speed of rotation of the slotted wheel. As
shown in Figure 11.84, a clock of known frequency is connected to a counter while
another counter records the number of slot pulses detected by an optical slot detector
as the wheel rotates. Dividing the counter values, one could obtain the speed of the
rotating wheel in radians per second. For example, assume a clocking frequency of
1.2 kHz. If both counters are started at zero and at some instant the timer counter
reads 3,050 and the encoder counter reads 2,850, then the speed of the rotating
encoder is found to be

and



Figure 11.83 Slotted wheel for position encoder

Figure 11.84 Calculating the speed of rotation of the slotted wheel

If this encoder is connected to a rotating shaft, it is possible to measure the
angular position and velocity of the shaft. Such shaft encoders are used in measuring
the speed of rotation of electric motors, machine tools, engines, and other rotating
machinery.

A typical application of the slotted encoder is to compute the ignition and
injection timing in an automotive engine. In an automotive engine, information
related to speed is Page 605obtained from the camshaft and the flywheel, which have
known reference points. The reference points determine the timing for the ignition
firing points and fuel-injection pulses and are identified by special slot patterns on
the camshaft and crankshaft. Two methods are used to detect the special slots
(reference points): period measurement with additional transition detection (PMA)
and period measurement with missing transition detection (PMM). In the PMA
method, an additional slot (reference point) determines a known reference position
on the crankshaft or camshaft. In the PMM method, the reference position is
determined by the absence of a slot. Figure 11.85 illustrates a typical PMA pulse
sequence, showing the presence of an additional pulse. The additional slot may be
used to determine the timing for the ignition pulses relative to a known position of
the crankshaft. Figure 11.86 depicts a typical PMM pulse sequence. Because the
period of the pulses is known, the additional slot or the missing slot can be easily
detected and used as a reference position. How would you implement these pulse
sequences, using ring counters?



Figure 11.85 PMA pulse sequence

Figure 11.86 PMM pulse sequence

Registers
A register consists of a cascade of flip-flops that can store binary data, 1 bit in each
flip-flop. The simplest type of register is the parallel input–parallel output register
shown in Figure 11.87. In this register, the load input pulse, which acts on all clocks
simultaneously, causes the parallel inputs b0b1b2b3 to be transferred to the respective
flip-flops. The D flip-flop employed in this register allows the transfer from bn to Qn
to occur very directly. Thus, D flip-flops are very commonly used in this type of
application. The binary word b3b2b1b0 is now “stored,” each bit being represented by
the state of a flip-flop. Until the load input is applied again and a new word appears
at the parallel inputs, the register will preserve the stored word.

Figure 11.87 A 4-bit parallel register
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The construction of the parallel register presumes that the N-bit word to be stored
is available in parallel form. However, often a binary word will arrive in serial form,
that is, 1 bit at a time. A register that can accommodate this type of logic signal is
called a shift register. Figure 11.88 illustrates how the same basic structure of the
parallel register applies to the shift register, except that the input is now applied to the
first flip-flop and shifted along at each clock pulse. Note that this type of register
provides both a serial and a parallel output.

Figure 11.88 A 4-bit shift register

FOCUS ON MEASUREMENTS

Seven-Segment Display
A seven-segment display is a very convenient device for displaying digital data. The
display is shown in Figure 11.89. Operation of a seven-segment display requires a
decoder circuit to light the proper combinations of segments corresponding to the
desired decimal digit.



Figure 11.89 Seven-segment display

A typical BCD to seven-segment decoder function block is shown in Figure
11.90, where the lowercase letters correspond to the segments shown in Figure 11.89.
The decoder features four data inputs (A, B, C, D), which are used to light the
appropriate segment(s). The outputs of the decoder are connected to the seven-
segment display. The decoder will light up the appropriate segments corresponding to
the incoming value. A BCD to seven-segment decoder function is similar to the 2-to-
4 decoder function.

Figure 11.90 BCD inputs and outputs of seven-segment decoder
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EXAMPLE 11.24 Divider Circuit
Problem



A binary ripple counter provides a means of dividing the fixed output rate of a clock
by powers of 2. For example, the circuit of Figure 11.91 is a divide-by-2 or divide-
by-4 counter. Draw the timing diagrams for the clock input Q0 and Q1 to demonstrate
these functions.

Figure 11.91

Solution
Known Quantities: JK flip-flop truth table (Figure 11.75).
Find: Output of each flip-flop Q as a function of the input clock transitions.
Assumptions: Assume positive edge–triggered devices. The DC supply voltage is
VCC.

Analysis: Following the timing diagram of Figure 11.92, we see that Q0 switches at
one-half the frequency of the clock input, and that Q1 switches at one-half the
frequency of Q0, hence the timing diagram shown.

Figure 11.92 Divider circuit timing diagram



EXAMPLE 11.25 Ring Counter
Problem

Draw the timing diagram for the ring counter of Figure 11.93.

Solution
Known Quantities: JK flip-flop truth table (Figure 11.75).
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Figure 11.93 Ring counter

Find: Output of each flip-flop Q as a function of the input clock transitions.
Assumptions: The JK flip-flops are positive edge–triggered, and the Init line is set
high to 1 until after the first positive edge transition of the clock. Then, the Init line is
immediately set low to 0.
Analysis: The first positive clock transition will set Q3 = 1 and reset the other three
flipflops to Q2 = Q1 = Q0 = 0. At the second positive clock transition, Q3 = 1 such
that the second flip-flop is set high to Q2 = 1. Both Q1 and Q0 remain unchanged and
Q3 is reset low to 0. The pattern continues, causing the 1 state to ripple from left to
right over and over again.



Comments: The shifting behavior of the ring counter is implemented in the shift
registers discussed in the following section.

CHECK YOUR UNDERSTANDING
The speed of the rotating encoder of the Focus on Measurements box, “Digital
Measurement of Angular Position and Velocity,” is found to be 9,425 rad/s. The
encoder timer reads 10, and the clock counter reads 300. Assuming that both the
timer counter and the encoder counter started at zero, find the clock frequency.
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11.8 SEQUENTIAL LOGIC DESIGN
The design of sequential circuits, just like the design of combinational circuits, can
be carried out by means of a systematic procedure. A state diagram and its
associated state transition table describe the logic states and their interrelationships
required of the system design. Consider the 3-bit binary counter of Figure 11.94,
which is made up of three T flip-flops. You can easily verify that the input equations
for this counter are T1 = 1, T2 = q1, and T3 = q1q2. Knowing the inputs, the three
outputs can be determined at any moment. The outputs Q1, Q2, and Q3 form the state
of the machine. It is straightforward to show that as the clock goes through a series of
cycles, the counter will go through the transitions shown in Table 11.14, where we
indicate the current state by lowercase q and the next state by an uppercase Q. Note
that the state diagram of Figure 11.94 provides information regarding the sequence of
states assumed by the counter in graphical form. In a state diagram, each state is
denoted by a circle called a node, and the transition from one state to another is
indicated by a directed edge, that is, a line with a directional arrow. The analysis of
sequential circuits consists of determining either their transition table or their state
diagram.

Answer: 45 kHz



Table 11.14 State transition table for 3-bit binary counter

Figure 11.94 A 3-bit binary counter and state diagram

The reverse of this analysis process is the design process. That is, how can one
systematically design a sequential circuit, such as a counter, by employing state
transition tables and state diagrams?
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The initial design specification for a logic circuit is usually in the form of either a
transition table or a state diagram. The goal of the design process is to identify one
logic circuit, among many that matches those specifications. Remember that there is
no single unique implementation for a given set of output specifications. Therefore,
the first step is to select a flip-flop and use its truth table characteristics to define its
excitation table. The truth and excitation tables for the RS, D, and JK flip-flops are
given in Tables 11.15, 11.16, and 11.17, respectively.

Table 11.15 Truth table and excitation table for RS flip-flop



Table 11.16 Truth table and excitation table for D flip-flop

Table 11.17 Truth table and excitation table for JK flip-flop

The use of excitation tables will now be demonstrated in the design of a modulo-
4 binary up-down counter. The phrase “modulo-4 binary” indicates that the counter
output is limited to the integers 0 to 3 represented in binary form; that is, in bits. Of



course, these four integers can be completely represented by 2 bits. The phrase “up-
down” indicates that the counter will increment or decrement its output depending
upon the value of a single bit input, which will be high or low (1 or 0) to increment
or decrement the output, respectively. Figure 11.95 shows the state diagram for this
counter, where a clockwise or counterclockwise progression is an increment or
decrement, respectively. One flip-flop is required to produce the states (Q = 0 and Q
= 1) of each of the two output bits. For this example design, choose two RS flip-flops
and begin constructing the state transition table shown in Page 611Table 11.18. Note
immediately that for a device with a single bit input and a double bit output there are
eight distinct combinations of inputs and outputs. The first five columns of Table
11.18 specify the desired next state Q1Q2 for each possible input x and current state
q1q2. Notice that the information in these first five columns matches the information
presented in Figure 11.95.

Figure 11.95 State diagram of a modulo-4 binary up-down counter

Table 11.18 State transition table for modulo-4 binary up-down counter

Next, match the values of each output pair (Qt, Qt+1) found in the RS flip-flop
excitation table to each of the two pairs of counter outputs (q1, Q1) and (q2, Q2) to
determine the RS input pairs (S1, R1) and (S2, R2). For example, the first row of the



counter’s state transition table is developed by matching (q1 = 0, Q1 = 1) to the
second row of the RS excitation table where (Qt = 0, Qt+1 = 1). Thus, the RS input
pair (S1 = 1, R1 = 0) will produce the desired relationship between the current state
variable q1 and the next state variable Q1. For the same first row of the state
transition table, since q2 = q1 = 0 and Q2 = Q1 = 1, the other RS input pair must also
be (S2 = 1, R2 = 0). The other rows of the state transition table are filled out in exactly
the same manner. A d in the table represents a don’t-care condition. Remember that
for this counter x = 0 indicates a decrement and x = 1 indicates an increment.

At this point, the required logic circuit can be determined using combinational
logic tools, such as the Karnaugh maps of Figure 11.96. Verify that the following
expressions can be obtained from those maps.

Figure 11.96 Karnaugh maps for flip-flop inputs in modulo-4 counter

The complete design is shown in Figure 11.97.



1.
2.

3.

Figure 11.97 Implementation of modulo-4 counter

Programmable Logic Controllers
Sequential logic designs and state machines are found in programmable logic
controllers, or PLCs, which are finite-state machines that are used in a variety of
industrial applications to implement logic functions. For example, machining,
packaging, material handling, and automated assembly are some of the example
applications in which these systems are encountered. PLCs are specialized computers
that are very effective at executing a series of complex logical decisions.
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Conclusion
This chapter contains an overview of digital logic circuits. These circuits form the
basis of all digital computers, and of most electronic devices used in industrial and
consumer applications. Upon completing this chapter, you should have mastered the
following learning objectives:

Understand the concepts of analog and digital signals and of quantization.
Convert between decimal and binary number systems and use the hexadecimal
system and BCD and Gray codes. The binary and hexadecimal systems form the
basis of numerical computing.
Write truth tables, and realize logic functions from truth tables using logic gates.
Boolean algebra permits the analysis of digital circuits through a relatively



4.

5.

6.

7.

8.

11.1
a.

b.

c.

d.

e.

11.2

simple set of rules. Digital logic gates are the means through which one can
implement logic functions; truth tables permit the easy visualization of logic
functions and can aid in the realization of these functions by using logic gates.
Systematically design logic functions using Karnaugh maps. The design of logic
circuits can be systematically approached by using an extension of truth tables
called the Karnaugh map. Karnaugh maps facilitate the simplification of logic
expressions and their realization through logic gates in either sum-of-products or
product-of-sums form.
Study various combinational logic modules, including multiplexers, memory and
decoder elements, and programmable logic arrays. Practical digital logic circuits
rarely consist of individual logic gates; gates are usually integrated into
combinational logic modules that include memory elements and gate arrays.
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Analyze the operation of flip-flops and latches, which are the building blocks of
a sequential logic circuits. Feedback from outputs to inputs creates outputs
whose future values depend upon their present values. In other words, these
circuits possess memory. The operation flip-flops and latches are described by
state transition tables and state diagrams.
Understand the operation of digital counters and registers. Counters are a very
important class of digital circuits and are based on sequential logic elements.
Registers are the most fundamental form of random-access memory (RAM).
Design simple sequential circuits using state transition diagrams. Sequential
circuits can be designed using formal design procedures employing state
diagrams.

HOMEWORK PROBLEMS
Section 11.2: The Binary Number System

Convert the following base-10 numbers to hexadecimal and binary:

303

275

18

43

87

Convert the following hexadecimal numbers to base-10 and binary:



a.

b.

c.

d.

e.

11.3
a.

b.

c.

d.

11.4
a.

b.

c.

d.

e.

e.

11.5
a.

b.

c.

11.6
a.

b.

c.

11.7

a.

b.

C
44

28

59

14

Convert the following base-10 numbers to binary:

231.45

58.78

21.22

93.375

Convert the following binary numbers to hexadecimal and base 10:

1101

1000100

1111100

1110000

10000

101010

Perform the following additions, all in the binary system:

10101111 + 10100

111100001 + 111000

111001011 + 111001

Perform the following subtractions, all in the binary system:

11010001 − 11100

11111100 − 101010

100110110 − 1001100

Assuming that the most significant bit is the sign bit, find the decimal value of
the following sign-magnitude form 8-bit binary numbers:

10100111

01010110



c.

11.8

a.

b.

c.

d.

11.9
a.

b.

c.

d.

11.10
a.

b.

11.11
11.12

11.13

11.14

11111100

Find the sign-magnitude form binary representation of the following decimal
numbers:

122

−110

−87

40

Find the twos complement of the following binary numbers:

1110

1100101

1110000

11100

Assuming you have 10 fingers, including thumbs:

How high can you count on your fingers in a binary (base 2) number
system?

How high can you count on your fingers in base 6, using one hand to
count units and the other hand for the carries?

Section 11.3: Boolean Algebra and Logic Gates
Use the truth table to prove that 

Realize the logic function:

using the logic gates and compute the truth table.

Using the method of proof by perfect induction, show that

Simplify the expression

using boolean algebra, and then draw the logic circuit using logic gates.
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11.15

11.16

11.17

11.18

11.19

Simplify the expression

using the boolean algebra.

Simplify the expression

using the boolean algebra.

Find the logic function defined by the truth table given in Figure P11.17.

Figure P11.17

Determine the boolean function describing the operation of the circuit shown
in Figure P11.18 and simplify it using boolean algebra.

Figure P11.18

Use a truth table to show when the output of the circuit of Figure P11.19 is 1.



11.20

a.

b.

c.

11.21

11.22

Figure P11.19

Baseball is a complicated game, and often the manager has a difficult time
keeping track of all the rules of thumb that guide decisions. To assist your
favorite baseball team, you have been asked to design a logic circuit that will
flash a light when the manager should give the steal sign. The rules have been
laid out for you by a baseball fan with limited knowledge of the game as
follows: Give the steal sign if there is a runner on first base and

There are no other runners, the pitcher is right-handed, and the runner is
fast; or

There is one other runner on third base, and one of the runners is fast; or

There is one other runner on second base, the pitcher is left-handed, and
both runners are fast.

Under no circumstances should the steal sign be given if all three bases have
runners. Design a logic circuit that implements these rules to indicate when
the steal sign should be given.

A small county board is composed of three commissioners. Each
commissioner votes on measures presented to the board by pressing a button
indicating whether the commissioner votes for or against a measure. If two or
more commissioners vote for a measure, it passes. Design a logic circuit that
takes the three votes as inputs and lights either a green or a red light to
indicate whether a measure passed.

A water purification plant uses one tank for chemical sterilization and a
second, larger tank for settling and aeration. Each tank is equipped with two
sensors that measure the height of water in each tank and the flow rate of
water into each tank. When the height of water or the flow rate is too high,
the sensors produce a logic high output. Design a logic circuit that sounds an
alarm whenever the height of water in both tanks is too high and either of the
flow rates is too high, or whenever both flow rates are too high and the height
of water in either tank is also too high.



11.23

11.24

11.25

a.

b.

11.26

11.27

Many automobiles incorporate logic circuits to alert the driver to problems or
potential problems. In one particular car, a buzzer is sounded whenever the
ignition key is turned and either a door is open or a seat belt is not fastened.
The buzzer also sounds when the key is not turned but the lights are on. In
addition, the car will not start unless the key is in the ignition, the car is in
park, and all doors are closed and seat belts fastened. Design a logic circuit
that takes all the inputs listed and sounds the buzzer and starts the car when
appropriate.
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An on/off start-up signal governs the compressor motor of a large commercial
air conditioning unit. In general, the start-up signal should be on whenever
the output of a temperature sensor S exceeds a reference temperature.
However, you are asked to limit the compressor start-ups to certain hours of
the day and also enable service technicians to start up or shut down the
compressor through a manual override. A time-of-day indicator D is available
with on/off outputs, as is a manual override switch M. A separate timer T
prohibits a compressor start-up within 10 min of a previous shutdown. Design
a logic diagram that incorporates the state of all four devices (S, D, M, and T)
and produces the correct on/off condition for the motor start-up.

NAND gates require one less transistor than AND gates. They are often used
exclusively to construct logic circuits. One such logic circuit that uses three-
input NAND gates is shown in Figure P11.25.

Determine the truth table for this circuit.

Give the logic equation that represents the circuit (you do not need to
reduce it).

Figure P11.25

Draw a logic circuit that will accomplish the equation:

The circuit shown in Figure P11.27 is called a half adder for two single bit
inputs, giving a two-bit sum as outputs. Build a truth table and verify that it



11.28

11.29

11.30

11.31

indeed acts as a summer.

Figure P11.27

Draw a logic circuit that will accomplish the equation

Determine the truth table (F given A, B, C, and D) and the logical expression
for the circuit of Figure P11.29.

Figure P11.29

Determine the truth table (F given A, B, and C) and the logical expression for
the circuit of Figure P11.30.

Figure P11.30

A “vote taker” logic circuit forces its output to agree with a majority of its
inputs. Such a circuit is shown in Figure P11.31 for the three voters, A, B, and



11.32

11.33

11.34

C. Write the logic expression for the output of this circuit in terms of its
inputs. Also create a truth table for the output in terms of the inputs.

Figure P11.31
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A “consensus indicator” logic circuit is shown in Figure P11.32. Write the
logical expression for the output of this circuit in terms of its input. Also
create a truth table for the output in terms of the inputs.

Figure P11.32

A half-adder circuit is shown in Figure P11.33. Write the logical expression
for the outputs of this circuit in terms of its inputs. Also create a truth table
for the outputs in terms of the inputs.

Figure P11.33

For the logic circuit shown in Figure P11.34, write the logical expression for
the outputs of this circuit in terms of its inputs, and create a truth table for the
outputs in terms of the inputs, including any required intermediate variables.



11.35

11.36

11.37
a.

b.

Figure P11.34

For the logic circuit in Figure P11.35, write the logical expression for the
outputs of this circuit in terms of its inputs, and create a truth table for the
outputs in terms of the inputs, including any required intermediate variables.

Figure P11.35

Determine the minimum expression for the following logic function,
simplifying the expression:

Complete the truth table for the circuit of Figure P11.37.

What mathematical function does this circuit perform, and what do the
outputs signify?

How many standard 14-pin ICs would it take to construct this circuit?

Figure P11.37

Section 11.4: Karnaugh Maps and Logic Design



11.38

11.39

11.40

11.41
11.42

Find the logic function corresponding to the truth table of Figure P11.38 in
the simplest sum-of-products form.

Figure P11.38

Find the minimum expression for the output of the logic circuit shown in
Figure P11.39.
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Figure P11.39

Build the Karnaugh map of the function  and verify it using boolean
algebra.

Use a Karnaugh map to minimize the function 

Fill in the Karnaugh map for the function  defined by the truth table
of Figure P11.42, and find the minimum expression for the function.

Figure P11.42



11.43

11.44

11.45

11.46

11.47
11.48

A function F is defined such that it equals 1 when a 4-bit input code is
equivalent to any of the decimal numbers 3, 6, 9, 12, or 15. Function F is 0
for input codes 0, 2, 8, and 10. Other input values cannot occur. Use a
Karnaugh map to determine a minimal expression for this function. Design
and sketch a circuit to implement this function, using only AND and NOT
gates.

Design the circuit of the function  described in Figure P11.44.

Figure P11.44

Design a logic circuit that will produce the ones complement of an 8-bit
signed binary number.

Construct the Karnaugh map for the logic function defined by the truth table
of Figure P11.46, and find the minimum expression for the function.

Figure P11.46

Use a Karnaugh map to minimize the function 

Find the minimum output expression for the circuit of Figure P11.48.



11.49
11.50

11.51

11.52

Figure P11.48

Design a combinational logic circuit that will add two 4-bit binary numbers.

Minimize the expression described in the truth table of Figure P11.50, and
draw the circuit.

Figure P11.50

Find the minimum expression for the output of the logic circuit of Figure
P11.51.
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Figure P11.51

The objective of this problem is to design a combinational logic circuit that
will aid in determination of the acceptability of emergency blood
transfusions. It is known that human blood can be categorized into four types:
A, B, AB, and O. Persons with type A blood can donate to both A and AB
types and can receive blood from both A and O types. Persons with type B
blood can donate to both B and AB types and can receive from both B and O
types. Persons with type AB blood can donate only to type AB but can
receive from any type. Persons with type O blood can donate to any type but
can receive only from type O. Make appropriate variable assignments, and
design a circuit that will approve or disapprove any particular transfusion
based on these conditions.



11.53

11.54

a.

b.

c.

11.56

11.55

Find the minimum expression for the logic function at the output of the logic
circuit of Figure P11.53.

Figure P11.53

Determine the minimum boolean logic expression associated with the
Karnaugh map in Figure P11.54 and create (realize) the logic circuit.

Figure P11.54

Construct a Karnaugh map associated with the truth table of Figure
P11.55.

What is the minimum expression for the function?

Draw the logic circuit, using AND, OR, and NOT gates.

Figure P11.55

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.56. What is the minimum expression for the function?



11.57

11.58

a.

b.

c.

Figure P11.56

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.57. What is the minimum expression for the function? Realize the
function using only NAND gates.

Figure P11.57
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Design a circuit with a 4-bit input representing the binary number A3 A2 A1
A0. The output should be 1 if the input value is divisible by 3. Assume that
the circuit is to be used only for the digits 0 through 9 (thus, values for 10 to
15 can be don’t-care conditions).

Draw the Karnaugh map and truth table for the function.

Determine the minimum expression for the function.

Draw the circuit, using only AND, OR, and NOT gates.



11.59

11.60

11.61

11.62

11.63

Find the simplified sum-of-products representation of the function from the
Karnaugh map shown in Figure P11.59. Note that x is the don’t care term.

Figure P11.59

Can the circuit for Problem 11.54 be simplified if it is known that the input
represents a BCD (binary-coded decimal) number, that is, if it can never be
greater than 910? If not, explain why not. Otherwise, design the simplified
circuit.

Find the simplified sum-of-products representation of the function from the
Karnaugh map shown in Figure P11.61.

Figure P11.61

One method of ensuring reliability in data transmission systems is to transmit
a parity bit along with every nibble, byte, or word of binary data transmitted.
The parity bit confirms whether an even or odd number of 1s were
transmitted in the data. In even-parity systems, the parity bit is set to 1 when
the number of 1s in the transmitted data is odd. Odd-parity systems set the
parity bit to 1 when the number of 1s in the transmitted data is even. Assume
that a parity bit is transmitted for every nibble of data. Design a logic circuit
that checks the nibble of data and transmits the proper parity bit for both
even- and odd-parity systems.

Assume that a parity bit is transmitted for every nibble of data. Design two
logic circuits that check a nibble of data and its parity bit to determine if there



11.64

11.65

11.66

11.67

11.68

11.69

may have been a data transmission error. Assume first an even-parity system,
then an odd-parity system.

Design a logic circuit that takes a 4-bit Gray code input from an optical
encoder and translates it into two 4-bit nibbles of BCD.

Design a logic circuit that takes a 4-bit Gray code input from an optical
encoder and determines if the input value is a multiple of 3.

The 4221 code is a base 10–oriented code that assigns the weights 4221 to
each of 4 bits in a nibble of data. Design a logic circuit that takes a BCD
nibble as input and converts it to its 4221 equivalent. The logic circuit should
also report an error in the BCD input if its value exceeds 1001.

The 4-bit digital output of each of two sensors along an assembly line
conveyor belt is proportional to the number of parts that pass by on the
conveyor belt in a 30-s period. Design a logic circuit that reports an error if
the outputs of the two sensors differ by more than one part per 30-s period.

Section 11.5: Combinational Logic Modules
A function F is defined such that it equals 1 when a 4-bit input code is
equivalent to any of the decimal numbers 3, 6, 9, 12, or 15. F is 0 for input
codes 0, 2, 8, and 10. Other input values cannot occur. Use a Karnaugh map
to determine a minimal expression for this function. Design and sketch a
circuit to implement this function using only AND and NOT gates.

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.69. What is the minimum expression for the function? Realize the
function using a 1-of-8 multiplexer.
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Figure P11.69



11.70

11.71

11.72

Fill in the truth table for the multiplexer circuit shown in Figure P11.70. What
binary function is performed by these multiplexers?

Figure P11.70

The circuit of Figure P11.71 can operate as a 4-to-16 decoder. Terminal EN
denotes the enable input. Describe the operation of the 4-to-16 decoder. What
is the role of logic variable A?

Figure P11.71

Show that the circuit given in Figure P11.72 converts 4-bit binary numbers to
4-bit Gray code.



11.73

a.

b.

11.74

11.75

11.76

11.77

a.

b.

Figure P11.72

Suppose one of your classmates claims that the following boolean
expressions represent the conversion from 4-bit Gray code to 4-bit binary
numbers:

Show that your classmate’s claim is correct.

Draw the circuit that implements the conversion.

Select the proper inputs for a four-input multiplexer to implement the
function . Assume inputs I0, I1, I2, and I3 correspond to

, and AB, respectively, and that each input may be , or C.

Select the proper inputs for an 8-bit multiplexer to implement the function 
. Assume the inputs I0 through I7 correspond

to , and ABC, respectively, and that each input
may be , or D.

Use a 3-to-8 decoder and an N-input OR gate to implement the logic function 
. Draw the logic diagram and create the associated truth

table.

Section 11.6: Latches and Flip-Flops
The input to the circuit of Figure P11.77 is a square wave having a period of 2
s, maximum value of 5 V, and minimum value of 0 V. Assume all flip-flops
are initially in the reset state.
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Explain what the circuit does.

Sketch the timing diagram, including the input and all four outputs.



11.78

a.

b.

11.79

11.80

11.81

Figure P11.77

Suppose a circuit is constructed from three D-type flip-flops, one input I, with

Draw the circuit diagram.

Assume the circuit starts with all flip-flops set. Sketch a table that shows
the outputs of all three flip-flops.

Suppose that you want to use a JK flip-flop for a laboratory experiment.
However, you have only D flip-flops. Assuming that you have all the logic
gates available, make a JK flip-flop using a D flip-flop and some logic
gate(s).

Draw a timing diagram (four complete clock cycles) for A0, A1, and A2 for the
circuit of Figure P11.80. Assume that all initial values are 0. Note that all flip-
flops are negative edge–triggered.

Figure P11.80

Assume that the slotted encoder shown in Figure P11.81 has a length of 1 m
and a total of 1,000 slots (i.e., there is one slot per millimeter). If a counter is
incremented by 1 each time a slot goes past a sensor, design a digital counting
system that determines the speed of the moving encoder (in meters per
second).



11.82

11.83

11.84

11.85

Figure P11.81

Given the sequential circuit of Figure P11.82, determine the output Y when
input A is [1 0 1 1].

Figure P11.82

Write the truth table for an RS flip-flop with enable (E), preset (P), and clear
(C) lines.

A JK flip-flop is wired as shown in Figure P11.84 with a given input signal.
Assuming that Q is at logic 0 initially and the trailing-edge triggering is
effective, sketch the output Q.

Figure P11.84

With reference to the JK flip-flop of Problem 11.84, assume that the output at
the Q terminal is made to serve as the input to a second JK flip-flop wired
exactly as the first. Sketch the Q output of the second flip-flop.

Page 622

Section 11.7: Digital Counters and Registers



11.86

a.

b.

11.87

11.88

11.89

11.90

A binary pulse counter can be constructed by interconnecting T-type flip-
flops in an appropriate manner. Assume it is desired to construct a counter
that can count up to 10010.

How many flip-flops would be required?

Sketch the circuit needed to implement this counter.

Explain what the circuit of Figure P11.87 does and how it works. (Hint: This
circuit is called a 2-bit synchronous binary up-down counter.)

Figure P11.87

Describe how the ripple counter works. Why is it so named? What
disadvantages can you think of for this counter?

Section 11.8: Sequential Logic Design
Using necessary logic gates and D-type flip-flops, create a sequential circuit
(one input–one output) from the state table given below.

Use JK flip-flops to construct a sequential circuit with the state diagram
shown in Figure P11.90.



Figure P11.90

1American Standard Code for Information Interchange.

2A useful rule to remember is that in a two-variable map, there are two minterms
adjacent to any given minterm; in a three-variable map, three minterms are adjacent
to any given minterm; in a four-variable map, the number is four, and so on.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.
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C H A P T E R
12

PRINCIPLES OF
ELECTROMECHANICS

he objective of this chapter is to introduce the fundamental notions of
electromechanical energy conversion, leading to an understanding of the
operation of various electromechanical transducers. The chapter also serves as
an introduction to the material on electric machines to be presented in Chapter

13. The foundations for the material introduced in this chapter may be found in the
circuit analysis chapters (1 through 6).

The subject of electromechanical energy conversion is one that should be of
particular interest to the non–electrical engineer, because it forms one of the
important points of contact between electrical engineering and other engineering
disciplines. Electromechanical transducers are commonly used in the design of
industrial and aerospace control systems and in biomedical applications, and they
form the basis of many common appliances. In the course of our exploration of
electromechanics, we illustrate the operation of practical devices, such as
loudspeakers, relays, solenoids, and sensors for the measurement of position and
velocity.
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1.
2.

3.

4.
5.

 Learning Objectives
Students will learn to...

Review the basic principles of electricity and magnetism. Section 12.1.
Use the concepts of reluctance and magnetic circuit equivalents to compute
magnetic flux and currents in simple magnetic structures. Section 12.2.
Understand the properties of magnetic materials and their effects on magnetic
circuit models. Section 12.3.
Use magnetic circuit models to analyze transformers. Section 12.4.
Model and analyze force generation in electromagnetomechanical systems.
Analyze moving-iron transducers (electromagnets, solenoids, relays) and
movingcoil transducers (electrodynamic shakers, loudspeakers, and seismic
transducers). Section 12.5.

12.1 ELECTRICITY AND MAGNETISM
The notion that the phenomena of electricity and magnetism are interconnected was
first proposed in the early 1800s by H. C. Oersted, a Danish physicist. Oersted
showed that an electric current produces magnetic effects (more specifically, a
magnetic field). Soon after, the French scientist André Marie Ampère expressed this
relationship by means of a precise formulation known as Ampère’s law. A few years
later, the English scientist Faraday illustrated how the converse of Ampère’s law also
holds true, that is, that a magnetic field can generate an electric field; in short,
Faraday’s law states that a changing magnetic field gives rise to a voltage.

As is explained in the next few sections, the magnetic field forms a necessary
connection between electrical and mechanical energy. Ampère’s and Faraday’s laws
formally illustrate the relationship between electric and magnetic fields, but it should
already be evident from your own individual experience that the magnetic field can
also convert magnetic energy to mechanical energy (e.g., by lifting a piece of iron
with a magnet). In effect, the devices we commonly refer to as electromechanical
should more properly be referred to as electromagnetomechanical, since they almost
invariably operate through a conversion from electrical to mechanical energy (or vice
versa) by means of a magnetic field. Chapters 12 and 13 are concerned with the use
of electricity and magnetic materials for the purpose of converting electrical to
mechanical energy, and back.

The Magnetic Field and Faraday’s Law



(12.1)

The quantities used to quantify the strength of a magnetic field are the magnetic flux
ϕ, in units of webers (Wb); and the magnetic flux density B, in units of webers per
square meter (Wb/m2), or teslas (T). The latter quantity and the associated magnetic
field intensity H (in units of amperes per meter, or A/m) are vectors.1 Thus, the
density of the magnetic flux and its intensity are in general described in Page
627vector form, in terms of the components present in each spatial direction (e.g., on
the x, y, and z axes). In discussing magnetic flux density and field intensity in this
chapter and Chapter 13, we almost always assume that the field is a scalar field, that
is, that it lies in a single spatial direction. This will simplify many explanations.

It is customary to represent the magnetic field by means of the familiar lines of
force (a concept also due to Faraday); we visualize the strength of a magnetic field by
observing the density of these lines in space. You probably know from a previous
course in physics that such lines are closed in a magnetic field; that is, they form
continuous loops exiting at a magnetic north pole (by definition) and entering at a
magnetic south pole. The relative strengths of the magnetic fields generated by two
magnets could be depicted as shown in Figure 12.1.

Figure 12.1 Lines of force in a magnetic field

Magnetic fields are generated by electric charge in motion, and their effect is
measured by the force they exert on a moving charge. As you may recall from
previous physics courses, the vector force f exerted on a charge of q moving at
velocity u in the presence of a magnetic field with flux density B is given by
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(12.3)

(12.4)

where the symbol × denotes the (vector) cross product. If the charge is moving at a
velocity u in a direction that makes an angle θ with the magnetic field, then the
magnitude of the force is given by

and the direction of this force is at right angles with the plane formed by the vectors
B and u. This relationship is depicted in Figure 12.2.

Figure 12.2 Charge moving in a constant magnetic field

The magnetic flux ϕ is then defined as the integral of the flux density over some
surface area. For the simplified (but often useful) case of magnetic flux lines
perpendicular to a cross-sectional area A, the flux is given by:

in webers, where the subscript A indicates that the integral is evaluated over surface
A. Furthermore, if the flux were to be uniform over the cross-sectional area A (a
useful simplification), the preceding integral is approximated by:

Figure 12.3 illustrates this idea, by showing hypothetical magnetic flux lines
traversing a surface, delimited in the figure by a thin conducting wire.
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Figure 12.3 Magnetic flux lines crossing a surface bounded by a thin
conducting wire

Faraday’s law states that if the imaginary surface A were bounded by a
conductor—for example, the thin wire of Figure 12.3—then a changing magnetic
field would induce a voltage, and therefore a current, in the conductor. More
precisely, Faraday’s law states that a time-varying flux causes an induced
electromotive force, or emf, e as follows:

A little discussion is necessary at this point to explain the meaning of the minus
sign in equation 12.5. Consider the one-turn coil of Figure 12.4, which forms Page
628a circular cross-sectional area, in the presence of a magnetic field with flux
density B oriented in a direction perpendicular to the plane of the coil. If the
magnetic field, and therefore the flux within the coil, is constant, no voltage will
exist across terminals a and b; if, however, the flux were increasing and terminals a
and b were connected—for example, by means of a resistor, as indicated in Figure
12.4(b)—current would be generated in the coil such that the magnetic flux
generated by the current would oppose the increasing flux. Thus, the flux induced by
such a current would be in the direction opposite to that of the original flux density
vector B. This principle is known as Lenz’s law. The reaction flux would then point
downward in Figure 12.4(a), or into the page in Figure 12.4(b). Now, by virtue of the
right-hand rule, this reaction flux would induce a current clockwise in Figure
12.4(b), that is, a current out of terminal b and into terminal a. The resulting voltage
across the hypothetical resistor R would then be negative. If, on the other hand, the
original flux were decreasing, current would be induced in the coil so as to
reestablish the initial flux; but this would mean that the current would have to
generate a flux in the upward direction in Figure 12.4(a) [or out of the page in Figure
12.4(b)]. Thus, the resulting voltage would change sign.



(12.6)

(12.7)

(12.8)

Figure 12.4 Flux direction

The polarity of the induced voltage can usually be determined from physical
considerations; therefore the minus sign in equation 12.5 can be left out. We use this
convention throughout the chapter.

In practical applications, the size of the voltages induced by the changing
magnetic field can be significantly increased if the conducting wire is coiled so as to
multiply the area crossed by the magnetic flux lines many times over. For an N-turn
coil with cross-sectional area A, for example, we have the emf

CHECK YOUR UNDERSTANDING
A coil having 100 turns is immersed in a magnetic field that is varying uniformly
from 80 to 30 mWb in 2 s. Find the induced voltage in the coil.
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Figure 12.5 shows an N-turn coil linking a certain amount of magnetic flux; you can
see that if N is very large and the coil is tightly wound (as is usually the case in the
construction of practical devices), it is not unreasonable to presume that each turn of
the coil links the same flux. It is convenient, in practice, to define the flux linkage λ
as

so that

Answer: e = −2.5 V



(12.9)

Figure 12.5 Concept of flux linkage

Note that equation 12.8, relating the derivative of the flux linkage to the induced
emf, is analogous to the equation describing current as the derivative of charge:

In other words, flux linkage can be viewed as the dual of charge in circuit analysis
provided that we are aware of the simplifying assumptions just stated in the
preceding paragraphs, namely, a uniform magnetic field perpendicular to the area
delimited by a tightly wound coil. These assumptions are not at all unreasonable
when applied to the inductor coils commonly employed in electric circuits.

What, then, are the physical mechanisms that can cause magnetic flux to change,
and therefore to induce an electromotive force? Two such mechanisms are possible.
The first consists of physically moving a permanent magnet in the vicinity of a coil,
for example, so as to create a time-varying flux. The second requires a time varying
current to produce a time-varying magnetic field. The latter method is more practical
in many circumstances, since it does not require the use of permanent magnets and
allows variation of field strength by varying the applied current; however, the former
method is conceptually simpler to visualize. The voltages induced by a moving
magnetic field are called motion voltages; those generated by a time-varying
magnetic field are termed transformer voltages. We are interested in both in this
chapter, for different applications.
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In the analysis of linear circuits, as in Chapter 3, it is assumed that the
relationship between flux linkage and current is linear:

so that the effect of a time-varying current is to induce a transformer voltage across
an inductor coil, according to the expression

This is, in fact, the defining equation for the ideal self-inductance L. In addition to
self-inductance, however, it is important to consider the magnetic coupling that can
occur between neighboring circuits. Self-inductance measures the voltage induced in
a circuit by the magnetic field generated by a current flowing in the same circuit. It is
also possible that a second circuit in the vicinity of the first may experience an
induced voltage as a consequence of the magnetic field generated in the first circuit.
As explained in Section 12.4, this principle underlies the operation of all
transformers.
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Self- and Mutual Inductance
Figure 12.6 depicts a pair of coils, one of which, L1, is excited by a current i1 and
therefore develops a magnetic field and a resulting induced voltage υ1. The second
coil, L2, is not energized by a current, but links some of the flux generated by current
i1 around L1 because of its close proximity to the first coil. The magnetic coupling
between the coils established by virtue of their proximity is described by a quantity
called mutual inductance and defined by the symbol M. The mutual inductance is
defined by the equation
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Figure 12.6 Mutual inductance

The dots shown in the two drawings indicate the polarity of the coupling between the
coils. If the dots are at the same end of the coils, the voltage induced in coil 2 by a
current in coil 1 has the same polarity as the voltage induced by the same current in
coil 1; otherwise, the voltages are in opposition, as shown in the lower part of Figure
12.6. Thus, the presence of such dots indicates that magnetic coupling is present
between two coils. It should also be pointed out that if a current (and therefore a
magnetic field) were present in the second coil, an additional voltage would be
induced across coil 1. The voltage induced across a coil is, in general, equal to the
sum of the voltages induced by self-inductance and mutual inductance.

In practical electromagnetic circuits, the self-inductance of a circuit is not
necessarily constant; in particular, the inductance parameter L is not constant, in
general, but depends on the strength of the magnetic field intensity, so that it will not
be possible to use such a simple relationship as υ = L di/dt, with L constant. If we
revisit the definition of the transformer voltage

we see that in an inductor coil, the inductance is given by

This expression implies that the relationship between current and flux in a magnetic
structure is linear if the inductance L is constant (the inductance being the slope of
the line). In fact, the properties of ferromagnetic materials are such that the flux–
current relationship is nonlinear, so that the simple linear inductance parameter used
in electric circuit analysis is not adequate to represent the behavior of the magnetic
circuits of this chapter. In any practical situation, the relationship between the flux
linkage λ and the current is nonlinear, and might be described by a curve similar to
that shown in Figure 12.7. Whenever the i-λ curve is not a straight line, it is more
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convenient to analyze the magnetic system in terms of energy calculations, since the
corresponding circuit equation would be nonlinear.

Figure 12.7 Relationship between flux linkage, current, energy, and co-
energy

In a magnetic system, the energy stored in the magnetic field is equal to the
integral of the instantaneous power, which is the product of voltage and current, just
as in a conventional electric circuit:
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However, in this case, the voltage corresponds to the induced emf, according to
Faraday’s law,

and is therefore related to the rate of change of the magnetic flux. The energy stored
in the magnetic field could therefore be expressed in terms of the current by:

It should be straightforward to recognize that this energy is equal to the area above
the λ-i curve of Figure 12.7. From the same figure, it is also possible to define a
fictitious (but useful) quantity called co-energy, equal to the area under the curve and
identified by the symbol W′m. From the figure, it is also possible to see that the co-
energy can be expressed in terms of the stored energy by:

Example 12.1 illustrates the calculation of energy, co-energy, and induced voltage,
using the concepts developed in these paragraphs.



1.

The calculation of the energy stored in the magnetic field around a magnetic
structure will be particularly useful later in the chapter when the discussion turns to
practical electromechanical transducers and it will be necessary to actually compute
the forces generated in magnetic structures.

EXAMPLE 12.1 Energy and Co-Energy Calculation for an Inductor
Problem

Compute the energy, co-energy, and incremental linear inductance for an iron-core
inductor with a given λ-i relationship. Also compute the voltage across the terminals,
given the current through the coil.

Solution
Known Quantities: λ-i relationship; nominal value of λ; coil resistance; coil current.
Find: .
Schematics, Diagrams, Circuits, and Given Data: i = (λ + 0.5λ2) A; λ0 = 0.5 V-s; R
= 1 Ω; i(t) = 0.625 + 0.01 sin(400t).
Assumptions: Assume that the magnetic equation can be linearized, and use the
linear model in all circuit calculations.
Analysis:

Calculation of energy and co-energy. From equation 12.17, we calculate the
energy as follows.
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The above expression is valid in general; in our case, the inductor is operating at
a nominal flux linkage λ0 = 0.5 V-s, and we can therefore evaluate the energy to
be



2.

3.

Thus, after equation 12.18, the co-energy is given by

where

and

Calculation of incremental inductance. If we know the nominal value of flux
linkage (i.e., the operating point), we can calculate a linear inductance LΔ, valid
around values of λ close to the operating point λ0. This incremental inductance is
defined by the expression

and can be computed to be

The above expressions can be used to analyze the circuit behavior of the
inductor when the flux linkage is around 0.5 V-s, or, equivalently, when the
current through the inductor is around 0.625 A.
Circuit analysis using linearized model of inductor. We can use the incremental
linear inductance calculated above to compute the voltage across the inductor in
the presence of a current i(t) = 0.625 + 0.01 sin(400t). Using the basic circuit
definition of an inductor with series resistance R, the voltage across the inductor
is given by

Comments: The linear approximation in this case is not a bad one: the small
sinusoidal current is oscillating around a much larger average current. In this type of
situation, it is reasonable to assume that the inductor behaves linearly. This example
explains why the linear inductor model introduced in Chapter 3 is an acceptable
approximation in most circuit analysis problems.



CHECK YOUR UNDERSTANDING
The relation between the flux linkages and the current for a magnetic material is
given by λ = 6i/(2i + 1) Wb-turns. Determine the energy stored in the magnetic field
for λ = 2 Wb-turns.
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FOCUS ON MEASUREMENTS

Linear Variable Differential Transformer (LVDT)
The linear variable differential transformer (LVDT) is a displacement transducer
based on the mutual inductance concept just discussed. Figure 12.8 represents an
LVDT as a primary coil subject to AC excitation (υex) and of a pair of identical
secondary coils, which are connected so that:

Answer: Wm = 0.648 J



The ferromagnetic core between the primary and secondary coils can be displaced in
proportion to some external motion x and determines the magnetic coupling between
primary and secondary coils. Intuitively, as the core is displaced upward, greater
coupling will occur between the primary coil and the top secondary coil, thus
inducing a greater voltage in the top secondary coil. Hence, υout > 0 for positive
displacements. The converse is true for negative displacements. More formally, if the
primary coil has resistance Rp and self-inductance Lp, we can write

and the voltages induced in the secondary coils are given by

so that

Figure 12.8 Linear variable differential transformer

where M1 and M2 are the mutual inductances between the primary and the respective
secondary coils. It should be apparent that each of the mutual inductances is
dependent on the position of the iron core. For example, with the core at the null
position, M1 = M2 and υout = 0. The LVDT is typically designed so that M1 − M2 is
linearly related to the displacement of the core x.
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(12.19)

Because the excitation is by necessity an AC signal (why?), the output voltage is
actually given by the difference of two sinusoidal voltages at the same frequency and
is therefore itself a sinusoid, whose amplitude and phase depend on the displacement
x. Thus, υout is an amplitude-modulated (AM) signal, similar to the one discussed in
the Focus on Measurements box, “Capacitive Displacement Transducer and
Microphone,” in Chapter 3. To recover a signal proportional to the actual
displacement, it is therefore necessary to use a demodulator circuit, such as the one
discussed in the Focus on Measurements box, “Peak Detector Circuit for Capacitive
Displacement Transducer,” in Chapter 8.

Ampère’s Law
As explained in the previous section, Faraday’s law is one of two fundamental laws
relating electricity to magnetism. The second relationship, which forms a counterpart
to Faraday’s law, is Ampère’s law. Qualitatively, Ampère’s law states that the
magnetic field intensity H in the vicinity of a conductor is related to the current
carried by the conductor; thus Ampère’s law establishes a dual relationship with
Faraday’s law.

In the previous section, the magnetic field is described by its flux density B and
flux ϕ. To explain Ampère’s law and the behavior of magnetic materials, we define
the magnetic field intensity H as:

where μ is a scalar constant for a particular physical medium (at least, for the
applications we consider here) and is called the permeability of the medium. The
permeability of a material can be factored as the product of the permeability of free
space μ0 = 4π × 10−7 H/m, and the relative permeability μr, which varies greatly
according to the medium. For example, for air and for most electrical conductors and
insulators, μr is equal to 1. For ferromagnetic materials, μr can take values ranging
from 103 to 106. The size of μr represents a measure of the magnetic properties of the
material. A consequence of Ampère’s law is that the larger the value of μ, the smaller
the current required to produce a large flux density in an electromagnetic structure.
Consequently, many electromechanical devices make use of ferromagnetic materials,
called iron cores, to enhance their magnetic properties. Table 12.1 gives approximate
values of μr for some common materials.

Table 12.1 Relative permeabilities for common materials
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The reason for introducing the magnetic field intensity is that it is independent of
the properties of the materials employed in the construction of magnetic circuits.
Thus, a given magnetic field intensity H will give rise to different flux densities in
different materials. It will therefore be useful to define sources of magnetic energy in
terms of the magnetic field intensity, so that different magnetic structures and
materials can then be evaluated or compared for a given source. As stated earlier,
both the magnetic flux density and the field intensity are vector quantities; however,
for ease of analysis, scalar fields will be chosen by appropriately selecting the
orientation of the fields, wherever possible.

Page 635

Ampère’s law states that the integral of the vector magnetic field intensity H
around a closed path is equal to the total current linked by the closed path i:

where dl is an increment in the direction of the closed path. If at every point along
the path the magnetic field is parallel to the path, we can use scalar quantities to
write:

Figure 12.9 illustrates the case of a wire carrying a current i and of a circular path
of radius r surrounding the wire. In this simple case, you can see that the magnetic
field intensity H is determined by the familiar right-hand rule. This rule states that if
the direction of current i points in the direction of the thumb of one’s right hand, the
resulting magnetic field encircles the conductor in the direction in which the other
four fingers would encircle it. Thus, in the case of Figure 12.9, the closed-path
integral becomes equal to H · 2πr, since the path and the magnetic field are in the



(12.22)

same direction, and therefore the magnitude of the magnetic field intensity is given
by

Figure 12.9 Illustration of Ampère’s law

CHECK YOUR UNDERSTANDING

The magnitude of H at a radius of 0.5 m from a long linear conductor is 1 A-m−1.
Find the current in the wire.

Now, the magnetic field intensity H is unaffected by the material surrounding the
conductor, but the flux density B depends on the material properties. The density of
flux lines around the conductor would be far greater in the presence of a magnetic
material than if the conductor were surrounded by air. The field generated by a single
Page 636conducting wire is relatively weak; however, if the wire is a tightly wound
coil with many turns, the strength of the magnetic field is increased greatly. For a coil
with N turns, one can verify visually that the lines of force associated with the
magnetic field link all the turns of the conducting coil, so that we have effectively
increased the current linked by the flux lines N-fold. The product N · i is a useful
quantity in electromagnetic circuits and is called the magnetomotive force,2  (or
mmf), in analogy with the electromotive force.

Answer: I = π A



(12.23)

(12.24)

(12.25)

Figure 12.10 illustrates the magnetic flux lines in the vicinity of a coil. The
magnetic field generated by the coil can be made to generate a much greater flux
density if the coil encloses a magnetic material. The most common ferromagnetic
materials are steel and iron; in addition to these, many alloys and oxides of iron—as
well as nickel—and some artificial ceramic materials called ferrites exhibit magnetic
properties. In recent years, rare earth magnets have found increasing use, especially
in the design of high-performance electric motors. The two most common rare earth
materials are neodymium and samarium (lanthanides), which are used in compounds
that include transition metals, such as iron, nickel, and cobalt. Such magnets can
produce magnetic fields of strength two to three times greater than ferrites. Winding
a coil around a ferromagnetic material accomplishes two useful tasks at once: It
forces the magnetic flux to be concentrated within the coil and—if the shape of the
magnetic material is appropriate—completely confines the flux within the magnetic
Page 637material, thus forcing the closed path for the flux lines to be almost entirely
enclosed within the ferromagnetic material. Typical arrangements are the iron-core
inductor and the toroid of Figure 12.11. The flux densities for these inductors are
given by



Figure 12.10 Magnetic flux lines in the vicinity of a current-carrying coil

Figure 12.11 Practical inductors

In equation 12.24, l represents the length of the coil wire; Figure 12.11 defines the
parameter r2 in equation 12.25.

Intuitively, the presence of a high-permeability material near a source of
magnetic flux causes the flux to preferentially concentrate in the high-μ material,



rather than in air, much as a conducting path concentrates the current produced by an
electric field in an electric circuit. Figure 12.12 depicts an example of a simple
electromagnetic structure which forms the basis of the practical transformer.

Figure 12.12 A simple electromagnetic structure

Table 12.2 summarizes the variables introduced thus far in the discussion of
electricity and magnetism.

Table 12.2 Magnetic variables and units

12.2 MAGNETIC CIRCUITS
It is possible to analyze the operation of electromagnetic devices such as the one
depicted in Figure 12.12 by means of magnetic equivalent circuits, similar in many
respects to the equivalent electric circuits of earlier chapters. Before we can present
this technique, however, we need to make a few simplifying approximations. The
first of these approximations assumes that there exists a mean path for the magnetic
flux and that the corresponding mean flux density is approximately constant over the
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cross-sectional area of the magnetic structure. Using equation 12.4, we see that a coil
wound around a core with cross-sectional area A will have flux density

where A is assumed to be perpendicular to the direction of the flux lines. Figure
12.12 illustrates such a mean path and the cross-sectional area A. Knowing the flux
density, we obtain the field intensity:
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But then, knowing the field intensity, we can relate the mmf of the coil  to the
product of the magnetic field intensity H and the length of the magnetic (mean) path
l; we can use equations 12.24 and 12.19 to derive

In summary, the mmf is equal to the magnetic flux times the length of the magnetic
path, divided by the permeability of the material times the cross-sectional area:

A review of this formula reveals that the magnetomotive force  may be viewed as
being analogous to the voltage source in a series electric circuit, and that the flux ϕ is
then equivalent to the electric current in a series circuit and the term l/μA to the
“magnetic resistance” of one leg of the magnetic circuit. You will note that the term
l/μA is very similar to the term describing the resistance of a cylindrical conductor of
length l and cross-sectional area A, where the permeability μ is analogous to the
conductivity σ. The term l/μA occurs frequently enough to be assigned the name of
reluctance and the symbol . It is also important to recognize the relationship
between the reluctance of a magnetic structure and its inductance. This can be
derived easily starting from equation 12.14:



In summary, when an N-turn coil carrying a current i is wound around a magnetic
core such as the one indicated in Figure 12.12, the mmf  generated by the coil
produces a flux ϕ that is mostly concentrated within the core and is assumed to be
uniform across the cross section. Within this simplified picture, then, the analysis of a
magnetic circuit is analogous to that of resistive electric circuits. This analogy is
illustrated in Table 12.3 and in the examples in this section.

Table 12.3 Analogy between electric and magnetic circuits

The usefulness of the magnetic circuit analogy can be emphasized by analyzing a
magnetic core similar to that of Figure 12.12, but with a slightly modified geometry.
Figure 12.13 depicts the magnetic structure and its equivalent-circuit analogy. In the
figure, we see that the mmf  excites the magnetic circuit, which is composed of
four legs: two of mean path length l1 and cross-sectional area A1 = d1w, and the Page
639other two of mean length l2 and cross-sectional area A2 = d2w. Thus, the
reluctance encountered by the flux in its path around the magnetic core is given by
the quantity , with

and



1.
2.
3.

Figure 12.13 Analogy between magnetic and electric circuits

It is important at this stage to review the assumptions and simplifications made in
analyzing the magnetic structure of Figure 12.13:

All the magnetic flux is linked by all the turns of the coil.
The flux is confined exclusively within the magnetic core.
The density of the flux is uniform across the cross-sectional area of the
core.

You can probably see intuitively that the first of these assumptions might not hold
true near the ends of the coil, but that it is more reasonable if the coil is tightly
wound. The second assumption is equivalent to stating that the relative permeability
of the core is infinitely higher than that of air (presuming that this is the medium
surrounding the core); if this were the case, the flux would indeed be confined within
the core. It is worthwhile to note that we make a similar assumption when we treat
wires in electric circuits as perfect conductors: The conductivity of copper is
substantially greater than that of free space, by a factor of approximately 1015. In the
case of magnetic materials, however, even for the best alloys, we have a relative
permeability only on the order of 103 to 105. Thus, an approximation that is quite
appropriate for electric circuits is not nearly as good in the case of magnetic circuits.
The flux in a structure, such as those of Figures 12.12 and 12.13, not confined within
the core is usually referred to as leakage flux. Finally, the assumption that the flux is
uniform across the core cannot hold for a finite-permeability medium, but it is very
helpful in giving an approximate mean behavior of the magnetic circuit.
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The magnetic circuit analogy is therefore far from exact. However, short of
employing the tools of electromagnetic field theory and of vector calculus, or
advanced numerical simulation software, it is the most convenient tool at the
engineer’s disposal for the analysis of magnetic structures. In the remainder of this
chapter, the approximate analysis based on the electric circuit analogy is used to
obtain approximate solutions to problems involving a variety of useful magnetic
circuits. Among these are the loudspeaker, solenoids, automotive fuel injectors, and
sensors for the measurement of linear and angular velocity and position.

EXAMPLE 12.2 Analysis of Magnetic Structure and Equivalent
Magnetic Circuit
Problem

Calculate the flux, flux density, and field intensity on the magnetic structure of
Figure 12.14.

Figure 12.14 Magnetic structure for Example 12.2.

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: ϕ; B; H.
Schematics, Diagrams, Circuits, and Given Data: μr = 1,000; N = 500 turns; i = 0.1
A. The cross-sectional area is A = w2 = (0.01)2 = 0.0001 m2. The magnetic circuit
geometry is defined in Figures 12.14 and 12.15.



1.

2.

3.

Figure 12.15 Cross section of magnetic structure for Example 12.2.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.
Analysis:

Calculation of magnetomotive force. From equation 12.28, we calculate the
magnetomotive force:

Calculation of mean path. Next, we estimate the mean path of the magnetic flux.
On the basis of the assumptions, we can calculate a mean path that runs through
the geometric center of the magnetic structure, as shown in Figure 12.15. The
path length is

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the reluctance of the circuit:

The corresponding equivalent magnetic circuit is shown in Figure 12.16.

Figure 12.16 Equivalent magnetic circuit for Example 12.2.



4.
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Calculation of magnetic flux, flux density, and field intensity. On the basis of the
assumptions, we can now calculate the magnetic flux

the flux density

and the magnetic field intensity

Comments: This example illustrates all the basic calculations that pertain to
magnetic structures. Remember that the assumptions stated in this example (and
earlier in the chapter) simplify the problem and make its approximate numerical
solution possible in a few simple steps. In reality, flux leakage, fringing, and uneven
distribution of flux across the structure would require the solution of three-
dimensional equations using finite-element methods. These methods are not
discussed in this book, but are necessary for practical engineering designs.

The usefulness of these approximate methods is that you can, for example,
quickly calculate the approximate magnitude of the current required to generate a
given magnetic flux or flux density. These calculations can be used to determine
electromagnetic energy and magnetic forces in practical structures.

The methodology described in this example is summarized in the following
Focus on Problem Solving box.

CHECK YOUR UNDERSTANDING
Determine the equivalent reluctance of the structure of Figure 12.17 as seen by the
“source” if μr for the structure is 1,000, l = 5 cm, and all the legs are 1 cm on a side.



1.
2.

3.
4.

5.

Figure 12.17 Magnetic structure with two loops.
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F O C U S  O N  P R O B L E M  S O LV I N G

MAGNETIC STRUCTURES AND EQUIVALENT
MAGNETIC CIRCUITS
Direct Problem
Given—The structure geometry and the coil parameters.

Calculate—The magnetic flux in the structure.

Compute the mmf.
Determine the length and cross section of the magnetic path for each continu
leg or section of the path.
Calculate the equivalent reluctance of the leg.
Generate the equivalent magnetic circuit diagram, and calculate the t
equivalent reluctance.
Calculate the flux, flux density, and magnetic field intensity, as needed.

Answer: Assuming a mean path 1 cm from the edges of the structure, 



1.
2.
3.
4.

Inverse Problem
Given—The desired flux or flux density and structure geometry.

Calculate—The necessary coil current and number of turns.

Calculate the total equivalent reluctance of the structure from the desired flux
Generate the equivalent magnetic circuit diagram.
Determine the mmf required to establish the required flux.
Choose the coil current and number of turns required to establish the des
mmf.

Consider the analysis of the same simple magnetic structure when an air gap is
present. Air gaps are very common in magnetic structures; in rotating machines, for
example, air gaps are necessary to allow for free rotation of the inner core of the
machine. The magnetic circuit of Figure 12.18(a) differs from the circuit analyzed in
Example 12.2 simply because of the presence of an air gap; the effect of the gap is to
break the continuity of the high-permeability path for the flux, adding a high-
reluctance component to the equivalent circuit. The situation is analogous to adding a
very large series resistance to a series electric circuit. It should be evident from
Figure 12.18(a) that the basic concept of reluctance still applies, although now two
different permeabilities must be taken into account.



(12.31)

Figure 12.18 (a) Magnetic circuit with air gap; (b) its equivalent magnetic
circuit

The equivalent circuit for the structure of Figure 12.18(a) may be drawn as
shown in Figure 12.18(b), where  is the reluctance of path ln, for n = 1, 2, . . . , 5,
Page 643and  is the reluctance of the air gap. The reluctances can be expressed as
follows, if we assume that the magnetic structure has a uniform cross-sectional area
A:

Note that in computing , the length of the gap is given by δ and the permeability is
given by μ0, as expected, but Ag is different from the cross-sectional area A of the
structure. This is so because the flux lines exhibit a phenomenon known as fringing
as they cross an air gap. The flux lines actually bow out of the gap defined by the
cross section A, not being contained by the high-permeability material any longer.
Thus, it is customary to define an area Ag that is greater than A, to account for this
phenomenon. Example 12.3 describes in greater detail the procedure for finding Ag
and also discusses the phenomenon of fringing.

EXAMPLE 12.3 Magnetic Structure With Air Gaps
Problem

Compute the equivalent reluctance of the magnetic circuit of Figure 12.19 and the
flux density established in the bottom bar of the structure.



1.

2.

Figure 12.19 Electromagnetic structure with air gaps

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: 
Schematics, Diagrams, Circuits, and Given Data: μr = 10,000; N = 100 turns; i = 1
A.
Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.
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Analysis:
Calculation of magnetomotive force. From equation 12.28, we calculate the
magnetomotive force:

Calculation of mean path. Figure 12.20 depicts the geometry. The path length is

However, the path must be broken into three legs: the upside-down U-shaped
element, the air gaps, and the bar. We cannot treat these three parts as one
because the relative permeability of the magnetic material is very different from
that of the air gap. Thus, we define the following three paths, neglecting the very
small (half bar thickness) lengths l5 and l6:



3.

where

Next, we compute the cross-sectional area. For the magnetic structure, we
calculate the U-shaped element cross section to be AU = 𝑤2 = (0.01)2 = 0.0001
m2 and the cross section of the bar to be Abar = (0.01 × 0.005) = 0.0005 m2. For
the air gap, we will make an empirical adjustment to account for the
phenomenon of fringing, that is, to account for the tendency of the magnetic flux
lines to bow out of the magnetic path, as illustrated in Figure 12.21. A rule of
thumb used to account for fringing is to add the length of the gap to each
dimension of the actual cross-sectional area. Thus

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the reluctance of each leg of the circuit:

Note that the reluctance of the air gap is dominant with respect to that of the
magnetic structure, in spite of the small dimension of the gap. This is so because
the relative permeability of the air gap is much smaller than that of the magnetic
material.

Figure 12.20



4.

Figure 12.21 Fringing effects in air gap

The equivalent reluctance of the structure is

Thus,

Since the gap reluctance is two orders of magnitude greater than the reluctance of the
magnetic structure, it is reasonable to neglect the magnetic structure reluctance and
work only with the gap reluctance in calculating the magnetic flux.
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Calculation of magnetic flux and flux density in the bar. From the result of the
preceding subsection, we calculate the flux

and the flux density in the bar

Comments: It is very common to neglect the reluctance of the magnetic material
sections in these approximate calculations. We shall make this assumption very
frequently in the remainder of the chapter.



CHECK YOUR UNDERSTANDING
Find the equivalent reluctance of the magnetic circuit shown in Figure 12.22 if μr of
the structure is infinite, δ = 2 mm, and the physical cross section of the core is 1 cm2.
Do not neglect fringing.

Figure 12.22 Magnetic structure.

EXAMPLE 12.4 Magnetic Structure of Electric Motor
Problem

Figure 12.23 depicts the configuration of an electric motor. The electric motor
consists of a stator and a rotor. Compute the air gap flux and flux density. Neglect
fringing.

Answer: 



1.

2.

3.

Figure 12.23 Cross-sectional view of synchronous motor

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: ϕgap; Bgap.

Schematics, Diagrams, Circuits, and Given Data: μr → ∞; N = 1,000 turns; i = 10
A; lgap = 0.01 m; Agap = 0.1 m2. The magnetic circuit geometry is defined in Figure
12.23.
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Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Calculation of magnetomotive force. From equation 12.28, we calculate the
magnetomotive force:

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the equivalent reluctance of the two gaps:

Calculation of magnetic flux and flux density. From the results of steps 1 and 2,
we calculate the flux

and the flux density

Comments: Note that the flux and flux density in this structure are significantly
larger than those in Example 12.3 because of the larger mmf and larger gap area of



1.

this magnetic structure. The subject of electric motors is formally approached in
Chapter 13.

EXAMPLE 12.5 Equivalent Circuit of Magnetic Structure With
Multiple Air Gaps
Problem

Figure 12.24 depicts the configuration of a magnetic structure with two air gaps.
Determine the equivalent circuit of the structure.
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Figure 12.24 Magnetic structure with two air gaps

Solution
Known Quantities: Structure geometry.
Find: Equivalent-circuit diagram.
Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Calculation of magnetomotive force.



2.

3.

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the equivalent reluctance of the two gaps:

Calculation of magnetic flux and flux density. Note that the flux must now divide
between the two legs, and that a different air-gap flux will exist in each leg. Thus

and the total flux generated by the coil is ϕ = ϕ1 + ϕ2.

The equivalent circuit is shown in the bottom half of Figure 12.24.
Comments: Note that the two legs of the structure act as resistors in a parallel circuit.

CHECK YOUR UNDERSTANDING
Find the equivalent magnetic circuit of the structure of Figure 12.25 if μr is infinite.
Give expressions for each of the circuit values if the physical cross-sectional area of
each of the legs is given by

Figure 12.25 Magnetic structure.

Do not neglect fringing.



1.

2.

1.
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EXAMPLE 12.6 Inductance, Stored Energy, and Induced Voltage
Problem

Find the inductance and the magnetic energy stored in the structure of Figure
12.18(a). The structure is identical to that of Example 12.2 except for the air gap.
Ignore fringing.
Assume that the flux density in the air gap varies sinusoidally as .
Determine the induced voltage across the coil e.

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry; flux density in air gap.
Find: L; Wm; e.

Schematics, Diagrams, Circuits, and Given Data: μr → ∞; N = 500 turns; i = 0.1 A.
The magnetic circuit geometry is defined in Figures 12.14 and 12.15. The air gap has
lg = 0.002 m. B0 = 0.6 Wb/m2.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Use equation 12.30 to calculate the inductance of the magnetic structure.

To calculate the reluctance, assume that the reluctance of the structure is
negligible.
Answer: 



2.

and

Finally, calculate the stored magnetic energy as follows:

To calculate the induced voltage due to a time-varying magnetic flux at the
frequency of 60 Hz (377 rad/s), we use equation 12.16:

Comments: The voltage induced across a coil in an electromagnetic transducer is a
very important quantity called the back electromotive force, or back emf.
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FOCUS ON MEASUREMENTS



Magnetic Reluctance Position Sensor
A simple magnetic structure, very similar to those examined in the previous
examples, finds very common application in the variable-reluctance position sensor,
which, in turn, finds widespread application in a variety of configurations for the
measurement of linear and angular velocity. Figure 12.26 depicts one particular
configuration that is used in many applications. In this structure, a permanent magnet
with a coil of wire wound around it forms the sensor; a steel disk (typically
connected to a rotating shaft) has a number of tabs that pass between the pole pieces
of the sensor. The area of the tab is assumed equal to the area of the cross section of
the pole pieces and is equal to a2. The reason for the name variable-reluctance
sensor is that the reluctance of the magnetic structure is variable, depending on
whether a ferromagnetic tab lies between the pole pieces of the magnet.

Figure 12.26 Variable-reluctance position sensor

The principle of operation of the sensor is that an electromotive force eS is
induced across the coil by the change in magnetic flux caused by the passage of the
tab between the pole pieces when the disk is in motion. As the tab enters the volume
between the pole pieces, the flux will increase, because of the lower reluctance of the
configuration, until it reaches a maximum when the tab is centered between the poles
of the magnet. Figure 12.27 depicts the approximate shape of the resulting voltage,
which, according to Faraday’s law, is given by



Figure 12.27 Variable-reluctance position sensor waveform

The rate of change of flux is dictated by the geometry of the tab and of the pole
pieces and by the speed of rotation of the disk. It is important to note that, since the
flux is changing only if the disk is rotating, this sensor cannot detect the static
position of the disk.

One common application of this concept is in the measurement of the speed of
rotation of rotating machines, including electric motors and internal combustion
engines. In these applications, use is made of a 60-tooth wheel, which permits the
conversion of the speed rotation directly to units of revolutions per minute. The
output of a variable-reluctance position sensor magnetically coupled to a rotating
disk equipped with 60 tabs Page 650(teeth) is processed through a comparator or
Schmitt trigger circuit. The voltage waveform generated by the sensor is nearly
sinusoidal when the teeth are closely spaced, and it is characterized by one sinusoidal
cycle for each tooth on the disk. If a negative zero-crossing detector is employed, the
trigger circuit will generate a pulse corresponding to the passage of each tooth, as
shown in Figure 12.28. If the time between any two pulses is measured by means of a
high-frequency clock, the speed of the engine can be directly determined in units of
revolutions per minute (r/min) by means of a digital counter (see Chapter 11).

Figure 12.28 Signal processing for a 60-tooth wheel rpm sensor



FOCUS ON MEASUREMENTS

Voltage Calculation in Magnetic Reluctance Position
Sensor
Problem:
This example illustrates the calculation of the voltage induced in a magnetic
reluctance sensor by a rotating toothed wheel. In particular, we will find an
approximate expression for the reluctance and the induced voltage for the position
sensor shown in Figure 12.29, Page 651and we will show that the induced voltage is
speed dependent. It will be assumed that the reluctance of the core and fringing at the
air gaps are both negligible.



Figure 12.29 Reluctance sensor for measurement of angular position

Solution:
From the geometry shown in the preceding Focus on Measurements box, the
equivalent reluctance of the magnetic structure is twice that of one gap, since the
permeability of the tab and the magnetic structure are assumed infinite (i.e., they
have negligible reluctance). When the tab and the poles are aligned, the angle θ is
zero, as shown in Figure 12.29, and the area of the air gap is maximum. For angles
greater than 2θ0, the magnetic length of the air gaps is so large that the magnetic field
may reasonably be taken as zero.

To model the reluctance of the gaps, we assume the following simplified
expression, where the area of overlap of the tab with the magnetic poles is assumed
proportional to the angular displacement:

Naturally, this is an approximation; however, the approximation captures the
essential idea of this transducer, namely, that the reluctance will decrease with
increasing overlap area until it reaches a minimum, and then the reluctance will
increase as the overlap area decreases. For θ = θ1, that is, with the tab outside the
magnetic pole pieces, we have . For θ = 0, that is, with the tab perfectly
aligned with the pole pieces, we have . The flux ϕ may therefore be
computed as follows:
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The induced voltage eS is found by

where ω = dθ/dt is the rotational speed of the steel disk. It should be evident that the
induced voltage is speed dependent. For a = 1 cm, r = 10 cm, lg = 0.1 cm, N = 1,000
turns, i = 10 mA, θ1 = 6° ≈ 0.1 rad, and ω = 400 rad/s (approximately 3,800 r/min),
we have



(12.32)

That is, the peak amplitude of eS will be 2.5 mV.

12.3 MAGNETIC MATERIALS AND B-H CURVES
In the analysis of magnetic circuits presented in the previous sections, the relative
permeability μr was treated as a constant. In fact, the relationship between the
magnetic flux density B and the associated field intensity H is:

and is characterized by the fact that the relative permeability of magnetic materials is
not a constant but is a function of the magnetic field intensity. In effect, all magnetic
materials exhibit a phenomenon called saturation, whereby the flux density
increases in proportion to the field intensity until it cannot do so any longer. Figure
12.30 illustrates the general behavior of all magnetic materials. You will note that
since the B-H curve shown in the figure is nonlinear, the value of μ (which is the
slope of the curve) depends on the intensity of the magnetic field.

Figure 12.30 Permeability and magnetic saturation effects



To understand the reasons for the saturation of a magnetic material, we need to
briefly review the mechanism of magnetization. The basic idea behind magnetic
materials is that the spin of electrons constitutes motion of charge, and therefore
leads to magnetic effects, as explained in the introductory section of this chapter. In
most materials, the electron spins cancel out, on the whole, and no net effect remains.
In ferromagnetic materials, on the other hand, atoms can align so that the electron
spins cause a net magnetic effect. In such materials, there exist small regions with
strong magnetic properties, called magnetic domains, the effects of Page 653which
are neutralized in unmagnetized material by other, similar regions that are oriented
differently, in a random pattern. When the material is magnetized, the magnetic
domains tend to align with one another, to a degree that is determined by the intensity
of the applied magnetic field.

In effect, a large number of miniature magnets within the material are aligned
(polarized) by the applied magnetic field. As the field increases, more and more
domains become aligned. When all the domains have become aligned, any further
increase in magnetic field intensity does not yield an increase in flux density beyond
the increase that would be caused in a nonmagnetic material. Thus, the relative
permeability μr approaches 1 in the saturation region. It should be apparent that an
exact value of μr cannot be determined; the value of μr used in the earlier examples is
to be interpreted as an average permeability, for intermediate values of flux density.
For example, commercial magnetic steels saturate at flux densities of a few teslas.

There are two more features that cause magnetic materials to further deviate from
the ideal model of the linear B-H relationship: eddy currents and hysteresis. The
first phenomenon consists of currents that are caused by any time-varying flux in the
core material. As you know, a time-varying flux will induce a voltage, and therefore
a current. When this happens inside the magnetic core, the induced voltage will cause
eddy currents (the terminology should be self-explanatory) in the core, which depend
on the resistivity of the core. Figure 12.31 illustrates the phenomenon of eddy
currents. The effect of these currents is to dissipate energy in the form of heat. Eddy
currents are reduced by selecting high-resistivity core materials, or by laminating the
core, introducing tiny, discontinuous air gaps between core layers (see Figure 12.31).
Lamination of the core reduces eddy currents greatly without affecting the magnetic
properties of the core.



Figure 12.31 Eddy currents in magnetic structures

Hysteresis is another loss mechanism in magnetic materials; it displays a rather
complex behavior, related to the magnetization properties of a material. The curve of
Figure 12.32 reveals that the B-H curve for a magnetic material during magnetization
(as H is increased) is displaced with respect to the curve that is measured when the
material is demagnetized. To understand the hysteresis process, consider a core that
has been energized for some time, with a field intensity of H1 A-turns/m. As the
current required to sustain the mmf corresponding to H1 is decreased, we follow the
hysteresis curve from the point α to the point β. When the mmf is exactly zero, the
material displays the remanent (or residual) magnetization Br. To bring the flux
density to zero, we must further decrease the mmf (i.e., produce a negative current)
until the field intensity reaches the value −H0 (point γ on the curve). As the mmf is
made more negative, the curve eventually reaches the point α′. If the excitation
current to the coil is now increased, the magnetization curve will follow the path α′ =
β′ = γ′ = α, eventually returning to the original point in the B-H plane, but via a
different path.



Figure 12.32 Hysteresis in magnetization curves

The result of this process, by which an excess mmf is required to magnetize or
demagnetize the material, is a net energy loss. It is difficult to evaluate this loss;
however, it can be shown that it is related to the area between the curves of Figure
12.32. Experimental techniques exist that measure these losses.

Figure 12.33 depicts magnetization curves for three very common ferromagnetic
materials: cast iron, cast steel, and sheet steel.
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Figure 12.33 Magnetization curves for (a) cast iron, (b) cast steel, and (c)
sheet steel

12.4 TRANSFORMERS
One of the more common magnetic structures in everyday applications is the
transformer. The ideal transformer was introduced in Chapter 6 as a device that can
step an AC voltage up or down by a fixed ratio, with a corresponding decrease or
increase in current. The structure of a simple magnetic transformer is shown in
Figure 12.34, which illustrates that a transformer is very similar to the magnetic
circuits described earlier in this chapter. Coil L1 represents the input side of the
transformer, while coil L2 is the output coil; both coils are wound around the same
magnetic structure, which we show here to be similar to the “square doughnut” of the
earlier examples.



(12.33)

(12.34)

(12.35)

Figure 12.34 Structure of a transformer
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The ideal transformer is defined by the same set of assumptions made earlier. The
flux is confined to the core, the flux links all turns of both coils, and the permeability
of the core is infinite. The last assumption is equivalent to stating that an arbitrarily
small mmf is sufficient to establish a flux in the core. In addition, we assume that the
ideal transformer coils offer negligible resistance to current.

A time-varying voltage applied to the primary side of the transformer results in a
corresponding time-varying current in L1. This current acts as an mmf and causes a
time-varying flux in the structure. This flux will induce an emf across the secondary
coil! Without the need for a direct electrical connection, the transformer can couple a
source voltage across to the primary winding to the secondary winding, which is
connected to a load; the coupling occurs by means of the magnetic field acting on
both coils. Thus, a transformer operates by converting electric energy to magnetic,
and then back to electric. The following derivation illustrates this viewpoint in the
ideal case (no loss of energy) and compares the result with the definition of the ideal
transformer in Chapter 6.

If a time-varying voltage source is connected to the input side, then by virtue of
Faraday’s law, a corresponding time-varying flux dϕ/dt is established in coil L1:

But since the flux thus produced also links coil L2, an emf is induced across the
output coil as well:

This induced emf can be measured as the voltage υ2 at the output terminals, and one
can readily see that the ratio of the open-circuit output voltage to input-terminal
voltage is

A load current i2, and its corresponding mmf , is produced when a load is
connected to the output terminals in Figure 12.34. The mmf would cause the flux in
the core to change; however, this is not possible since a change in ϕ would cause a
corresponding change in the voltage induced across the input coil. But this voltage is
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•

•

•

determined (fixed) by the source υ1 so that the input coil is forced to generate a
counter-mmf to oppose the mmf of the output coil drawing a current i1 from the
source υ1 such that:

or

where α is the ratio of primary to secondary turns (the transformer ratio) and N1 and
N2 are the primary and secondary turns, respectively. If there were any net difference
between the input and output mmf, the flux balance required by the input voltage
source would not be satisfied. Thus, the two magnetomotive forces must be equal.
Page 656As you can easily verify, these results are the same as in Chapter 6; in
particular, the ideal transformer does not dissipate any power, since

Note the distinction we have made between the induced voltages (emf’s) e and the
terminal voltages υ. In general, these are not the same.

The results obtained for the ideal case do not completely represent the physical
nature of transformers. A number of loss mechanisms need to be included in a
practical transformer model, to account for the effects of leakage flux, for various
magnetic core losses (e.g., hysteresis), and for the unavoidable resistance of the wires
that form the coils.

Commercial transformer ratings are usually given on the nameplate, which
indicates the following normal operating conditions:

Primary-to-secondary voltage ratio

Design frequency of operation

(Apparent) rated output power

For example, a typical nameplate might read 480:240 V, 60 Hz, 2 kVA. The voltage
ratio can be used to determine the turns ratio, while the rated output power represents
the continuous power level that can be sustained without overheating. It is important
that this power be rated as the apparent power in kilovoltamperes, rather than real
power in kilowatts, since a load with low power factor would still draw current and



(12.39)

therefore operate near rated power. Another important performance characteristic of
a practical transformer is its power efficiency, defined by:

EXAMPLE 12.7 Transformer Nameplate
Problem

Determine the turns ratio and the rated currents of a transformer from nameplate
data.

Solution
Known Quantities: Nameplate data.
Find: α = N1/N2; I1; I2.

Schematics, Diagrams, Circuits, and Given Data: Nameplate data: 120 V/480 V; 48
kVA; 60 Hz.
Assumptions: Assume an ideal transformer.
Analysis: The first element in the nameplate data is a pair of voltages, indicating the
primary and secondary voltages for which the transformer is rated. The ratio α is
found as follows:
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To find the primary and secondary currents, we use the kilovoltampere rating
(apparent power) of the transformer:

Comments: In computing the rated currents, we have assumed that no losses take
place in the transformer; in fact, there will be losses due to coil resistance and



magnetic core effects. These losses result in heating of the transformer and limit its
rated performance.

CHECK YOUR UNDERSTANDING
The high-voltage side of a transformer has 500 turns, and the low-voltage side has
100 turns. When the transformer is connected as a step-down transformer, the load
current is 12 A. Calculate: (a) the turns ratio α; and (b) the primary current. Then, (c)
Calculate the turns ratio if the transformer is used as a step-up transformer.

The output of a transformer under certain conditions is 12 kW. The copper losses are
189 W, and the core losses are 52 W. Calculate the efficiency of this transformer.

EXAMPLE 12.8 Impedance Transformer
Problem

Find the equivalent load impedance seen by the voltage source (i.e., reflected from
secondary to primary) for the transformer of Figure 12.35.

Figure 12.35 Ideal transformer

Solution

Answers: (a) α = 5; (b) I1 = I2/α = 2.4 A; (c) α = 0.2; η = 98 percent



Known Quantities: Transformer turns ratio α.
Find: Reflected impedance .
Assumptions: Assume an ideal transformer.
Analysis: By definition, the load impedance is equal to the ratio of secondary phasor
voltage and current:

To find the reflected impedance, we can express the above ratio in terms of the
primary voltage and current:
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where the ratio V1/I1 is the impedance seen by the source at the primary coil, that is,
the reflected load impedance seen by the primary (source) side of the circuit. Thus,
we can write the load impedance Z2 in terms of the primary circuit voltage and
current; we call this the reflected impedance :

Thus, . Figure 12.36 depicts the equivalent circuit with the load impedance
reflected back to the primary.

Figure 12.36 Equivalent reflected circuit for impedance transformer.

Comments: The equivalent reflected circuit calculations are convenient because all
circuit elements can be referred to a single set of variables (i.e., only primary or
secondary voltages and currents).



CHECK YOUR UNDERSTANDING
The output impedance of a servo amplifier is 250 Ω. The servomotor that the
amplifier must drive has an impedance of 2.5 Ω. Calculate the turns ratio of the
transformer required to match these impedances.

12.5 ELECTROMECHANICAL ENERGY
CONVERSION
From the material developed thus far, it should be apparent that
electromagnetomechanical devices are capable of converting mechanical forces and
displacements to electromagnetic energy, and that the converse is also possible. The
objective of this section is to formalize the basic principles of energy conversion in
electromagnetomechanical systems, and to illustrate its usefulness and potential for
application by presenting several examples of energy transducers. A transducer is a
device that can convert electric to mechanical energy (in this case, it is often called
an actuator), or vice versa (in which case it is called a sensor).

Several physical mechanisms permit conversion of electric to mechanical energy
and back, including the piezoelectric effect,3 consisting of the generation of a
change in electric field in the presence of strain in certain crystals (e.g., quartz), and
electrostriction and magnetostriction, in which changes in the dimension of certain
materials lead to a change in their electrical (or magnetic) properties. This chapter is
concerned only with transducers in which electric energy is converted to mechanical
energy through the coupling of a magnetic field. It is important to note that all
rotating machines (motors and generators) fit the basic definition of
electromechanical transducers we have just given.
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Forces in Magnetic Structures
Mechanical forces can be converted to electric signals, and vice versa, by means of
the coupling provided by energy stored in the magnetic field. In this subsection, we
discuss the computation of mechanical forces and of the corresponding

Answer: α = 10



electromagnetic quantities of interest; these calculations are of great practical
importance in the design and application of electromechanical actuators. For
example, a problem of interest is the computation of the current required to generate
a given force in an electromechanical structure. This is the kind of application that is
likely to be encountered by the engineer in the selection of an electromechanical
device for a given task.

As already seen in this chapter, an electromechanical system includes an
electrical system, interacting through a magnetic field. Figure 12.37 illustrates the
coupling between the electrical and mechanical systems. In the mechanical system,
energy loss can occur because of the heat developed as a consequence of friction,
while in the electrical system, analogous losses are incurred because of resistance.
Loss mechanisms are also present in the magnetic coupling medium, since eddy
current losses and hysteresis losses are unavoidable in ferromagnetic materials.
Either system can supply energy, and either system can store energy. Thus, the figure
depicts the flow of energy from the electrical to the mechanical system, accounting
for these various losses. The same flow could be reversed if mechanical energy were
converted to electrical form.

Figure 12.37 Losses in electromechanical energy conversion.

Moving-Iron Transducers
One important class of electromagnetomechanical transducers is that of moving-iron
transducers, which include common devices such as electromagnets, solenoids, and
relays. The simplest example of a moving-iron transducer is the of Figure 12.38, in
which the U-shaped element is fixed and the bar is movable. In the following
paragraphs, we shall derive a relationship between the current applied to the coil, the
displacement of the movable bar, and the magnetic force acting in the air gap.



(12.40)

(12.41)

(12.42)

(12.43)

Figure 12.38 Basic electromagnet.

The principle that will be applied throughout the section is that for a mass to be
displaced, some work needs to be done; this work corresponds to a change in the
energy stored in the electromagnetic field, which causes the mass to be displaced.
With reference to Figure 12.38, let fe represent the magnetic force acting on the bar
and x the displacement of the bar, in the direction shown. Then the net work Wm into
the electromagnetic field is equal to the sum of the work done by Page 660the
electric circuit plus the work done by the mechanical system. Therefore, for an
incremental amount of work, we can write

where e is the electromotive force across the coil and the minus sign is due to the
sign convention indicated in Figure 12.38. Recalling that the emf e is equal to the
derivative of the flux linkage (equation 12.16), we can further expand equation 12.40
to obtain

or

Now, observe that the flux in the magnetic structure of Figure 12.38 depends on two
variables, which are in effect independent: the current through the coil and the
displacement of the bar. Each of these variables can cause the magnetic flux to
change. Similarly, the energy stored in the electromagnetic field is also dependent on
both current and displacement. Thus we can rewrite equation 12.42 as follows:



(12.44)

(12.45)

(12.46)

(12.47)

(12.48)

Since i and x are independent variables, we can write

From the first expression in equation 12.44 we obtain the relationship

where  is the co-energy. Observe that the force acting to push the bar toward the
electromagnet structure is of opposite sign to fe, and assuming that , we can
write

Equation 12.46 includes a very important assumption: the energy is equal to the co-
energy. If you refer to Figure 12.7, you will realize that in general this is not true.
Energy and co-energy are equal only if the λ-i relationship is linear. Thus, the useful
result of equation 12.46, stating that the magnetic force acting on the moving iron is
proportional to the rate of change of stored energy with displacement, applies only
for linear magnetic structures.

Thus, to determine the forces present in a magnetic structure, it is necessary to
compute the energy stored in the magnetic field. To simplify the analysis, we assume
hereafter that the structures analyzed are magnetically linear. This is, of course, only
an approximation, in that it neglects a number of practical aspects of
electromechanical systems (e.g., the nonlinear λ-i curves described earlier, and the
core losses typical of magnetic materials), but it permits relatively simple analysis of
many useful magnetic structures. Thus, although the analysis method presented Page
661in this section is only approximate, it will serve the purpose of providing a
feeling for the direction and the magnitude of the forces and currents present in
electromechanical devices. On the basis of a linear approximation, it can be shown
that the stored energy in a magnetic structure is given by

and since the flux and the mmf are related by the expression

the stored energy can be related to the reluctance of the structure according to



(12.49)

(12.50)

1.

2.

3.

where the reluctance has been explicitly shown to be a function of displacement, as is
the case in a moving-iron transducer. Finally, then, we use the following approximate
expression to compute the magnetic force acting on the moving iron:

Examples 12.9, 12.10, and 12.12 illustrate the application of this approximate
technique for the computation of forces and currents (the two problems of practical
engineering interest to the user of such electromechanical systems) in some common
devices. The Focus on Problem Solving box outlines the solution techniques for
these classes of problems.

F O C U S  O N  P R O B L E M  S O LV I N G

ANALYSIS OF MOVING-IRON
ELECTROMECHANICAL TRANSDUCERS
Calculation of current required to generate a given for

Derive an expression for the reluctance of the structure as a function of air 
displacement: 
Express the magnetic flux in the structure as a function of the mmf (i.e., of
current I) and of the reluctance :

Compute an expression for the force, using the known expressions for the 
and for the reluctance:



4.
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Solve the expression in step 3 for the unknown current i.

Calculation of force generated due to transducer
geometry and mmf
Repeat steps 1 through 3 above, substituting the known current to solve for the f
f.

EXAMPLE 12.9 An Electromagnet
Problem

An electromagnet is used to collect and support a solid piece of steel, as shown in
Figure 12.38. Calculate the starting current required to lift the load and the holding
current required to keep the load in place once it has been lifted and is attached to the
magnet. Assume that the cross-sectional areas of the electromagnet, load (bar), and
air gap are equal.

Solution
Known Quantities: Geometry, magnetic permeability, number of coil turns, mass,
acceleration of gravity, initial position of steel bar.
Find: Current required to lift the bar; current required to hold the bar in place.
Schematics, Diagrams, Circuits, and Given Data:

N = 500
μ0 = 4π × 10–7

μr = 104 (equal for electromagnet and load)



Initial distance (air gap) = 0.5 m
Magnetic path length of electromagnet = l1 = 0.60 m

Magnetic path length of movable load = l2 = 0.30 m

Gap cross-sectional area = 3 × 10– 4 m2

m = mass of load = 5 kg

g = 9.8 m/s2

Assumptions: None.
Analysis: To compute the current we need to derive an expression for the force in the
air gap. We use the equation

and calculate the reluctance, flux and force as follows:
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With this expression we can now calculate the current required to overcome the
gravitational force when the load is 0.5 m away. The force we must overcome is mg
= 49 N.

Finally, we calculate the holding current by letting x = 0:



1.

2.

Comments: Note how much smaller the holding current is than the lifting current.

One of the more common practical applications of the concepts discussed in this
section is the solenoid. Solenoids find application in a variety of electrically
controlled valves. The action of a solenoid valve is such that when it is energized, the
plunger moves in such a direction as to permit the flow of a fluid through a conduit,
as shown schematically in Figure 12.39.

Figure 12.39 Application of the solenoid as a valve

Examples 12.10 and 12.11 illustrate the calculations involved in the
determination of forces and currents in a solenoid.

EXAMPLE 12.10 A Solenoid
Problem

Figure 12.40 depicts a simplified representation of a solenoid. The restoring force for
the plunger is provided by a spring.

Derive a general expression for the force exerted on the plunger as a function of
the plunger position x.
Determine the mmf required to pull the plunger to its end position (x = a).



1.

Figure 12.40 A solenoid

Solution
Known Quantities: Geometry of magnetic structure; spring constant.
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Find: f; mmf.
Schematics, Diagrams, Circuits, and Given Data: a = 0.01 m; lgap = 0.001 m; k = 10
N/m.
Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.
At x = 0 the plunger is in the gap by an infinitesimal displacement ε.
Analysis:

Force on the plunger. To compute a general expression for the magnetic force
exerted on the plunger, we need to derive an expression for the force in the air
gap. Using equation 12.50, we see that we need to compute the reluctance of the
structure and the magnetic flux to derive an expression for the force.
Since we are neglecting the iron reluctance, we can write the expression for the
reluctance as follows. Note that the area of the gap is variable, depending on the
position of the plunger, as shown in Figure 12.41.



2.

Figure 12.41 Detail of solenoid structure.

The derivative of the reluctance with respect to the displacement of the plunger
can then be computed to be

Knowing the reluctance, we can calculate the magnetic flux in the structure as a
function of the coil current:

The force in the air gap is given by
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Thus, the force in the gap is proportional to the square of the current and does
not vary with plunger displacement.
Calculation of magnetomotive force. To determine the required magnetomotive
force, we observe that the magnetic force must overcome the mechanical
(restoring) force generated by the spring. Thus, . For the stated
values, , and

The required mmf can be most effectively realized by keeping the current value
relatively low and using a large number of turns.

Comments: The same mmf can be realized with an infinite number of combinations
of current and number of turns; however, there are tradeoffs involved. If the current
is very large (and the number of turns small), the required wire diameter will be very



large. Conversely, a small current will require a small wire diameter and a large
number of turns. A homework problem explores this tradeoff.

CHECK YOUR UNDERSTANDING
A solenoid is used to exert force on a spring. Estimate the position of the plunger if
the number of turns in the solenoid winding is 1,000 and the current going into the
winding is 40 mA. Use the same values as in Example 12.10 for all other variables.

EXAMPLE 12.11 Transient Response of a Solenoid
Problem

Analyze the current response of the solenoid of Example 12.10 to a step change in
excitation voltage. Plot the force and current as a function of time.

Solution
Known Quantities: Coil inductance and resistance; applied current.
Find: Current and force response as a function of time.
Schematics, Diagrams, Circuits, and Given Data: See Example 12.10. N = 1,000
turns. V = 12 V. Rcoil = 5 Ω.

Assumptions: The inductance of the solenoid is approximately constant and is equal
to the midrange value (plunger displacement equal to a/2).
Analysis: From Example 12.10, we have an expression for the reluctance of the
solenoid:

Answer: x = 0.5 mm
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Using equation 12.30 and assuming x = a/2, we calculate the inductance of the
structure:

The equivalent solenoid circuit is shown in Figure 12.42. When the switch is closed,
the solenoid current rises exponentially with time constant . As shown
in Chapter 4, the response is of the form

To determine how the magnetic force responds during the turn-on transient, we return
to the expression for the force derived in Example 12.10:

The two curves are plotted in Figure 12.42(b).

Figure 12.42 Solenoid equivalent electric circuit and step response

Comments: The assumption that the inductance is approximately constant is not
quite accurate. The reluctance (and therefore the inductance) of the structure will
change as the plunger moves into position. However, allowing for the inductance to
be a function of plunger displacement causes the problem to become nonlinear and
requires numerical solution of the differential equation (i.e., the transient response
results of Chapter 4 no longer apply).



1.

2.

3.

4.

5.

6.

Practical Facts About Solenoids

Solenoids can be used to produce linear or rotary motion, in either the push or the
pull mode. The most common solenoid types are listed here:

Single-action linear (push or pull). Linear stroke motion, with a restoring
force (e.g., from a spring), to return the solenoid to the neutral position.
Double-acting linear. Two solenoids back to back can act in either direction.
The restoring force is provided by another mechanism (e.g., a spring).
Mechanical latching solenoid (bistable). An internal latching mechanism
holds the solenoid in place against the load.
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Keep solenoid. Fitted with a permanent magnet so that no power is needed to
hold the load in the pulled-in position. Plunger is released by applying a
current pulse of opposite polarity to that required to pull in the plunger.
Rotary solenoid. Constructed to permit rotary travel. Typical range is 25 to
95°. Return action via mechanical means (e.g., a spring).
Reversing rotary solenoid. Rotary motion is from one end to the other; when
the solenoid is energized again, it reverses direction.

Solenoid power ratings are dependent primarily on the current required by the
coil, and on the coil resistance. The I2R is the primary power sink, and solenoids
are therefore limited by the heat they can dissipate. Solenoids can operate in
continuous or pulsed mode. The power rating depends on the mode of operation,
and can be increased by adding hold-in resistors to the circuit to reduce the
holding current required for continuous operation. The hold resistor is switched
into the circuit once the pull-in current required to pull the plunger has been
applied and the plunger has moved into place. The holding current can be
significantly smaller than the pull-in current.

A common method to reduce the solenoid holding current employs a normally
closed (NC) switch in parallel with a hold-in resistor. In Figure 12.43, when the
pushbutton (PB) closes the circuit, full voltage is applied to the solenoid coil,
bypassing the resistor through the NC switch. When the solenoid closes, the NC
switch opens, connecting the resistor in series with the coil. The resistor will now
limit the current to the value required to hold the solenoid in position. Note the
diode “snubber” circuit to shunt the reverse current when the solenoid is
deenergized.



Figure 12.43 Circuit used to reduce solenoid holding current.

Another electromechanical device that finds common application in industrial
practice is the relay. The relay is an electromechanical switch that permits the
opening and closing of electrical contacts by means of an electromagnetic structure
similar to those discussed earlier in this section.

A relay such as would be used to start a high-voltage single-phase motor is
shown in Figure 12.44. The magnetic structure has dimensions equal to 1 cm on all
sides, and the transverse dimension is 8 cm. The relay works as follows. When the
pushbutton is pressed, an electric current flows through the coil and generates a field
in the magnetic structure. The resulting force draws the movable part toward the
fixed part, causing an electrical contact to be made. The advantage of the relay is that
a relatively low-level current can be used to control the opening and closing of a
circuit that can carry large currents. In this particular example, the relay is energized
by a 120-VAC contact, establishing a connection in a 240-VAC circuit. Such relay
circuits are commonly employed to remotely switch large industrial loads.

Figure 12.44 A relay

Circuit symbols for relays are shown in Figure 12.45. An example of the
calculations that would typically be required in determining the mechanical and
electrical characteristics of a simple relay are given in Example 12.12.
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Figure 12.45 Circuit symbols and basic operation of relays
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EXAMPLE 12.12 A Relay
Problem



Figure 12.46 depicts a simplified representation of a relay. Determine the current
required for the relay to make contact (i.e., pull in the ferromagnetic plate) from a
distance x.

Figure 12.46 Relay circuit for Example 12.12.

Solution
Known Quantities: Relay geometry; restoring force to be overcome; distance
between bar and relay contacts; number of coil turns.
Find: i.
Schematics, Diagrams, Circuits, and Given Data:

.
Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.
Analysis:

The derivative of the reluctance with respect to the displacement of the plunger can
then be computed as

Knowing the reluctance, we can calculate the magnetic flux in the structure as a
function of the coil current:

and the force in the air gap is given by

The magnetic force must overcome a mechanical holding force of 5 N; thus,



(12.51)

or

Comments: The current required to close the relay is much larger than that required
to hold the relay closed, because the reluctance of the structure is much smaller once
the gap is reduced to zero.
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Moving-Coil Transducers
Another important class of electromagnetomechanical transducers is that of
movingcoil transducers. This class of transducers includes a number of common
devices, such as microphones, loudspeakers, and all electric motors and generators.
The aim of this section is to explain the relationship between a fixed magnetic field,
the emf across the moving coil, and the forces and motions of the moving element of
the transducer.

The basic principle of operation of electromechanical transducers is that a
magnetic field exerts a force on a charge moving through it. The equation describing
this effect is

which is a vector equation, as explained earlier. To correctly interpret equation 12.51,
we must recall the right-hand rule and apply it to the transducer, illustrated in Figure
12.47, depicting a structure consisting of a sliding bar which makes contact with a
fixed conducting frame. Although this structure does not represent a practical
actuator, it will be a useful aid in explaining the operation of moving-coil transducers
such as motors and generators. In Figure 12.47, and in all similar figures in this
section, a small cross represents the “tail” of an arrow pointing into the page, while a
dot represents an arrow pointing out of the page; this convention will be useful in
visualizing three-dimensional pictures.



Figure 12.47 A simple electromechanical motion transducer

CHECK YOUR UNDERSTANDING
In the circuit in Figure 12.47, the conducting bar is moving with a velocity of 6 m/s.
The flux density is 0.5 Wb/m2, and l = 1.0 m. Find the magnitude of the resulting
induced voltage.
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Motor Action

A moving-coil transducer can act as a motor when an externally supplied current
flowing through the electrically conducting part of the transducer is converted to a
force that can cause the moving part of the transducer to be displaced. Such a current
would flow, for example, if the support of Figure 12.47 were made of conducting
material, so that the conductor and the right-hand side of the support “rail” were to
form a loop (in effect, a one-turn coil). To understand the effects of this current flow
in the conductor, one must consider the fact that a charge moving at a velocity u′
(along the conductor and perpendicular to the velocity of the conducting bar, as
shown in Figure 12.48) corresponds to a current i = dq/dt along the length l of the

Answer: 3 V
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(12.53)

(12.54)

(12.55)

(12.56)

(12.57)

conductor. This fact can be explained by considering the current i along a differential
element dl and writing

Figure 12.48 Simplified structure of moving-coil transducer.

since the differential element dl would be traversed by the current in time dt at a
velocity u′. Thus we can write

or

for the geometry of Figure 12.48. From Section 12.1, the force developed by a charge
moving in a magnetic field is, in general, given by

For the term qu′ we can substitute il, to obtain

Using the right-hand rule, we determine that the force f′ generated by the current i is
in the direction that would push the conducting bar to the left. The magnitude of this
force is f′ = Bli if the magnetic field and the direction of the current are
perpendicular. If they are not, then we must consider the angle γ formed by B and l;
in the more general case,



(12.58)

The phenomenon we have just described is sometimes referred to as the Bli law.

Generator Action

The other mode of operation of a moving-coil transducer occurs when an external
force causes the coil (i.e., the moving bar, in Figure 12.47) to be displaced. This
external force is converted to an emf across the coil, as will be explained in the
following paragraphs.

Since positive and negative charges are forced in opposite directions in the
transducer of Figure 12.47, a potential difference will appear across the conducting
bar; this potential difference is the electromotive force, or emf. The emf must be
equal to the force exerted by the magnetic field. In short, the electric force per unit
Page 672charge (or electric field) e/l must equal the magnetic force per unit charge
f/q = Bu. Thus, the relationship

holds whenever B, l, and u are mutually perpendicular, as in Figure 12.49. If
equation 12.58 is analyzed in greater depth, it can be seen that the product lu (length
times velocity) is the area crossed per unit time by the conductor. If one visualizes
the conductor as “cutting” the flux lines into the base in Figure 12.48, it can be
concluded that the electromotive force is equal to the rate at which the conductor
“cuts” the magnetic lines of flux. It will be useful for you to carefully absorb this
notion of conductors cutting lines of flux, since this greatly simplifies the
understanding of the material in this section and in Chapter 13.

In general, B, l, and u are not necessarily perpendicular. In this case one needs to
consider the angles formed by the magnetic field with the normal to the plane
containing l and u, and the angle between l and u. The former is angle α of Figure
12.49; the latter is angle β in the same figure. It should be apparent that the optimum
values of α and β are 0° and 90°, respectively. Thus, most practical devices are
constructed with these values of α and β. Unless otherwise noted, it will be tacitly
assumed that this is the case. The Blu law just illustrated explains how a moving
conductor in a magnetic field can generate an electromotive force.
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Figure 12.49 When magnetic flux, current and velocity vectors are
mutually perpendicular, e = Blu.

To summarize the electromechanical energy conversion that takes place in the
simple device of Figure 12.47, we must note now that the presence of a current in the
loop formed by the conductor and the rail requires that the conductor move to the
right at a velocity u (Blu law), thus cutting the lines of flux and generating the emf
that gives rise to current i. On the other hand, the same current causes a force f′ to be
exerted on the conductor (Bli law) in the direction opposite to the movement of the
conductor. Thus, it is necessary that an externally applied force fext exists to cause the
conductor to move to the right with a velocity u. The external force must overcome
the force f′. This is the basis of electromechanical energy conversion.

An additional observation we must make at this point is that the current i flowing
around a closed loop generates a magnetic field, as explained in Section 12.1. Since
this additional field is generated by a one-turn coil in our illustration, it is reasonable
to assume that it is negligible with respect to the field already present (perhaps
established by a permanent magnet). Finally, we must consider that this coil links a
certain amount of flux, which changes as the conductor moves from left to right. The
area crossed by the moving conductor in time dt is

so that if the flux density B is uniform, the rate of change of the flux linked by the
one-turn coil is

In other words, the rate of change of the flux linked by the conducting loop is equal
to the emf generated in the conductor. You should realize that this statement simply
confirms Faraday’s law.
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It was briefly mentioned that the Blu and Bli laws indicate that, thanks to the
coupling action of the magnetic field, a conversion of mechanical to electric energy
—or the converse—is possible. The simple structures of Figures 12.47 and 12.48
can, again, serve as an illustration of this energy conversion process, although we
have not yet indicated how these idealized structures can be converted to a practical
device. In this section we begin to introduce some physical considerations. Before we
proceed any further, we should try to compute the power—electric and mechanical—
that is generated (or is required) by our ideal transducer. The electric power is given
by

while the mechanical power required, say, to move the conductor from left to right is
given by the product of force and velocity:

The principle of conservation of energy states that in this ideal (lossless) transducer
we can convert a given amount of electric energy to mechanical energy, or vice versa.
We can utilize the structure of Figure 12.47 to illustrate this reversible action. If the
closed path containing the moving conductor is now formed from a closed circuit
containing a resistance R and a battery VB, as shown in Figure 12.50, the externally
applied force fext generates a positive current i into the battery provided that the emf
is greater than VB. When e = Blu > VB, the ideal transducer acts as a generator. For
any given set of values of B, l, R, and VB, there will exist a velocity u for which the
current i is positive. If the velocity is lower than this value—that is, if e = Blu < VB—
then the current i is negative, and the conductor is forced to move to the right. In this
case the battery acts as a source of energy and the transducer acts as a motor (i.e.,
electric energy drives the mechanical motion).

Figure 12.50 Motor and generator action in an ideal transducer
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In practical transducers, we must be concerned with the inertia, friction, and
elastic forces that are invariably present on the mechanical side of the transducer.
Similarly, on the electrical side we must account for the inductance of the circuit, its
resistance, and possibly some capacitance. Consider the structure of Figure 12.51. In
the figure, the conducting bar has been placed on a surface with a coefficient of
sliding friction b; it has a mass m and is attached to a fixed structure by means of a
spring with spring constant k. The equivalent circuit representing the coil inductance
and resistance is also shown.

Figure 12.51 A more realistic representation of the transducer of Figure
12.50

If we recognize that u = dx/dt in the figure, we can write the equation of motion
for the conductor as

where the Bli term represents the driving input that causes the mass to move. The
driving input in this case is provided by the electric energy source υS; thus the
transducer acts as a motor, and f is the electromechanical force acting on the mass of
the conductor. On the electrical side, the circuit equation is
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Equations 12.63 and 12.64 could then be solved by knowing the excitation voltage υS
and the physical parameters of the mechanical and electric circuits. For example, if
the excitation voltage were sinusoidal, with

and the field density were constant



(12.65)

1.

2.

3.

then we could postulate sinusoidal solutions for the transducer velocity u and current
i:

and use phasor notation to solve for the unknowns (U, I, θu, θi).

The results obtained in the present section apply directly to transducers that are
based on translational (linear) motion. These basic principles of electromechanical
energy conversion and the analysis methods developed in the section are next applied
to practical transducers in a few examples. A Focus on Problem Solving box outlines
the analysis procedure for moving-coil transducers.

F O C U S  O N  P R O B L E M  S O LV I N G

ANALYSIS OF MOVING-COIL
ELECTROMECHANICAL TRANSDUCERS

Apply KVL to write the differential equation for the electrical subsyst
including the back emf (e = Blu) term.
Apply Newton’s second law to write the differential equation for the mechan
subsystem, including the magnetic force f = Bli term.
Use a Laplace transform on the two coupled differential equations to formula
system of linear algebraic equations, and solve for the desired mechanical 
electrical variables.

EXAMPLE 12.13 A Loudspeaker



Problem

A loudspeaker, shown in Figure 12.52, uses a permanent magnet and a moving coil
to produce the vibrational motion that generates the pressure waves we perceive as
sound. Vibration of the loudspeaker is caused by changes in the input current to a
coil; the coil is, in turn, coupled to a magnetic structure that can produce time-
varying forces on the speaker diaphragm. A simplified model for the mechanics of
the speaker is also shown in Figure 12.52. The force exerted on the coil is also
exerted on the mass of the speaker Page 675diaphragm, as shown in Figure 12.53,
which depicts a free-body diagram of the forces acting on the loudspeaker
diaphragm.

Figure 12.52 Loudspeaker

Figure 12.53 Forces acting on loudspeaker diaphragm

The force exerted on the mass fi is the magnetic force due to current flow in the
coil. The electric circuit that describes the coil is shown in Figure 12.54, where L
represents the inductance of the coil, R represents the resistance of the windings, and
e is the emf induced by the coil moving through the magnetic field.



Figure 12.54 Model of transducer electrical side

Determine the frequency response U(jω)/V(jω) of the speaker.

Solution
Known Quantities: Circuit and mechanical parameters; magnetic flux density;
number of coil turns; coil radius.
Find: Frequency response of loudspeaker U(jω)/V(jω).
Schematics, Diagrams, Circuits, and Given Data: Coil radius = 0.05 m; L = 10 mH;
R = 8 Ω; m = 0.01 kg; b = 22.75 N-s2/m; k = 5 × 104 N/m; N = 47; B = 1 T.
Analysis: To determine the frequency response of the loudspeaker, we write the
differential equations that describe the electrical and mechanical subsystems. We
apply KVL to the electric circuit, using the circuit model of Figure 12.54, in which
we have represented the Blu term (motional voltage) in the form of a back
electromotive force e:

or

Next, we apply Newton’s second law to the mechanical system, consisting of a
lumped mass representing the mass of the moving diaphragm m; an elastic (spring)
term, which represents Page 676the elasticity of the diaphragm k; and a damping
coefficient b, representing the frictional losses and aerodynamic damping affecting
the moving diaphragm.

where fi = Bli and therefore



Note that the two equations are coupled; that is, a mechanical variable appears in the
electrical equation (velocity u in the Blu term), and an electrical variable appears in
the mechanical equation (current i in the Bli term).

To derive the frequency response, we use the Laplace transform on the two
equations to obtain

We can write the above equations in matrix form and resort to Cramer’s rule to solve
for U(s) as a function of V(s):

with solution

or

To determine the frequency response of the loudspeaker, we let s → jω in the above
expression:

where l = 2π Nr, and substitute the appropriate numerical parameters:

The resulting frequency response is plotted in Figure 12.55.
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Figure 12.55 Frequency response of loudspeaker

CHECK YOUR UNDERSTANDING
In Example 12.13, we examined the frequency response of a loudspeaker. However,
over time, permanent magnets may become demagnetized. Find the frequency
response of the same loudspeaker if the permanent magnet has lost its strength to a
point where B = 0.95 T.

FOCUS ON MEASUREMENTS

Answer: 



Seismic Transducer
Problem:
The device shown in Figure 12.56 is called a seismic transducer and can be used to
measure the displacement, velocity, or acceleration of a body. The permanent magnet
of mass m is supported on the case by a spring k, and there is some viscous damping
b between the magnet and the case; the coil is fixed to the case. You may assume that
the coil has length l and resistance and inductance Rcoil and Lcoil, respectively; the
magnet exerts a magnetic field B. Find the transfer function between the output
voltage υout and the velocity of the body dxc/dt. Note that x(t) is not equal to zero
when the system is at rest. We ignore this offset displacement.
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Figure 12.56 An electro-magneto-mechanical seismic transducer

Solution:
First we apply KVL around the electric circuit to write the differential equation
describing the electrical systems:

Also note that υout = −Routi. Next, we observe that the displacement of the magnet,
xm, is equal to the sum of the case displacement, xc, and the relative displacement
between the magnet and the case, x(t): xm = x + xc. Apply Newton’s second law to the
mass of the magnet, m, we obtain

Substituting the relation xm = x + xc, we obtain

From this expression we can now derive the transfer function between the
displacement of the case, Xc (s), and the output voltage, Vout(s). Let R = Rcoil + Rout.
Then



1.

2.

3.

Now, let the velocity of the case be Uc(s) = sXc(s); since Vout(s) = − Rout I(s), the
transfer function from case velocity to output voltage becomes
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Conclusion
This chapter introduces electromechanical systems. Electromechanical devices
include a variety of sensors and transducers that find common engineering
application in many fields. All electromechanical devices use the coupling between
mechanical and electrical systems provided by a magnetic field. This magnetic
coupling makes it possible to convert energy from electric to mechanical form, and
back. Devices that convert electric to mechanical energy include all forms of
electromagnetomechanical actuators, such as electromagnets, solenoids, relays,
electrodynamic shakers, linear motors, and loudspeakers. Conversion from
mechanical to electric energy results in generators, and various sensors that can
detect mechanical displacement, velocity, or acceleration. Upon completing this
chapter, you should have mastered the following learning objectives:

Review the basic principles of electricity and magnetism. The basic laws that
govern electromagnetomechanical energy conversion are Faraday’s law, stating
that a changing magnetic field can induce a voltage, and Ampère’s law, stating
that a current flowing through a conductor generates a magnetic field.
Use the concepts of reluctance and magnetic circuit equivalents to compute
magnetic flux and currents in simple magnetic structures. The two fundamental
variables in the analysis of magnetic structures are the magnetomotive force and
the magnetic flux; if some simplifying approximations are made, these quantities
are linearly related through the reluctance parameter, in much the same way as
voltage and current are related through resistance according to Ohm’s law. This
simplified analysis permits approximate calculation of forces and currents in
electromagnetomechanical structures.
Understand the properties of magnetic materials and their effects on magnetic
circuit models. Magnetic materials are characterized by a number of nonideal



4.

5.

12.1
a.

b.

c.

12.2

properties, which must be considered in a detailed analysis of any
electromechanical transducer. The most important phenomena are saturation,
eddy currents, and hysteresis.
Use magnetic circuit models to analyze transformers. One of the most common
magnetic structures in use in electric power systems is the transformer. The
methods developed in the earlier sections provide all the tools needed to perform
an analysis of these important devices.
Model and analyze force generation in electromagnetomechanical systems.
Analyze moving-iron transducers (electromagnets, solenoids, relays) and
moving-coil transducers (electrodynamic shakers, loudspeakers, and seismic
transducers). Electromagnetomechanical transducers can be broadly divided into
two categories: moving-iron transducers, which include all electromagnets,
solenoids, and relays; and moving-coil transducers, which include loudspeakers,
electrodynamic shakers, and all electric motors. Section 12.5 develops analysis
and design methods for these devices.

HOMEWORK PROBLEMS
Section 12.1: Electricity and Magnetism

For the electromagnet of Figure P12.1:

Find the flux density in the core.

Sketch the magnetic flux lines and indicate their direction.

Indicate the north and south poles of the magnet.

Figure P12.1
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A single loop of wire carrying current I2 is placed near the end of a solenoid
having N turns and carrying current I1, as shown in Figure P12.2. The solenoid
is fastened to a horizontal surface, but the single coil is free to move. With the
currents directed as shown, is there a resultant force on the single coil? If so, in
what direction? Why?



12.3

12.4

12.5

a.

b.

 

12.6

12.7
a.

Figure P12.2

A practical LVDT is typically connected to a resistive load. Derive the LVDT
equations in the presence of a resistive load RL connected across the output
terminals, using the results of the Focus on Measurements box, “Linear
Variable Differential Transformer.” Let RS, LS be the secondary coil
parameters.

On the basis of the equations of the Focus on Measurements box “Linear
Variable Differential Transformer,” and of the results of Problem 12.3, derive
the frequency response of the LVDT, and determine the range of frequencies
for which the device will have maximum sensitivity for a given excitation.
(Hint: Compute dυout/dυex, and set the derivative equal to zero to determine the
maximum sensitivity.)

An iron-core inductor has the following characteristic:

Determine the energy, co-energy, and incremental inductance for λ = 1 V-
s.

Given that the coil resistance is 1 Ω and that

determine the voltage across the terminals on the inductor.

Repeat Problem 12.5 if

An iron-core inductor has the characteristic shown in Figure P12.7:

Determine the energy and the incremental inductance for i = 1.0 A.



b.

12.8

a.

b.

12.10
a.

b.

c.

d.

12.9

Given that the coil resistance is 2 Ω and that i(t) = 0.5 sin 2πt, determine
the voltage across the terminals of the inductor.

Figure P12.7

Determine the reluctance of the structure of Figure 12.12 in the text if the
cross-sectional area is A = 0.1 m2 and μr = 2,000. Assume that each leg of the
mean magnetic path is 0.1 m in length and that it runs through the exact center
of the structure.

Section 12.2: Magnetic Circuits
Find the reluctance of a magnetic circuit if a magnetic flux ϕ = 4.2 × 10−4

Wb is established by an impressed mmf of 400 A-turns.

Find the magnetizing force H in SI units if the magnetic circuit is 6 in
long.

For the circuit shown in Figure P12.10:

Determine the reluctance values and show the magnetic circuit, assuming
that μ = 3,000μ0.

Determine the inductance of the device.

The inductance of the device can be modified by cutting an air gap in the
magnetic structure. If a gap of 0.1 mm is cut in the arm of length l3, what
is the new value of inductance?

As the gap is increased in size (length), what is the limiting value of
inductance? Neglect leakage flux and fringing effects.



12.11

12.12

Figure P12.10

The magnetic circuit shown in Figure P12.11 has two parallel paths. Find the
flux and flux density in each leg of the magnetic circuit. Neglect fringing at
the air gaps and any leakage fields. N = 1,000 turns, i = 0.2 A, lg1 = 0.02 cm,
and lg2 = 0.04 cm. Assume the reluctance of the magnetic core to be
negligible.
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Figure P12.11

Find the current necessary to establish a flux of ϕ = 3 × 10−4 Wb in the series
magnetic circuit of Figure P12.12. Here liron = lsteel = 0.3 m, area (throughout)
= 5 × 10−4 m2, and N = 100 turns. Assume μr = 5,195 for cast iron and μr =
1,000 for cast steel.

Figure P12.12



12.13

a.

b.

12.15

12.14

Find the magnetic flux ϕ established in the series magnetic circuit of Figure
P12.13.

Figure P12.13

Find the current I required to establish a flux ϕ = 2.4 × 10−4 Wb in the
magnetic circuit of Figure P12.14. Here area(throughout) = 2 × 10−4 m2,
lab = lef = 0.05 m, laf = lbe = 0.02 m, lbc = ldc, and the material is sheet
steel.

Compare the mmf drop across the air gap to that across the rest of the
magnetic circuit. Discuss your results, using the value of μ for each
material.

Figure P12.14

For the series-parallel magnetic circuit of Figure P12.15, find the value of I
required to establish a flux in the gap of ϕ = 2 × 10−4 Wb. Here, lab = lbg = lgh
= lha = 0.2 m, lbc = lfg = 0.1 m, lcd = lef = 0.099 m, and the material is sheet
steel.



12.16

a.

b.

c.

12.17

a.

Figure P12.15

Refer to the actuator of Figure P12.16. The entire device is made of sheet
steel. The coil has 2,000 turns. The armature is stationary so that the length of
the air gaps, g = 10 mm, is fixed. A direct current passing Page 682through
the coil produces a flux density of 1.2 T in the gaps. Assume μr = 4,000 for
sheet steel. Determine:

The coil current.

The energy stored in the air gaps.

The energy stored in the steel.

Figure P12.16

A core is shown in Figure P12.17, with μr = 2,000 and N = 100. Find:

The current needed to produce a flux density of 0.4 Wb/m2 in the center
leg.



b.

12.18

a.

b.

12.19

The current needed to produce a flux density of 0.8 Wb/m2 in the center
leg.

Figure P12.17

Section 12.4: Transformers
For the transformer shown in Figure P12.18, N = 1,000 turns, l1 = 16 cm, A1
= 4 cm2, l2 = 22 cm, A2 = 4 cm2, l3 = 5 cm, and A3 = 2 cm2. The relative
permeability of the material is μr = 1,500.

Construct the equivalent magnetic circuit, and find the reluctance
associated with each part of the circuit.

Determine the self-inductance and mutual inductance for the pair of coils
(that is, L11, L22, and M = L12 = L21).

Figure P12.18

A transformer is delivering power to a 300-Ω resistive load. To achieve the
desired power transfer, the turns ratio is chosen so that the resistive load
referred to the primary is 7,500 Ω. The parameter values, referred to the
secondary winding, are:



a.

b.

12.20
a.

b.

c.

12.21

a.

b.

c.

12.22

12.23

a.

b.

c.

d.

12.24

12.25

a.

Core losses are negligible.

Determine the turns ratio.

Determine the input voltage, current, and power and the efficiency when
this transformer is delivering 12 W to the 300-Ω load at a frequency f =
10,000/2π Hz.

A 220/20-V transformer has 50 turns on its low-voltage side. Calculate:

The number of turns on its high side.

The turns ratio α when it is used as a step-down transformer.

The turns ratio α when it is used as a step-up transformer.

The high-voltage side of a transformer has 750 turns, and the low-voltage
side has 50 turns. When the high side is connected to a rated voltage of 120 V,
60 Hz, a rated load of 40 A is connected to the low side. Calculate:

The turns ratio.

The secondary voltage (assuming no internal transformer impedance
voltage drops).

The resistance of the load.

A transformer is to be used to match an 8-Ω loudspeaker to a 500-Ω audio
line. What is the turns Page 683ratio of the transformer, and what are the
voltages at the primary and secondary terminals when 10 W of audio power is
delivered to the speaker? Assume that the speaker is a resistive load and that
the transformer is ideal.

The high-voltage side of a step-down transformer has 800 turns, and the low-
voltage side has 100 turns. A voltage of 240 VAC is applied to the high side,
and the load impedance is 3 Ω (low side). Find:

The secondary voltage and current.

The primary current.

The primary input impedance from the ratio of primary voltage to current.

The primary input impedance.

Calculate the transformer ratio of the transformer in Problem 12.23 when it is
used as a step-up transformer.

A 2,300/240-V, 60-Hz, 4.6-kVA transformer is designed to have an induced
emf of 2.5 V/turn. Assuming an ideal transformer, find:

The numbers of high-side turns Nh and low-side turns Nl.



b.

c.

12.26

12.27
a.

b.

12.28

a.

b.

12.29

The rated current of the high-voltage side Ih.

The transformer ratio when the device is used as a step-up transformer.

Section 12.5: Electromechanical Energy Conversion
Calculate the current required to lift the load for the electromagnet of
Example 12.9. Calculate the holding current required to keep the load in place
once it has been lifted and is attached to the magnet. Assume: n = 700; μ0 =
4π × 10−7; μr = 104 (equal for electromagnet and load); initial distance (air
gap) = 0.5 m; magnetic path length of electromagnet = l1 = 0.80 m; magnetic
path length of movable load = l2 = 0.40 m; gap cross-sectional area = 5 × 10−4

m2; m = mass of load = 10 kg; g = 9.8 m/s2.

For the electromagnet of Example 12.9:

Calculate the current required to keep the bar in place. (Hint: The air gap
becomes zero, and the iron reluctance cannot be neglected.) Assume μr =
1,000, L = 1 m.

If the bar is initially 0.1 m away from the electromagnet, what initial
current would be required to lift the magnet?

The electromagnet of Figure P12.28 has reluctance given by 
, where x is the length of the variable gap in meters. The

coil has 980 turns and 30-Ω resistance. For an applied voltage of 120 VDC,
find:

The energy stored in the magnetic field for x = 0.005 m.

The magnetic force for x = 0.005 m.

Figure P12.28

With reference to Example 12.10, determine the best combination of current
magnitude and wire diameter to reduce the volume of the solenoid coil to a
minimum. Will this minimum volume result in the lowest possible resistance?
How does the power dissipation of the coil change with the wire gauge and
current value? To solve this problem, you will need to find a table of wire



12.30

12.31

12.32

12.33

12.34

gauge diameter, resistance, and current ratings. Table 1.2 in this book
contains some information. The solution can only be found numerically.

Derive the same result obtained in Example 12.10, using equation 12.46 and
the definition of inductance given in equation 12.30. You will first compute
the inductance of the magnetic circuit as a function of the reluctance, then
compute the stored magnetic energy, and finally write the expression for the
magnetic force given in equation 12.46.

Derive the same result obtained in Example 12.11, using equation 12.46 and
the definition of inductance given in equation 12.30. You will first compute
the inductance of the magnetic circuit as a function of the reluctance, then
compute the stored magnetic energy, and finally write the expression for the
magnetic force given in equation 12.46.

With reference to Example 12.11, generate a simulation program (e.g., using
SimulinkTM) that accounts for the fact that the solenoid inductance is not
constant but is a function of plunger position. Compare graphically the
current and force step responses of the constant-L simplified solenoid model
to the step responses obtained in Example 12.11. Assume μr = 1,000.
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With reference to Example 12.12, calculate the required holding current to
keep the relay closed. The mass of the moving element is m = 0.05 kg.
Neglect damping. The initial position is x = ϵ = 0.001 m.

The relay circuit shown in Figure P12.34 has the following parameters: Agap =
0.001 m2; N = 500 turns; L = 0.02 m; μ = μ0 = 4π × 10−7 (neglect the iron
reluctance); k = 1,000 N/m; R = 18 Ω. What is the minimum DC supply
voltage υ for which the relay will make contact when the electrical switch is
closed?

Figure P12.34



12.35

12.36

The magnetic circuit shown in Figure P12.35 is a very simplified
representation of devices used as surface roughness sensors. The stylus is in
contact with the surface and causes the plunger to move along with the
surface. Assume that the flux ϕ in the gap is given by the expression 
, where β is a known constant and  is the reluctance of the gap. The emf e
is measured to determine the surface profile. Derive an expression for the
displacement x as a function of the various parameters of the magnetic circuit
and of the measured emf. (Assume a frictionless contact between the moving
plunger and the magnetic structure and that the plunger is restrained to
vertical motion only. The cross-sectional area of the plunger is A.)

Figure P12.35 A surface roughness sensor

A cylindrical solenoid is shown in Figure P12.36. The plunger may move
freely along its axis. The air gap between the shell and the plunger is uniform
and equal to 1 mm, and the diameter d is 25 mm. If the exciting coil carries a
current of 7.5 A, find the force acting on the plunger when x = 2 mm. Assume
N = 200 turns, and neglect the reluctance of the steel shell. Assume lg is
negligible.

Figure P12.36



12.37

a.

b.

c.

12.38

12.39

The double-excited electromechanical system shown in Figure P12.37 moves
horizontally. Assume that resistance, magnetic leakage, and fringing are
negligible; the permeability of the core is very large; and the cross section of
the structure is 𝑤 × 𝑤. Find:

The reluctance of the magnetic circuit.

The magnetic energy stored in the air gap.

The force on the movable part as a function of its position.

Figure P12.37

Determine the force F between the faces of the poles (stationary coil and
plunger) of the solenoid pictured in Figure P12.38 when it is energized. When
energized, the plunger is drawn into the coil and comes to rest with only a
negligible air gap separating the two. The flux density in the cast steel
pathway is 1.1 T. The diameter of the plunger is 10 mm. Assume that the
reluctance of the steel is negligible.
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Figure P12.38

An electromagnet is used to support a solid piece of steel, as shown in
Example 12.9. A force of 10,000 n is required to support the weight. The



12.40

a.

b.

12.41

12.42

a.

b.

cross-sectional area of the magnetic core (the fixed part) is 0.01 m2. The coil
has 1,000 turns. Determine the minimum current that can keep the weight
from falling for x = 1.0 mm. Assume negligible reluctance in steel and
negligible fringing in the air gaps.

The armature, frame, and core of a 12-VDC control relay are made of sheet
steel. The average length of the magnetic circuit is 12 cm when the relay is
energized, and the average cross section of the magnetic circuit is 0.60 cm2.
The coil is wound with 250 turns and carries 50 mA. Determine:

The flux density  in the magnetic circuit of the relay when the coil is
energized.

The force  exerted on the armature to close it when the coil is energized.

A relay is shown in Figure P12.41. Find the differential equations describing
the system.

Figure P12.41

A solenoid having a cross section of 10 cm2 is shown in Figure P12.42.

Calculate the force exerted on the plunger when the distance x is 2 cm and
the current in the coil (where N = 100 turns) is 5 A. Assume that the
fringing and leakage effects are negligible. The relative permeabilities of
the magnetic material and the non-magnetic sleeve are 2,000 and 1.

Develop a set of differential equations governing the behavior of the
solenoid.



12.43

12.44

Figure P12.42
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Derive the differential equations (electrical and mechanical) for the relay
shown in Figure P12.43. Do not assume that the inductance is fixed; it is a
function of x. You may assume that the iron reluctance is negligible.

Figure P12.43

Derive the complete set of differential equations describing the relay shown
in Figure P12.44.



12.45

12.46

Figure P12.44

A wire of length 20 cm vibrates in one direction in a constant magnetic field
with a flux density of 0.1 T; see Figure P12.45. The position of the wire as a
function of time is given by x(t) = 0.1 sin 10t m. Find the induced emf across
the length of the wire as a function of time.

Figure P12.45

The wire of Problem 12.45 induces a time-varying emf of

A second wire is placed in the same magnetic field but has a length of 0.1 m,
as shown in Figure P12.46. The position of this wire is given by x(t) = 1 − 0.1
sin 10t. Find the induced emf e(t) defined by the difference between e1(t) and
e2(t).



12.47

12.48

12.49

a.

b.

c.

Figure P12.46

A conducting bar shown in Figure 12.48 in the text is carrying 4 A of current
in the presence of a magnetic field B = 0.3 Wb/m2. Find the magnitude and
direction of the force induced on the bar.

A wire, shown in Figure P12.48, is moving in the presence of a magnetic
field B = 0.4 Wb/m2. Find the magnitude and direction of the induced voltage
in the wire.

Figure P12.48

The electrodynamic shaker shown in Figure P12.49 is commonly used as a
vibration tester. A constant current is used to generate a magnetic field in
which the armature coil of length l is immersed. The shaker platform with
mass m is mounted in the fixed structure by way of a spring with stiffness k.
The platform is rigidly attached to the armature coil, which slides on the fixed
structure thanks to frictionless bearings.

Neglecting iron reluctance, determine the reluctance of the fixed structure,
and hence compute the strength of the magnetic flux density B in which
the armature coil is immersed.

Page 687

Knowing B, determine the dynamic equations of motion of the shaker,
assuming that the moving coil has resistance R and inductance L.

Derive the transfer function and frequency response function of the shaker
mass velocity in response to the input voltage VS.



12.50

12.51

12.52

12.53

a.

b.

Figure P12.49 Electrodynamic shaker

The electrodynamic shaker of Figure P12.49 is used to perform vibration
testing of an electrical connector. The connector is placed on the test platform
(with mass m), and it may be assumed to have negligible mass when
compared to the platform. The test consists of shaking the connector at the
frequency ω = 2π × 100 rad/s.

Given the parameter values B = 1,000 Wb/m2, l = 5 m, k = 1,000 N/m, m = 1
kg, b = 5 N-s/m, L = 0.8 H, and R = 0.5 Ω, determine the peak amplitude of
the sinusoidal voltage VS required to generate an acceleration of 5g (49 m/s2).

Derive and sketch the frequency response of the loudspeaker of Example
12.13 for (1) k = 50,000 N/m and (2) k = 5 × 106 N/m. Describe qualitatively
how the loudspeaker frequency response changes as the spring stiffness k
increases and decreases. What will the frequency response be in the limit as k
approaches zero? What kind of speaker would this condition correspond to?

The loudspeaker of Example 12.13 has a midrange frequency response.
Modify the mechanical parameters of the loudspeaker (mass, damping, and
spring rate) so as to obtain a loudspeaker with a bass response centered on
400 Hz. Demonstrate that your design accomplishes the intended task, using
frequency response plots. Note: This is an open-ended design problem.

The electrodynamic shaker shown in Figure P12.53 is used to perform
vibration testing of an electronic circuit. The circuit is placed on a test table
with mass m, and is assumed to have negligible mass when compared to the
table. The test consists of shaking the circuit at the frequency ω = 2π(100)
rad/s.

Write the dynamic equations for the shaker. Clearly indicate system
input(s) and output(s).

Find the frequency response function of the table acceleration in response
to the applied voltage.



c.

Figure P12.53

Given the following parameter values:

Determine the peak amplitude of the sinusoidal voltage VS required to
generate an acceleration of 5g (49 m/s2) under the stated test conditions.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1We will use the boldface symbols B and H to denote the vector forms of B and H;
the standard typeface will represent the scalar flux density or field intensity in a
given direction.

2Note that although they are dimensionally equal to amperes, the units of
magnetomotive force are ampere-turns.

3See the Focus on Measurements box, “Charge Amplifiers,” in Chapter 7.
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C H A P T E R
13

INTRODUCTION TO ELECTRIC
MACHINES

he objective of this chapter is to introduce the basic operation of rotating
electric machines. The operation of the three major classes of electric
machines—DC, synchronous, and induction—is described as intuitively as
possible, building on the material presented in Chapter 12.

The emphasis of this chapter is on explaining the properties of each type of
machine, with its advantages and disadvantages with regard to other types; and on
classifying these machines in terms of their performance characteristics and
preferred field of application.
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 Learning Objectives
Students will learn to...

Understand the basic principles of operation of rotating electric machines,
their classification, and basic efficiency and performance characteristics



2.

3.
4.
5.

Section 13.1.
Understand the operation and basic configurations of separately excited,
permanent-magnet, shunt and series DC machines. Section 13.2.
Analyze DC motors under steady-state and dynamic operation. Section 13.3.
Analyze DC generators at steady state. Section 13.4.
Understand the operation and basic configuration of AC machines, including
the synchronous motor and generator, and the induction machine. Sections
13.5 to 13.8.

13.1 ROTATING ELECTRIC MACHINES
This introductory section is aimed at explaining the common properties of all
rotating electric machines. We begin our discussion with reference to Figure 13.1,
in which a hypothetical rotating machine is depicted in a cross-sectional view. In
the figure, a box with a cross inscribed in it indicates current flowing into the
page, while a dot represents current out of the plane of the page.

Figure 13.1 A rotating electric machine

In Figure 13.1, we identify a stator, of cylindrical shape, and a rotor, which,
as the name indicates, rotates inside the stator, separated from the latter by means
of an air gap. The rotor and stator each consist of a magnetic core, some electrical
insulation, and the windings necessary to establish a magnetic flux (unless this is
created by a permanent magnet). The rotor is mounted on a bearing-supported
shaft, which can be connected to mechanical loads (if the machine is a motor) or
to a prime mover (if the machine is a generator) by means of belts, pulleys,
chains, or other mechanical couplings. The windings carry the electric currents
that generate the magnetic fields and flow to the electrical loads, and also provide



the closed loops in which voltages will be induced (by virtue of Faraday’s law, as
discussed in Chapter 12).

Basic Classification of Electric Machines
An immediate distinction can be made between different types of windings
characterized by the nature of the current they carry. If the current serves the sole
purpose of providing a magnetic field and is independent of the load, it is called a
magnetizing, or excitation, current, and the winding is termed a field winding.
Field currents are nearly always direct current (DC) and are of relatively low
power, since their only purpose is to magnetize the core (recall the important role
of high-permeability cores in generating large magnetic fluxes from relatively
small currents). On the other hand, if the winding carries only the load current, it
is called an armature. In DC and alternating-current (AC) synchronous
machines, separate windings exist to carry field and armature currents. In the
induction motor, the magnetizing and load currents flow in the same winding,
called the input winding, or primary; the output winding is then called the
secondary. As we shall see, this terminology, which is reminiscent of
transformers, is particularly appropriate for induction motors, which bear a
significant analogy to the operation of the transformers studied inChapters 6 and
12. Table 13.1 characterizes the principal machines in terms of their field and
armature configuration.

Page 691

Table 13.1 Configurations of the three types of electric machines

It is also useful to classify electric machines in terms of their energy
conversion characteristics. A machine acts as a generator if it converts
mechanical energy from a prime mover, say, an internal combustion engine, to



(13.1)

(13.2)

electric energy. Examples of generators are the large machines used in power
generating plants, or the common automotive alternator. A machine is classified
as a motor if it converts electric energy to mechanical form. The latter class of
machines is probably of more direct interest to you, because of its widespread
application in engineering design. Electric motors are used to provide forces and
torques to generate motion in countless industrial applications. Machine tools,
robots, punches, presses, mills, and propulsion systems for electric vehicles are
but a few examples of the application of electric machines in engineering.

Note that in Figure 13.1 we have explicitly shown the direction of two
magnetic fields: that of the rotor BR and that of the stator BS. Although these
fields are generated by different means in different machines (e.g., permanent
magnets, alternating currents, direct currents), the presence of these fields is what
causes a rotating machine to turn and enables the generation of electric power. In
particular, we see that in Figure 13.1 the north pole of the rotor field will seek to
align itself with the south pole of the stator field. It is this magnetic attraction
force that permits the generation of torque in an electric motor; conversely, a
generator exploits the laws of electromagnetic induction to convert a changing
magnetic field to an electric current.

To simplify the discussion in later sections, we now introduce some basic
concepts that apply to all rotating electric machines. Referring to Figure 13.2,
which depicts a permanent-magnet DC machine, note that the force on a wire is
given by the expression:

where iw is the current in the wire, l is a vector along the direction of the wire, and
× denotes the cross product of two vectors. Then the torque for a multiturn coil is:

where:

B = magnetic flux density caused by stator field
K = constant depending on coil geometry
α = angle between B and normal to plane of coil
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Figure 13.2 Stator and rotor fields and the force acting on a rotating
permanent-magnet DC machine

In the machine of Figure 13.2, there are two magnetic fields: one generated
within the stator, the other within the rotor windings. Either (but not both) of
these fields could be generated by a current or by a permanent magnet. Thus, we
could replace the permanent-magnet stator of Figure 13.2 with a suitably arranged
winding to generate a stator field in the same direction. If the stator were made of
a toroidal coil of radius R (see Chapter 12), then the magnetic field of the stator
would generate a flux density B, where:

and where N is the number of turns and i is the coil current. The direction of the
torque is always the direction determined by the rotor and stator fields as they
seek to align to each other (i.e., counterclockwise in the diagram of Figure 13.1).

It is important to note that Figure 13.2 is only one example of the major
features and characteristics of rotating machines. A variety of configurations
exist, depending on whether each of the fields is generated by a current in a coil
or by a permanent magnet and whether the load and magnetizing currents are
direct or alternating. The type of excitation (AC or DC) provided to the windings
permits a first classification of electric machines (see Table 13.1). According to
this classification, one can define the following types of machines:



·
·

·

DC machines: Direct current in both stator and rotor (the stator could
also be realized by a permanent magnet, as in Figure 13.2)

Synchronous machines: Alternating current in one stator, direct current
in the rotor (the rotor could alternatively consist of a permanent
magnet)

Induction machines: Alternating current in both

In most industrial applications, the induction machine is the preferred choice,
because of the simplicity of its construction. However, the analysis of the
performance of an induction machine is rather complex. On the other hand, DC
machines are quite complex in their construction but can be analyzed relatively
simply with Page 693the analytical tools we have already acquired. Therefore, the
progression of this chapter is as follows. We start with a section that discusses the
physical construction of DC machines, both motors and generators. Then we
continue with a discussion of synchronous machines, in which one of the currents
is now alternating, since these can easily be understood as an extension of DC
machines. Finally, we consider the case where both rotor and stator currents are
alternating, and we analyze the induction machine.

Performance Characteristics of Electric Machines
As already stated earlier in this chapter, electric machines are energy conversion
devices, and we are therefore interested in their energy conversion efficiency.
Typical applications of electric machines as motors or generators must take into
consideration the energy losses associated with these devices. Figure 13.3(a) and
(b) represents the various loss mechanisms you must consider in analyzing the
efficiency of an electric machine for the case of DC machines. It is important for
you to keep in mind this conceptual flow of energy when analyzing electric
machines. The sources of loss in a rotating machine can be separated into three
fundamental groups: electrical (I 2R) losses, core losses, and mechanical losses.



Figure 13.3a Generator losses, direct current

Figure 13.3b Motor losses, direct current
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Usually I2R losses are computed on the basis of the DC resistance of the
windings at 75°C; in practice, these losses vary with operating conditions. The
difference between the nominal and actual I2R loss is usually lumped under the
category of stray-load loss. In DC machines, it is also necessary to account for
the brush contact loss associated with slip rings and commutators.

Mechanical losses are due to friction (mostly in the bearings) and windage,
that is, the air drag force that opposes the motion of the rotor. In addition, if
external devices (e.g., blowers) are required to circulate air through the machine



for cooling purposes, the energy expended by these devices is included in the
mechanical losses.

Open-circuit core losses consist of hysteresis and eddy current losses, with
only the excitation winding energized (see Chapter 12 for a discussion of
hysteresis and eddy currents). Often these losses are summed with friction and
windage losses to give rise to the no-load rotational loss. The latter quantity is
useful if one simply wishes to compute efficiency. Since open-circuit core losses
do not account for the changes in flux density caused by the presence of load
currents, an additional magnetic loss is incurred that is not accounted for in this
term. Stray-load losses are used to lump the effects of nonideal current
distribution in the windings and of the additional core losses just mentioned.
Stray-load losses are difficult to determine exactly and are often assumed to be
equal to 1.0 percent of the output power for DC machines; these losses can be
determined by experiment in synchronous and induction machines.

The performance of an electric machine can be quantified in a number of
ways. In the case of an electric motor, it is usually portrayed in the form of a
graphical torque–speed characteristic and efficiency map. The torque–speed
characteristic of a motor describes how the torque supplied by the machine varies
as a function of the speed of rotation of the motor for steady speeds. As we shall
see in later sections, the torque–speed curves vary in shape with the type of motor
(DC, induction, synchronous) and are very useful in determining the performance
of the motor when connected to a mechanical load. Figure 13.4(a) depicts the
torque–speed curve of induction motor. Figure 13.4(b) depicts a typical efficiency
map for a permanent-magnet synchronous motor. In most Page 695engineering
applications, it is quite likely that the engineer is required to make a decision
regarding the performance characteristics of the motor best suited to a specified
task. In this context, the torque–speed curve of a machine is a very useful piece of
information.



Figure 13.4 Torque–speed and efficiency curves for an electric motor:
(a) torque-speed map for an induction machine; (b) efficiency map for
an electric drive system for a hybrid-electric vehicle

The first feature we note of the torque–speed characteristic is that it bears a
strong resemblance to the i-υ characteristics used in earlier chapters to represent
the behavior of electrical sources. It should be clear that, according to this torque–
speed curve, the motor is not an ideal source of torque (if it were, the curve would
appear as a horizontal line across the speed range). One can readily see, for
example, that the induction motor represented by the curves of Figure 13.4(a)
would produce maximum torque in the range of speeds between approximately
800 and 1,400 r/min. What determines the actual speed of the motor (and
therefore its output torque and power) is the torque–speed characteristic of the
load connected to it, much as a resistive load determines the current drawn from a
voltage source. In the figure, we display the torque–speed curve of a load,
represented by the dashed line; the operating point of the motor-load pair is
determined by the intersection of the two curves.

Another important observation pertains to the fact that the motor of Figure
13.4(a) produces a nonzero torque at zero speed. This fact implies that as soon as
electric power is connected to the motor, the latter is capable of supplying a
certain amount of torque; this zero-speed torque is called the starting torque. If
the load requires less than the starting torque the motor can provide, then the
motor can accelerate the load until the motor speed and torque settle to a stable
value, at the operating point. As we discuss each type of machine in greater
detail, we shall devote some time to the discussion of its torque–speed curve.

The efficiency of an electric machine is also an important design and
performance characteristic. The 2005 Department of Energy’s Energy Policy Act,
also known as EPACT, has required electric motor manufacturers to guarantee a
minimum efficiency. The efficiency of an electric motor is usually described
using a contour plot of the efficiency value (a number between 0 and 1) in the
torque–speed plane. This representation permits a determination of the motor
efficiency as a function of its performance and operating conditions. Figure
13.4(b) depicts the efficiency map of an electric drive used in a hybrid-electric
vehicle—a 20-kW permanent-magnet AC synchronous machine. Note that the
peak efficiency can be as high as 0.95 (95 percent), but that the efficiency
decreases significantly away from the optimum point (around 3,500 r/min and 45
N-m), to values as low as 0.65.

The most common means of conveying information regarding electric
machines is the nameplate. Typical information conveyed by the nameplate



1.
2.
3.
4.
5.

(13.4)

includes
Type of device (e.g., DC motor, alternator)
Manufacturer
Rated voltage and frequency
Rated current and voltamperes
Rated speed and horsepower

The rated voltage is the terminal voltage for which the machine was designed,
and which will provide the desired magnetic flux. Operation at higher voltages
Page 696will increase magnetic core losses, because of excessive core saturation.
The rated current and rated voltamperes are an indication of the typical current
and power levels at the terminal that will not cause undue overheating due to
copper losses (I2R losses) in the windings. These ratings are not absolutely
precise, but they give an indication of the range of excitations for which the
motor will perform without overheating. Other name plate characteristics are
introduced in Example 13.2.

Peak power operation in a motor may exceed rated torque, power, or currents
by a substantial factor (up to as much as 6 or 7 times the rated value); however,
continuous operation of the motor above the rated performance will cause the
machine to overheat and eventually to sustain damage. Thus, it is important to
consider both peak and continuous power requirements when selecting a motor
for a specific application. An analogous discussion is valid for the speed rating:
While an electric machine may operate above rated speed for limited periods of
time, the large centrifugal forces generated at high rotational speeds will
eventually cause undesirable mechanical stresses, especially in the rotor
windings.

Another important feature of electric machines is the regulation of the
machine speed or voltage, depending on whether it is used as a motor or as a
generator, respectively. Regulation is the ability to maintain speed or voltage
constant in the face of load variations. The ability to closely regulate speed in a
motor or voltage in a generator is an important feature of electric machines;
regulation is often improved by means of feedback control mechanisms, some of
which are briefly introduced in this chapter. We take the following definitions as
being adequate for the intended purpose of this chapter:



(13.5)

Please note that the rated value is usually taken to be the nameplate value, and
that the meaning of load changes depending on whether the machine is a motor,
in which case the load is mechanical, or a generator, in which case the load is
electrical.

EXAMPLE 13.1 Regulation
Problem

Find the percentage of speed regulation of a shunt DC motor.

Solution
Known Quantities: No-load speed; speed at rated load.
Find: Percentage speed regulation, denoted by SR%.
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Schematics, Diagrams, Circuits, and Given Data:

Analysis:

Comments: Speed regulation is an intrinsic property of a motor; however,
external speed controls can be used to regulate the speed of a motor to any
(physically achievable) desired value. Some motor control concepts are discussed
later in this chapter.



CHECK YOUR UNDERSTANDING
The percentage of speed regulation of a motor is 10 percent. If the full-load speed
is 50π rad/s, find (a) the no-load speed in radians per second, and (b) the no-load
speed in revolutions per minute. Finally, (c) if the percentage of voltage
regulation for a 250-V generator is 10 percent, find the no-load voltage of the
generator.

Table 13.2 summarizes important unit conversions that relate SI to English units,
as the latter are still used in nameplate data in the United States.

Table 13.2 Unit conversions for electric machines

EXAMPLE 13.2 Nameplate Data
Problem

Discuss the nameplate data, shown below, of a typical induction motor.

Solution
Known Quantities: Nameplate data.

Answer: (a) ω = 55π rad/s; (b) n = 1,650 r/min; (c) Vno-load = 275 V



Find: Motor characteristics.

Page 698

Schematics, Diagrams, Circuits, and Given Data: The nameplate appears below.

Analysis: The nameplate of a typical induction motor is shown in the preceding
table. The model number (sometimes abbreviated as MOD) uniquely identifies
the motor to the manufacturer. It may be a style number, a model number, an
identification number, or an instruction sheet reference number.

The term frame (sometimes abbreviated as FR) refers principally to the
physical size of the machine, as well as to certain construction features.

Ambient temperature (abbreviated as AMB, or MAX. AMB) refers to the
maximum ambient temperature in which the motor is capable of operating.
Operation of the motor in a higher ambient temperature may result in shortened
motor life and reduced torque.

Insulation class (abbreviated as INS. CL.) refers to the type of insulation used
in the motor. The classes most often used are class A (105°C) and class B
(130°C).

The duty (DUTY), or time rating, denotes the length of time the motor is
expected to be able to carry the rated load under usual service conditions.
“CONT.” means that the machine can be operated continuously.



The “CODE” letter sets the limits of starting kilovoltamperes per horsepower
for the machine. There are 19 levels, denoted by the letters A through V,
excluding I, O, and Q.

Service factor (abbreviated as SERV FACT) is a term defined by NEMA (the
National Electrical Manufacturers Association) as follows: “The service factor of
a general-purpose alternating-current motor is a multiplier which, when applied to
the rated horsepower, indicates a permissible horsepower loading which may be
carried under the conditions specified for the service factor.”

The voltage figure given on the nameplate refers to the voltage of the supply
circuit to which the motor should be connected. Sometimes two voltages are
given, for example, 230/460. In this case, the machine is intended for use on
either a 230-V or a 460-V circuit. Special instructions will be provided for
connecting the motor for each of the voltages.

The term “BRG” indicates the nature of the bearings supporting the motor
shaft.
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CHECK YOUR UNDERSTANDING
The nameplate of a three-phase induction motor indicates the following values:

Find the rated torque, rated voltamperes, and maximum continuous output power.

Answer: Irated = 40.7 N-m; rated VA = 11,431 VA; Pmax = 11.5 hp.



EXAMPLE 13.3 Torque–Speed Curves
Problem

Discuss the significance of the torque–speed curve of an electric motor.

Solution

An induction motor has a torque output that varies directly with speed; hence, the
power output varies directly with the speed. Motors with this characteristic are
commonly used with fans, blowers, and centrifugal pumps. Figure 13.5 shows
typical torque–speed curves for this type of motor. Superimposed on the motor
torque–speed curve is the torque–speed curve for a typical fan where the input
power to the fan varies as the cube of the fan speed. Point A is the actual
operating point, which could be determined graphically by plotting the load line
and the motor torque–speed curve on the same graph, as illustrated in Figure 13.5.
The fan will operate at the speed corresponding to the intersection of the two
curves.

Figure 13.5 Torque-speed curves of electric motor and load
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CHECK YOUR UNDERSTANDING
A motor having the characteristics shown in Figure 13.4(a) is to drive a load; the
load has a linear torque–speed curve and requires 150 percent of rated torque at



1.
2.

1,500 r/min. Find the operating point for this motor-load pair.

Basic Operation of All Rotating Machines
We have already seen in Chapter 12 how the magnetic field in electromechanical
devices provides a form of coupling between electrical and mechanical systems.
Intuitively, one can identify two aspects of this coupling, both of which play a
role in the operation of electric machines:

Magnetic attraction and repulsion forces generate mechanical torque.
The magnetic field can induce a voltage in the machine windings (coils) by
virtue of Faraday’s law.

Thus, an electric machine can serve either as a motor or a generator, depending
on whether the input power is electric and mechanical power is produced (motor
action), or the input power is mechanical and the output power is electric
(generator action). Figure 13.6 illustrates the two cases graphically.

Figure 13.6 Generator (a) and motor (b) action in an electric machine

The coupling magnetic field performs a dual role, which may be explained as
follows. When a current i flows through conductors placed in a magnetic field, a
force is produced on each conductor, according to equation 13.1. If these
conductors are attached to a cylindrical structure, a torque is generated; and if the
structure is free to rotate, then it will rotate at an angular velocity ωm. As the
conductors rotate, however, they move through a magnetic field and cut through
flux lines, thus generating an electromotive force in opposition to the excitation.

Answer: 170 percent of rated torque; 1,700 r/min.



1.
2.

This emf is also called counter-emf, as it opposes the source of the current i. If, on
the other hand, the rotating element of the machine is driven by a prime mover
(e.g., an internal combustion engine), then an emf is generated across the coil that
is rotating in the magnetic field (the armature). If a load is connected to the
armature, a current i will flow to the load, and this current flow will in turn cause
a reaction torque on the armature that opposes the torque imposed by the prime
mover.
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You see, then, that for energy conversion to take place, two elements are
srequired:

A coupling field B; generated in the field winding or by a permanent magnet.
An armature winding that supports the load current i and the emf e.

Magnetic Poles in Electric Machines
Before discussing the actual construction of a rotating machine, we should spend
a few paragraphs to illustrate the significance of magnetic poles in an electric
machine. In an electric machine, torque is developed as a consequence of
magnetic forces of attraction and repulsion between magnetic poles on the stator
and on the rotor; these poles produce a torque that accelerates the rotor and a
reaction torque on the stator. It is also important to observe that the number of
poles must be even, since there have to be equal numbers of north and south
poles.

The motion and associated electromagnetic torque of an electric machine are
the result of two magnetic fields that are trying to align with each other so that the
south pole of one field attracts the north pole of the other. Figure 13.7 illustrates
this action by analogy with two permanent magnets, one of which is allowed to
rotate about its center of mass.



Figure 13.7 Alignment action of poles

Figure 13.8 depicts a two-pole machine in which the stator poles are
constructed in such a way as to project closer to the rotor than to the stator
structure. This type of construction is rather common, and poles constructed in
this fashion are called salient poles. Note that the rotor could also be constructed
to have salient poles.

Figure 13.8 A two-pole machine with salient stator poles

To understand magnetic polarity, we need to consider the direction of the
magnetic field in a coil carrying current. Figure 13.9 shows how the right-hand
rule can be employed to determine the direction of the magnetic flux. If one were
to grasp the coil with the right hand, with the fingers curling in the direction of



current flow, then the thumb would be pointing in the direction of the magnetic
flux. Magnetic flux by convention is viewed as entering the south pole and
exiting from the north pole. Thus, to determine whether a magnetic pole is north
or Page 702south, we must consider the direction of the flux. Figure 13.10 shows
a cross section of a coil wound around a pair of salient rotor poles. In this case,
one can readily identify the direction of the magnetic flux in the rotor and
therefore the magnetic polarity of the poles by applying the right-hand rule, as
illustrated in the figure.

Figure 13.9 Right-hand rule

Figure 13.10 Magnetic field in a salient rotor winding

Often, however, the coil windings are not arranged as simply as in the case of
salient poles. In many machines, the windings are embedded in slots cut into the
stator or rotor, so that the situation is similar to that of the stator depicted in
Figure 13.11. This figure is a cross section in which the wire connections between



“crosses” and “dots” have been cut away. In Figure 13.11, the dashed line
indicates the axis of the stator flux according to the right-hand rule, showing that
the slotted stator in effect behaves as a pole pair. The north and south poles
indicated in the figure are a consequence of the fact that the flux exits the top part
of the structure (thus, the north pole indicated in the figure) and enters the bottom
half of the Page 703structure (thus, the south pole). In particular, if you consider
that the windings are arranged so that the current entering the right-hand side of
the stator (to the right of the dashed line) flows through the back end of the stator
and then flows outward from the left-hand side of the stator slots (left of the
dashed line), you can visualize the windings in the slots as behaving in a manner
similar to the coils of Figure 13.10, where the flux axis of Figure 13.11
corresponds to the flux axis of each of the coils of Figure 13.10. The actual circuit
that permits current flow is completed by the front and back ends of the stator,
where the wires are connected according to the pattern a-a′, b-b′, c-c′, as depicted
in the figure.

Figure 13.11 Magnetic field of stator

Another important consideration that facilitates understanding of the
operation of electric machines pertains to the use of alternating currents. It should
be apparent by now that if the current flowing into the slotted stator is alternating,
the direction of the flux will also alternate, so that in effect the two poles will
reverse polarity every time the current reverses direction, that is, every half-cycle
of the sinusoidal current. Further—since the magnetic flux is approximately
proportional to the current in the coil—as the amplitude of the current oscillates
in a sinusoidal fashion, so will the flux density in the structure. Thus, the
magnetic field developed in the stator changes both spatially and in time.

This property is typical of AC machines, where a rotating magnetic field is
established by energizing the coil with an alternating current. As explained in
Section 13.2, the principles underlying the operation of DC and AC machines are



quite different: In a direct-current machine, there is no rotating field, but a
mechanical switching arrangement (the commutator) makes it possible for the
rotor and stator magnetic fields to always align at right angles to each other.

The book website includes two-dimensional “animations” of the most
common types of electric machines. You might wish to explore these animations
to better understand the basic concepts described in this section.

13.2 DIRECT-CURRENT MACHINES
As explained in the introductory section, DC machines are easier to analyze than
their AC counterparts although their actual construction is made rather complex
by the need to have a commutator, which switches the load winding connection to
the source so as to always maintain an angle close to 90° between the stator and
the rotor magnetic fields. The objective of this section is to describe the major
construction features and the operation of DC machines, as well as to develop
simple circuit models that are useful in analyzing the performance of this class of
machines.

Physical Structure of DC Machines
A representative DC machine was depicted in Figure 13.8, with the magnetic
poles clearly identified, for both the stator and the rotor. Figure 13.12 is a
photograph of the same type of machine. Note the salient pole construction of the
stator and the slotted rotor. As previously stated, the torque developed by the
machine is a consequence of the magnetic forces between stator and rotor poles.
This torque is maximum when the angle γ between the rotor and stator poles is
90°. Also, as you can see from the figure, in a DC machine the armature circuit is
on the rotor, and the field winding is on the stator.
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Figure 13.12 (a) DC machine; (b) rotor; (c) permanent-magnet stator
(© 2005, Rockwell Automation. All rights reserved. Used with
permission.)

To keep this torque angle close to 90° as the rotor spins on its shaft,
amechanical switch, called a commutator, is configured so the rotor poles are
consistently close to 90° with respect to the fixed stator poles. In a DC machine,
the magnetizing current is DC so that there is no spatial alternation of the stator
poles due to time-varying currents. To understand the operation of the
commutator, consider the simplified diagram of Figure 13.13. In the figure, the
brushes are fixed, and the rotor revolves at an angular velocity ωm; the
instantaneous position of the rotor is given by the expression θ = ωm t − γ.



Figure 13.13 Rotor winding and commutator
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The commutator is fixed to the rotor and is made up in this example of six
segments that are made of electrically conducting material but are insulated from
one another. Further, the rotor windings are configured so that they form six coils,
connected to the commutator segments as shown in Figure 13.13.

As the commutator rotates counterclockwise, the rotor magnetic field rotates
with it up to θ = 30°. At that point, the direction of the current changes in coils L3
and L6 as the brushes make contact with the next segment. Now the direction of
the magnetic field is −30°. As the commutator continues to rotate, the direction of
the rotor field will again change from −30° to +30°, and it will switch again when
the brushes switch to the next pair of segments. In this machine, then, the torque
angle γ is not always 90°, but can vary by as much as ±30°; the actual torque
produced by the machine would fluctuate by as much as ±14 percent, since the
torque is proportional to sin γ. As the number of segments increases, the torque
fluctuation produced by the commutation is greatly reduced. In a practical
machine, for example, one might have as many as 60 segments, and the variation
of γ from 90° would be only ±3°, with a torque fluctuation of less than 1 percent.
Thus, the DC machine can produce a nearly constant torque (as a motor) or
voltage (as a generator).

Configuration of DC Machines
The DC machine of Figure 13.12 employs a permanent magnet to generate a
constant magnetic field in the stator. However, in DC machines, the field



excitation that provides the magnetizing current may be provided by an external
source, in which case the machine is said to be separately excited [Figure
13.14(a)]. More often, the field excitation is derived from the armature voltage,
and the machine is said to be self-excited. The latter configuration does not
require the use of a separate source for the field excitation and is therefore
frequently preferred. If a machine is in the separately excited configuration, an
additional source Vf is required. In the self-excited case, one method used to
provide the field excitation is to connect the field in parallel with the armature;
since the field winding typically has significantly higher resistance than the
armature circuit (remember that it is the armature that carries the load current),
this will not draw excessive current from the armature. Further, a series resistor
can be added to the field circuit to provide the means for adjusting the field
current independent of the armature voltage. This configuration is called a shunt-
connected machine and is depicted in Figure 13.14(b). Another method for self-
exciting a DC machine consists of connecting the field in series with the
armature, leading to the series-connected machine, depicted in Figure 13.14(c);
in this case, the field winding will support the entire armature current, and thus
the field coil must have low resistance (and therefore relatively few turns). This
configuration is rarely used for generators, since the generated voltage and the
load voltage must always differ by the voltage drop across the field coil, which
varies with the load current. Thus, a series generator would have poor (large)
regulation. However, series-connected motors are commonly used in traction
applications.



Figure 13.14

DC Machine Models
As stated earlier, it is relatively easy to develop a simple model of a DC machine,
which is well suited to performance analysis, without the need to resort to the
Page 706details of the construction of the machine itself. This section illustrates
the development of such models in two steps. First, algebraic equations relating
field and armature currents and voltages to speed and torque are introduced;
second, the differential equations describing the dynamic behavior of DC
machines are derived.

When a field excitation is established, a magnetic flux ϕ is generated by the
field current If. From equation 13.2, we know that the torque acting on the rotor is
proportional to the product of the magnetic field and the current in the load-
carrying wire; the latter current is the armature current Ia (iw in equation 12.2).
Assuming that, by virtue of the commutator, the torque angle γ is kept very close



(13.6)

(13.7)

(13.8)

(13.9)

to 90°, and therefore sin γ = 1, we obtain the following expression for the torque
(in units of newton-meters) in a DC machine:

You may recall that this is simply a consequence of the Bli law of Chapter 12.
The mechanical power generated (or absorbed) is equal to the product of the
machine torque and the mechanical speed of rotation ωm rad/s, and is therefore
given by

Recall now that the rotation of the armature conductors in the field generated by
the field excitation causes a back emf Eb in a direction that opposes the rotation
of the armature. According to the Blu law (see Chapter 12), then, this back emf is
given by

where ka is called the armature constant and is related to the geometry and
magnetic properties of the structure. The voltage Eb represents a countervoltage
(opposing the DC excitation) in the case of a motor and the generated voltage in
the case of a generator. Thus, the electric power dissipated (or generated) by the
machine is given by the product of the back emf and the armature current:

The constants kT and ka in equations 13.6 and 13.8 are related to geometry
factors, such as the dimension of the rotor and the number of turns in the armature
winding; and to properties of materials, such as the permeability of the magnetic
materials. Note that in the ideal energy conversion case Pm = Pe, and therefore ka
= kT. We shall in general assume such ideal conversion of electric to mechanical



(13.10)

(13.11)

(13.12)

(13.13)

energy (or vice versa) and will therefore treat the two constants as being identical:
ka = kT. The constant ka is given by

where:

p = number of magnetic poles
N = number of conductors per coil
M = number of parallel paths in armature winding
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An important observation concerning the units of angular speed must be made
at this point. The equality (under the no-loss assumption) between the constants
ka and kT in equations 13.6 and 13.8 results from the choice of consistent units,
namely, volts and amperes for the electrical quantities and newton-meters and
radians per second for the mechanical quantities. You should be aware that it is
fairly common practice to refer to the speed of rotation of an electric machine in
units of revolutions per minute (r/min).1 In this book, we uniformly use the
symbol n to denote angular speed in revolutions per minute; the following
relationship should be committed to memory:

If the speed is expressed in revolutions per minute, the armature constant changes
as follows:

where

Having introduced the basic equations relating torque, speed, voltages, and
currents in electric machines, we may now consider the interaction of these
quantities in a DC machine at steady state, that is, operating at constant speed and
field excitation. Figure 13.15 depicts the electric circuit model of a separately
excited DC machine, illustrating both motor and generator action. It is very



(13.14)

important to note the reference direction of armature current flow, and of the
developed torque, in order to make a distinction between the two modes of
operation. The field excitation is shown as a voltage Vf generating the field
current If that flows through a variable resistor Rf and through the field coil Lf.
The variable resistor permits adjustment of the field excitation. The armature
circuit, on the other hand, consists of a voltage source representing the back emf
Eb, the armature resistance Ra, and the armature voltage Va. This model is
appropriate both for motor and for generator action. When Va < Eb, the machine
acts as a generator (Ia flows out of the machine). When Va > Eb, the machine acts
as a motor (Ia flows into the machine). Thus, according to the circuit model of
Figure 13.15, the operation of a DC machine at steady state (i.e., with the
inductors in the circuit replaced by short-circuits) is described by the following
equations:



(13.15a)

(13.15b)

(13.16)

(13.17)

(13.18)

Figure 13.15 Electric circuit model of a separately excited DC machine

Equation 13.14 together with equations 13.6 and 13.8 may be used to determine
the steady-state operating condition of a DC machine.
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The circuit model of Figure 13.15 permits the derivation of a simple set of
differential equations that describe the dynamic analysis of a DC machine. The
dynamic equations describing the behavior of a separately excited DC machine
are as follows:

These equations can be related to the operation of the machine in the presence of
a load. If we assume that the motor is rigidly connected to an inertial load with
moment of inertia J and that the friction losses in the load are represented by a
viscous friction coefficient b, then the torque developed by the machine (in the
motor mode of operation) can be written as

where TL is the load torque. Typically TL is either constant or some function of
speed ωm in a motor. In the case of a generator, the load torque is replaced by the
torque supplied by a prime mover, and the machine torque T(t) opposes the
motion of the prime mover, as shown in Figure 13.15. Since the machine torque is
related to the armature and field currents by equation 13.6, equations 13.16 and
13.17 are coupled to each other; this coupling may be expressed as follows:

or

The dynamic equations described in this section apply to any DC machine. In the
case of a separately excited machine, a further simplification is possible, since the



(13.19)

flux is established by virtue of a separate field excitation, and therefore

where Nf is the number of turns in the field coil, � is the reluctance of the
structure, and If is the field current.

DC Machine Steady-State Equations
The equations that describe the steady-state behavior of DC motors and
generators are summarized below. The key to interpreting these equations is in
correctly evaluating the expression for the flux ϕ for each of the four cases of
interest in this chapter: field generated by a separate excitation, field generated by
a shunt connection, field generated by a series connection, field generated by a
permanent magnet (constant field). See Figure 13.14 for a reference to the first
three configurations.
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DC Motor Steady-State Equations

In a separately excited machine [Figure 13.14(a)]:

where Vs is the external source voltage.

In a shunt-connected machine [Figure 13.14(b)]:

In a series-connected machine [Figure 13.14(c)]:



Finally, in a permanent-magnet machine, where the field excitation is
provided by a permanent magnet

DC Generator Steady-State Equations

where Vg is the generator open-circuit output voltage, with no load
connected. In a separately excited machine [Figure 13.14(a)]:

In a shunt-connected machine [Figure 13.14(b)]:

In a series-connected machine [Figure 13.14(b)]:

Finally, in a permanent-magnet machine:
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(13.20)

(13.21)

(13.22)

13.3 DIRECT-CURRENT MOTORS
DC motors are widely used in applications requiring accurate speed or torque
control, for example in servo systems. In the preceding section, we had
introduced the analysis of a separately excited DC machine; in this section we
extend that analysis to include a review of the other three commonly used
configurations (shunt, series andpermanent-magnet motors), to study their
torque–speed characteristics and dynamic behavior.

The Shunt Motor
In a shunt motor [see Figure 13.14(b)], the armature current is found by dividing
the net voltage across the armature circuit (source voltage minus back emf) by the
armature resistance:

An expression for the armature current may also be obtained from equation
13.17, as follows:

It is then possible to relate the torque requirements to the speed of the motor
by substituting equation 13.20 in equation 13.21:

Equation 13.22 describes the steady-state torque–speed characteristic of the
shunt motor. To understand this performance equation, we observe that if Vs, ka,
ϕ, and Ra are fixed in equation 13.22 (the flux is essentially constant in the shunt
motor for a fixed Vs), then the speed of the motor is directly related to the
armature current. Now consider the case where the load applied to the motor is
suddenly increased, causing the speed of the motor to drop. As the speed
decreases, the armature current increases, according to equation 13.20. The
excess armature current causes the motor to develop additional torque, according
to equation 13.21 until a new equilibrium is reached between the higher armature
current and developed torque and the lower speed of rotation. The equilibrium



(13.23)

(13.24)

(13.25)

point is dictated by the balance of mechanical and electric power, in accordance
with the relation:

Thus, the shunt DC motor will adjust to variations in load by changing its
speed to preserve this power balance. The torque–speed curves for the shunt
motor may be obtained by rewriting the equation relating the speed to the
armature current:
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To interpret equation 13.24, one can start by considering the motor operating
at rated speed and torque. As the load torque is reduced, the armature current will
also decrease, causing the speed to increase in accordance with equation 13.24.
The increase in speed depends on the extent of the voltage drop across the
armature resistance IaRa. The change in speed will be on the same order of
magnitude as this drop; it typically takes values around 10 percent. This
corresponds to a relatively good speed regulation, which is an attractive feature of
the shunt DC motor (recall the discussion of regulation in Section 13.1). The
dynamic behavior of the shunt motor is described by equations 13.15 through
13.18, with the additional relation:

Series Motors
The series motor [see Figure 13.14(c)] behaves somewhat differently from the
shunt and separately excited motors because the flux is established solely by
virtue of the series current flowing through the armature. It is relatively simple to
derive an expression for the emf and torque equations for the series motor if we
approximate the relationship between flux and armature current by assuming that
the motor operates in the linear region of its magnetization curve. Then we can
write



(13.26)

(13.27)

(13.28)

(13.29)

(13.30)

(13.31)

and the emf and torque equations become, respectively,

The circuit equation for the series motor becomes

where Ra is the armature resistance, RS is the series field winding resistance, and
RT is the total series resistance. From equation 13.29, we can solve for Ia and
substitute in the torque expression (equation 13.28) to obtain the following
torque–speed relationship:

which indicates the inverse squared relationship between torque and speed in the
series motor. This expression describes a behavior that can, under certain
conditions, become unstable. Since the speed increases when the load torque is
reduced, one can readily see that if one were to disconnect the load altogether, the
speed would tend to increase to dangerous values. To prevent excessive speeds,
series motors are always mechanically coupled to the load. This feature is not
necessarily a drawback, though, because series motors can develop very high
torque at low speeds and therefore can serve very well for traction-type loads
(e.g., conveyor belts or vehicle propulsion systems).
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The differential equation for the armature circuit of the motor can be given as



(13.32)

(13.33)

(13.34)

Permanent-Magnet DC Motors
Permanent-magnet (PM) DC motors have become increasingly common in
applications requiring relatively low torques and efficient use of space. The
construction of PM DC motors differs from that of the motors considered thus far
in that the magnetic field of the stator is produced by suitably located poles made
of magnetic materials. Thus, the basic principle of operation, including the idea of
commutation, is unchanged with respect to the wound-stator DC motor. What
changes is that there is no need to provide a field excitation, whether separately or
by means of the self-excitation techniques discussed in the preceding sections.
Therefore, the PM motor is intrinsically simpler than its wound-stator
counterpart.

The equations that describe the operation of the PM motor follow. The torque
produced is related to the armature current by a torque constant kPM, which is
determined by the geometry of the motor:

As in the conventional DC motor, the rotation of the rotor produces the usual
count or back emf Eb, which is linearly related to speed by a voltage constant
ka,PM:

The equivalent circuit of the PM motor is particularly simple, since we need not
model the effects of a field winding. Figure 13.16 shows the circuit model and the
torque–speed curve of a PM motor.

We can use the circuit model of Figure 13.16 to derive the torque–speed curve
shown in the same figure as follows. From the circuit model, for a constant speed
(and therefore constant current), we may consider the inductor a short-circuit and
write the equation:



(13.35)

(13.36)

(13.37)

(13.38)

Figure 13.16 Circuit model and torque–speed curve of PM motor
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thus obtaining the equations relating speed and torque:

and

From these equations, one can extract the stall torque T0, that is, the zero-
speed torque:

and the no-load speed ωm0:

Under dynamic conditions, assuming an inertia plus viscous friction load, the
torque produced by the motor can be expressed as



(13.39)

(13.40)

1.

2.

3.

4.

The differential equation for the armature circuit of the motor is therefore
given by

The fact that the airgap flux is constant in a PM DC motor makes its
characteristics somewhat different from those of the wound DC motor. A direct
comparison of PM and wound-field DC motors reveals the following advantages
and disadvantages of each configuration.

Comparison of Wound-Field and PM DC Motors

PM motors are smaller and lighter than wound motors for a given power
rating. Further, their efficiency is greater because there are no field
winding losses.
An additional advantage of PM motors is their essentially linear speed–
torque characteristic, which makes analysis (and control) much easier.
Reversal of rotation is also accomplished easily, by reversing the
polarity of the source.
A major disadvantage of PM motors is that they can become
demagnetized by exposure to excessive magnetic fields, application of
excessive voltage, or operation at excessively high or low temperatures.
A less obvious drawback of PM motors is that their performance is
subject to greater variability from motor to motor than is the case for
wound motors, because of variations in the magnetic materials.
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EXAMPLE 13.4 DC Shunt Motor Analysis
Problem

Find the speed and torque generated by a four-pole DC shunt motor.

Solution
Known Quantities: Motor ratings; circuit and magnetic parameters.
Find: ωm, T.

Schematics, Diagrams, Circuits, and Given Data:

Motor ratings: 3 hp, 240 V, 120 r/min.

Circuit and magnetic parameters: IS = 30 A; If = 1.4 A; Ra = 0.6 Ω; ϕ = 20 mWb;
N = 1,000; M = 4 (see equation 13.10).

Analysis: We convert the power to SI units:

Next we compute the armature current as the difference between source and field
current (equation 13.25):

The no-load armature voltage Eb is given by:

and equation 13.10 can be used to determine the armature constant:

Knowing the motor constant, we can calculate the speed, after equation 13.25:



1.
2.
3.

4.

Finally, the torque developed by the motor can be found as the ratio of the power
to the angular velocity:

CHECK YOUR UNDERSTANDING
A 200-V DC shunt motor draws 10 A at 1,800 r/min. The armature circuit
resistance is 0.15 Ω, and the field winding resistance is 350 Ω. What is the torque
developed by the motor?
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EXAMPLE 13.5 DC Shunt Motor Analysis
Problem

Determine the following quantities for the DC shunt motor, connected as shown
in the circuit of Figure 13.17:

Field current required for full-load operation.
No-load speed.
Plot of the speed–torque curve of the machine in the range from no-load
torque to rated torque.
Power output at rated torque.

Answer: 



1.

Figure 13.17 Shunt motor configuration

Solution
Known Quantities: Magnetization curve, rated current, rated speed, circuit
parameters.
Find: If; nno-load; T-n curve, Prated.

Schematics, Diagrams, Circuits, and Given Data:
Figure 13.18 (magnetization curve)

Motor ratings: 8 A, 120 r/min

Circuit parameters: Ra = 0.2 Ω; Vs = 7.2 V; N = number of coil turns in winding =
200

Figure 13.18 Magnetization curve for a small DC motor

Analysis:
To find the field current, we must find the generated emf since Rf is not
known. Writing KVL around the armature circuit, we obtain



 

2.

Having found the back emf, we can find the field current from the
magnetization curve. At Eb = 5.6 V, we find that the field current and field
resistance are

To obtain the no-load speed, we use the equations:
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leading to

or

At no load, and assuming no mechanical losses, the torque is zero, and we see
that the current Ia must also be zero in the torque equation . Thus, the
motor speed at no load is given by

We can obtain an expression for kaϕ, knowing that, at full load:

so that, for constant field excitation:

Finally, we may solve for the no-load speed.



3.

4.

The torque at rated speed and load may be found as follows:

Now we have the two points necessary to construct the torque–speed curve
for this motor, which is shown in Figure 13.19.

The power is related to the torque by the frequency of the shaft:

or, equivalently:

Figure 13.19 Torque-speed curve for motor of Example 13.5.

EXAMPLE 13.6 DC Series Motor Analysis
Problem

Determine the torque developed by a DC series motor when the current supplied
to the motor is 60 A.

Solution
Known Quantities: Motor ratings; operating conditions.
Find: T60, torque delivered at 60-A series current.
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Schematics, Diagrams, Circuits, and Given Data:
Motor ratings: 10 hp, 115 V, full-load speed = 1,800 r/min
Operating conditions: motor draws 40 A

Assumptions: The motor operates in the linear region of the magnetization curve.
Analysis: Within the linear region of operation, the flux per pole is directly
proportional to the current in the field winding. That is,

The full-load speed is

or

Rated output power is

and full-load torque is

Thus, the machine constant may be computed from the torque equation for the
series motor:

At full load:

and we can compute the torque developed for a 60-A supply current to be



CHECK YOUR UNDERSTANDING
A series motor draws a current of 25 A and develops a torque of 100 N-m. Find
(a) the torque when the current rises to 30 A if the field is unsaturated and (b) the
torque when the current rises to 30 A and the increase in current produces a 10
percent increase in flux.

EXAMPLE 13.7 Dynamic Response of PM DC Motor
Problem

Develop a set of differential equations and a transfer function describing the
dynamic response of the motor angular velocity of a PM DC motor connected to a
mechanical load.
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Solution
Known Quantities: PM DC motor circuit model; mechanical load model.
Find: Differential equations and transfer functions of electromechanical system.
Analysis: The dynamic response of the electromechanical system can be
determined by applying KVL to the electric circuit (Figure 13.16) and Newton’s
second law to the mechanical system. These equations will be coupled to one
another, as you shall see, because of the nature of the motor back emf and torque
equations.

Applying KVL and equation 13.33 to the electric circuit, we obtain

Answer: (a) 144 N-m; (b) 132 N-m



or

Applying Newton’s second law and equation 13.32 to the load inertia, we obtain

or

These two differential equations are coupled because the first depends on ωm and
the second on Ia. Thus, they need to be solved simultaneously.

To derive the transfer function, we use the Laplace transform on the two
equations to obtain

We can write the above equations in matrix form and resort to Cramer’s rule to
solve for Ωm(s) as a function of VL(s) and Tload(s).

with solution:

or



Comments: Note that the dynamic response of the motor angular velocity
depends on both the input voltage and the load torque. This problem is explored
further in the homework problems.

Page 719

DC Drives and DC Motor Speed Control
The advances made in power semiconductors have made it possible to realize
low-cost speed control systems for DC motors. In this section we describe some
of the considerations that are behind the choice of a specific drive type, and some
of the loads that are likely to be encountered.

Constant-torque loads are quite common and are characterized by a need for
constant torque over the entire speed range. This need is usually due to friction;
the load will demand increasing horsepower at higher speeds, since power is the
product of speed and torque. Thus, the power required will increase linearly with
speed. This type of loading is characteristic of conveyors, extruders, and surface
winders.

Another type of load is one that requires constant horsepower over the speed
range of the motor. Since torque is inversely proportional to speed with constant
horsepower, this type of load will require higher torque at low speeds. Examples
of constant-horsepower loads are machine tool spindles (e.g., lathes). This type of
application requires very high starting torques.

Variable-torque loads are also common. In this case, the load torque is related
to the speed in some fashion, either linearly or geometrically. For some loads, for
example, torque is proportional to the speed (and thus horsepower is proportional
to speed squared); examples of loads of this type are positive displacement
pumps. More common than the linear relationship is the squared-speed
dependence of inertial loads such as centrifugal pumps, some fans, and all loads
in which a flywheel is used for energy storage.

To select the appropriate motor and adjustable-speed drive for a given
application, we need to examine how each method for speed adjustment operates



on a DC motor. Armature voltage control serves to smoothly adjust speed from 0
to 100 percent of the nameplate rated value (i.e., base speed), provided that the
field excitation is also equal to the rated value. Within this range, it is possible to
fully control motor speed for a constant-torque load, thus providing a linear
increase in horsepower, as shown in Figure 13.20. Field weakening allows for
increases in speed of up to several times the base speed; however, field control
changes the characteristics of the DC motor from constant torque to constant
horsepower, and therefore the torque output drops with speed, as shown in Figure
13.20. Operation above base speed requires special provision for field control, in
addition to the circuitry required for armature voltage control, and is therefore
more complex and costly.

Figure 13.20 Speed control in DC motors
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CHECK YOUR UNDERSTANDING
Describe the cause-and-effect behavior of the speed control method of changing
armature voltage for a shunt DC motor.

exceeds the load torque, causing the speed to increase as well. The
corresponding increase in back emf, however, causes the armature
current to drop and the motor torque to decrease until a balance

condition is reached between motor and load torque and the motor runs
at constant speed.



13.4 DIRECT-CURRENT GENERATORS
The same analysis and equations used in the preceding section can be applied to
DC generators, with the understanding that in a motor, the external voltage Vs is a
DC supply that enables the motor to generate a torque, while in a generator the
torque provided by a prime mover results in the motor rotating at a speed Ω,
which in turn generates an open-circuit voltage Vg. When the generator is
connected to a load, armature current flows, and a load voltage VL is generated.
Figure 13.21 depicts the configuration of a separately excited DC generator, and
Figure 13.22 depicts a magnetization curve for a generator that can be used to
calculate the back emf (generator open-circuit voltage) as a function of field
current. Two examples follow, to illustrate methods of analysis for DC generators.

Figure 13.21 Separately excited DC generator

Answer: Increasing the armature voltage leads to an increase in
armature current. Consequently, the motor torque increases until it



1.

2.
3.

1.

Figure 13.22 Separately excited DC generator magnetization curve

EXAMPLE 13.8 Separately Excited DC Generator
Problem

A separately excited DC generator is characterized by the magnetization of
Figure 13.22.

If the prime mover is driving the generator at 800 r/min, what is the no-load
terminal voltage Va?
If a 1-Ω load is connected to the generator, what is the generator voltage?
Assume steady-state operation.
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Solution
Known Quantities: Generator magnetization curve and ratings.
Find: Terminal voltage with no load and 1-Ω load.
Schematics, Diagrams Circuits and Green Data: Generator ratings: 100 V, 100
A, 1,000 r/min. Circuit parameters: Ra = 0.14 Ω; Vf = 100 V; Rf = 100 Ω.

Analysis:
The field current in the machine at steady state is



2.

From the magnetization curve, it can be seen that this field current will
produce 100 V at a speed of 1,000 r/min. Since this generator is actually running
at 800 r/min, the induced emf may be found by assuming a linear relationship
between speed and emf. This approximation is reasonable, provided that the
departure from the nominal operating condition is small. Let n0 and Eb0 be the
nominal speed and emf, respectively (that is, 1,000 r/min and 100 V). Then:

and therefore:

The open-circuit (output) terminal voltage of the generator is equal to the emf
from the circuit model of Figure 13.15: therefore:

When a load resistance is connected to the circuit (the practical situation), the
terminal (or load) voltage is no longer equal to Eb, since there will be a
voltage drop across the armature winding resistance. The armature (or load)
current may be determined from

where RL = 1 Ω is the load resistance. The terminal (load) voltage is therefore
given by

CHECK YOUR UNDERSTANDING
A 24-coil, two-pole DC generator has 16 turns per coil in its armature winding.
The field excitation is 0.05 Wb per pole, and the armature angular velocity is 180



1.
2.
3.
4.

1.

rad/s. Find the machine constant and the total induced voltage.
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EXAMPLE 13.9 Separately Excited DC Generator
Problem

Determine the following quantities for a separately excited DC:

Induced voltage
Machine constant
Torque developed at rated conditions
Assume steady-state operation

Solution
Known Quantities: Generator ratings and machine parameters.
Find: Eb, ka, T.

Schematics, Diagrams, Circuits, and Given Data: Generator ratings: 1,000 kW,
2,000 V, 3,600 r/min. Circuit parameters: R0 = 0.1 Ω; flux per pole ϕ = 0.5 Wb.

Analysis:
The armature current may be found by observing that the rated power is
equal to the product of the terminal (load) voltage and the current. Then:

The generated voltage is equal to the sum of the terminal voltage and the
voltage drop across the armature resistance (see Figure 13.14):

Answer: ka = 5.1; Eb = 45.9 V



2.

3.

The speed of rotation of the machine in units of radians per second is

Thus, the machine constant is found to be

The torque developed is found from equation 13.6:

Comments: In many practical cases, it is not actually necessary to know the
armature constant and the flux separately, but it is sufficient to know the value of
the product kaϕ. For example, suppose that the armature resistance of a DC
machine is known and that, given a known field excitation, the armature current,
load voltage, and speed of the machine can be measured. Then the product kaϕ
may be determined from equation 13.8, as follows:

where VL, Ia and ωm are measured quantities for given operating conditions.
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CHECK YOUR UNDERSTANDING
A 1,000-kW, 1,000-V, 2,400 r/min separately excited DC generator has an
armature circuit resistance of 0.04 Ω. The flux per pole is 0.4 Wb. Find (a) the
induced voltage, (b) the machine constant, and (c) the torque developed at the
rated conditions.

Answer: 



CHECK YOUR UNDERSTANDING
A 100-kW, 250-V shunt generator has a field circuit resistance of 50 Ω and an
armature circuit resistance of 0.05 Ω. Find (a) the full-load line current flowing to
the load, (b) the field current, (c) the armature current, and (d) the full-load
generator voltage.

13.5 ALTERNATING-CURRENT MACHINES
AC machines represent the vast majority of industrial applications. The objective
of this section is to explain the basic operation of both synchronous and induction
machines and to outline their performance characteristics. In doing so, we also
point out the relative advantages and disadvantages of these machines in
comparison with DC machines.

Rotating Magnetic Fields
As mentioned in Section 13.1, the fundamental principle of operation of AC
machines is the generation of a rotating magnetic field, which causes the rotor to
turn at a speed that depends on the speed of rotation of the magnetic field. We
now explain how a rotating magnetic field can be generated in the stator and air
gap of an AC machine by means of alternating currents.

Consider the stator shown in Figure 13.23, which supports windings a-a′, b-
b′, and c-c′. The coils are geometrically spaced 120° apart, and a three-phase
voltage is applied to the coils. As you may recall from the discussion of AC
power in Chapter 6, the currents generated by a three-phase source are also
spaced by 120°, as illustrated in Figure 13.24. The phase voltages referenced to
the neutral terminal would then be given by the expressions

Answer: (a) 400 A; (b) 5 A; (c) 405 A; (d) 270.25 V



Figure 13.23 Two-pole three-phase stator

Figure 13.24 Three-phase stator winding currents
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where ωe is the frequency of the AC supply, or line frequency. The coils in each
winding are arranged in such a way that the flux distribution generated by any
one winding is approximately sinusoidal. Such a flux distribution may be
obtained by appropriately arranging groups of coils for each winding over the
stator surface. Since the coils are spaced 120° apart, the flux distribution resulting
from the sum of the contributions of the three windings is the sum of the fluxes



due to the separate windings, as shown in Figure 13.25. Thus, the flux in a three-
phase machine rotates in space according to the vector diagram of Figure 13.26,
and the flux is constant in amplitude. A stationary observer on the machine’s
stator would see a sinusoidally varying flux distribution, as shown in Figure
13.25.

Figure 13.25 Flux distribution in a three-phase stator winding as a
function of angle of rotation

Figure 13.26 Rotating flux in a three-phase machine

Since the resultant flux of Figure 13.25 is generated by the currents of Figure
13.24, the speed of rotation of the flux must be related to the frequency of the
sinusoidal phase currents. In the case of the stator of Figure 13.23, the number of
magnetic poles resulting from the winding configuration is 2; however, it is also
possible to configure the windings so that they have more poles. For example,
Figure 13.27 depicts a simplified view of a four-pole stator.



(13.41)

Figure 13.27 Four-pole stator

In general, the speed of the rotating magnetic field is determined by the
frequency of the excitation current f and by the number of poles present in the
stator p according to

where ns (or ωs) is usually called the synchronous speed.

Now, the structure of the windings in the preceding discussion is the same
whether the AC machine is a motor or a generator; the distinction between the
two depends on the direction of power flow. In a generator, the electromagnetic
torque is a reaction torque that opposes rotation of the machine; this is the torque
against which the prime mover does work. In a motor, on the other hand, the
rotational (motional) voltage generated in the armature opposes the applied
voltage; this voltage is the counter- (or back) emf. Thus, the description of the
rotating magnetic field given thus far applies to both motor and generator action
in AC machines.
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As described a few paragraphs earlier, the stator magnetic field rotates in an
AC machine, and therefore the rotor cannot “catch up” with the stator field and is
in constant pursuit of it. The speed of rotation of the rotor will therefore depend
on the number of magnetic poles present in the stator and in the rotor. The
magnitude of the torque produced in the machine is a function of the angle γ
between the stator and rotor magnetic fields; precise expressions for this torque
depend on how the magnetic fields are generated and will be given separately for
the two cases of synchronous and induction machines. What is common to all
rotating machines is that the number of stator and rotor poles must be identical if
any torque is to be generated. Further, the number of poles must be even, since
for each north pole there must be a corresponding south pole.



One important desired feature in an electric machine is an ability to generate a
constant electromagnetic torque. With a constant-torque machine, one can avoid
torque pulsations that could lead to undesired mechanical vibration in the motor
itself and in other mechanical components attached to the motor (e.g., mechanical
loads, such as spindles or belt drives). A constant torque may not always be
achieved although it will be shown that it is possible to accomplish this goal when
the excitation currents are multiphase. A general rule of thumb, in this respect, is
that it is desirable, insofar as possible, to produce a constant flux per pole.

13.6 THE ALTERNATOR (SYNCHRONOUS
GENERATOR)
One of the most common AC machines is the synchronous generator, or
alternator. In this machine, the field winding is on the rotor, and the connection
is made by means of brushes, in an arrangement similar to that of the DC
machines studied earlier. The rotor field is obtained by means of a direct current
provided to the rotor winding, or by permanent magnets. The rotor is then
connected to a mechanical source of power and rotates at a speed that we will
consider constant to simplify the analysis.

Figure 13.28 depicts a two-pole three-phase synchronous machine. Figure
13.29 depicts a four-pole three-phase alternator, in which the rotor poles are
generated Page 726by means of a wound salient pole configuration and the stator
poles are the result of windings embedded in the stator according to the simplified
arrangement shown in the figure, where each of the pairs a/a′,b/b′, and so on
contributes to the generation of the magnetic poles, as follows. The group a/a′,
b/b′,c/c′ produces a sinusoidally distributed flux corresponding to one of the pole
pairs, while the group –a/ –a′, –b/ –b′, –c/ –c′ contributes the other pole pair. The
connections of the coils making up the windings are also shown in Figure 13.29.
Note that the coils form a wye connection (see Chapter 6). The resulting flux
distribution is such that the flux completes two sinusoidal cycles around the
circumference of the air gap. Note also that each arm of the three-phase wye
connection has been divided into two coils, wound in different locations,
according to the schematic stator diagram of Figure 13.29. One could then
envision analogous configurations with greater numbers of poles, obtained in the
same fashion, that is, by dividing each arm of a wye connection into more
windings.
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Figure 13.28 Two-pole synchronous machine

Figure 13.29 Four-pole three-phase alternator

The arrangement shown in Figure 13.29 requires that a further distinction be
made between mechanical degrees θm and electrical degrees θe. In the four-pole
alternator, the flux will see two complete cycles during one rotation of the rotor,
and therefore the voltage that is generated in the coils will also oscillate at twice
the frequency of rotation. In general, the electrical degrees (or radians) are related
to the mechanical degrees by the expression:

where p is the number of poles. In effect, the voltage across a coil of the machine
goes through one cycle every time a pair of poles moves past the coil. Thus, the
frequency of the voltage generated by a synchronous generator is
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where n is the mechanical speed in revolutions per minute. Alternatively, if the
speed is expressed in radians per second, we have

where ωm is the mechanical speed of rotation in radians per second. The number
of poles employed in a synchronous generator is then determined by two factors:
the frequency desired of the generated voltage (for example, 60 Hz, if the
generator is used to produce AC power) and the speed of rotation of the prime
mover. In the Page 727latter respect, there is a significant difference, for example,
between the speed of rotation of a steam turbine generator and that of a
hydroelectric generator, the former being much greater.

A common application of the alternator is seen in automotive battery-charging
systems, in which, however, the generated AC voltage is rectified to provide the
DC required for charging the battery. Figure 13.30 depicts an automotive
alternator.

Figure 13.30 Automotive alternator (BorgWarner)

CHECK YOUR UNDERSTANDING
A synchronous generator has a multipolar construction that permits changing its
synchronous speed. If only two poles are energized, at 50 Hz, the speed is 3,000
r/min. If the number of poles is progressively increased to 4, 6, 8, 10, and 12, find
the synchronous speed for each configuration. Draw the complete equivalent
circuit of a synchronous generator and its phasor diagram.
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13.7 THE SYNCHRONOUS MOTOR
Synchronous motors are virtually identical to synchronous generators with regard
to their construction, except for an additional winding for helping start the motor
and minimizing motor speed over- and undershoots. The principle of operation is,
of course, the opposite: An AC excitation provided to the armature generates a
magnetic field in the air gap between stator and rotor, resulting in a mechanical
torque. To generate the rotor magnetic field, some direct current must be provided
to the field windings; this is often accomplished by means of an exciter, which
consists of a small DC generator propelled by the motor itself, and therefore
mechanically connected to it. It was mentioned earlier that to obtain a constant
torque in an electric motor, it is necessary to keep the rotor and stator magnetic
fields constant relative to each other. This means that the electromagnetically
rotating field in the stator and the mechanically rotating rotor field should be
aligned at all times. The only condition for which this is possible occurs if both
fields are rotating at the synchronous speed ns = 120f/p. Thus, synchronous
motors are by their very nature constant-speed motors, if the excitation frequency
is constant.

For a non–salient pole (cylindrical rotor) synchronous machine, the torque
can be written in terms of the stator alternating current iS (t) and the rotor direct
current, If :

where γ is the angle between the stator and rotor fields (see Figure 13.7). Let the
angular speed of rotation be

Answer: 1,500, 1,000, 750, 600, and 500 r/min
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where , and let ωe be the electrical frequency of 
. Then the torque may be expressed as

where k is a machine constant, IS is the rms value of the stator current, and If is
the rotor direct current. Now, the rotor angle γ can be expressed as a function of
time by

where γ0 is the angular position of the rotor at t = 0; the torque expression then
becomes

It is a straightforward matter to show that the average value of this torque,
denoted by 〈T〉, is different from zero only if , that is, only if the motor
is turning at the synchronous speed. The resulting average torque is then given by

Note that equation 13.49 corresponds to the sum of an average torque plus a
fluctuating component at twice the original electrical (or mechanical) frequency.
The fluctuating component results because, in the foregoing derivation, a single-
phase current was assumed. The use of multiphase currents reduces the torque
fluctuation to zero and permits the generation of a constant torque.

A per-phase circuit model describing the synchronous motor is shown in
Figure 13.31, where the rotor circuit is represented by a field winding equivalent
resistance and inductance, Rf and Lf, respectively, and the stator circuit is
represented by equivalent stator winding inductance and resistance, LS and RS,
respectively, and by the induced emf Eb. From the exact equivalent circuit as
given in Figure 13.31, we have
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where XS is known as the synchronous reactance and includes magnetizing
reactance.

Figure 13.31 Per-phase circuit model

The motor power is

for each phase, where T is the developed torque and θ is the angle between the
stator voltage and current, VS and IS.

When the phase winding resistance RS is neglected, the circuit model of a
synchronous machine can be redrawn as shown in Figure 13.32. The input power
(per phase) is equal to the output power in this circuit, since no power is
dissipated in the circuit:

Figure 13.32 Simplified per-phase circuit model and associated vector
diagram
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Also by inspection of Figure 13.32, we have

Then:
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The total power of a three-phase synchronous machine is then given by

Because of the dependence of the power upon the angle δ, this angle has come to
be called the power angle. If δ is zero, the synchronous machine cannot develop
useful power. The developed power has its maximum value at δ equal to 90°. If
we assume that ∣Eb∣ and ∣VS∣ are constant, we can draw the curve shown in
Figure 13.33, relating the power and power angle in a synchronous machine.

Figure 13.33 Power versus power angle for a synchronous machine

A synchronous generator is usually operated at a power angle varying from
15° to 25°. For synchronous motors and small loads, δ is close to 0°, and the
motor torque is just sufficient to overcome its own windage and friction losses; as
the load increases, the rotor field falls further out of phase with the stator field
(although the two are still rotating at the same speed) until δ reaches a maximum
at 90°. If the load torque exceeds the maximum torque, which is produced for δ =
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90°, the motor is forced to slow down below synchronous speed. This condition is
undesirable, and provisions are usually made to shut down the motor
automatically whenever synchronism is lost. The maximum torque is called the
pull-out torque and is an important measure of the performance of the
synchronous motor.

Accounting for each of the phases, the total torque is given by

where m is the number of phases. From Figure 13.32, we have .
Therefore, for a three-phase machine, the developed torque is

Typically, analysis of multiphase motors is performed on a per-phase basis, as
illustrated in Examples 13.10 and 13.11.

EXAMPLE 13.10 Synchronous Motor Analysis
Problem

Find the kilovoltampere rating, the induced voltage, and the power angle of the
rotor for a fully loaded synchronous motor.

Solution
Known Quantities: Motor ratings; motor synchronous impedance.
Find: S; Eb; δ.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 460 V; three-
phase; power factor = 0.707 lagging; full-load stator current: 12.5 A. ZS = 1 + j12
Ω.
Assumptions: Use per-phase analysis.



Analysis: The circuit model for the motor is shown in Figure 13.34. The per-
phase current in the wye-connected stator winding is

Figure 13.34
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The per-phase voltage is

The kilovoltampere rating of the motor is expressed in terms of the apparent
power S (see Chapter 6):

From the equivalent circuit, we have

The induced line voltage is defined to be

From the expression for Eb, we can find the power angle:

Comments: The minus sign indicates that the machine is in the motor mode.



EXAMPLE 13.11 Synchronous Motor Analysis
Problem

Find the stator current, the line current, and the induced voltage for a synchronous
motor, with reference to Figure 13.34, where ZS = RS + jXS

Solution
Known Quantities: Motor ratings; motor synchronous impedance.
Find: IS; Iline; Eb.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 208 V; three-
phase; 45 kVA; 60 Hz; power factor = 0.8 leading; ZS = 0 + j2.5 Ω. Friction and
windage losses: 1.5 kW; core losses: 1.0 kW; load power: 15 hp.
Assumptions: Use per-phase analysis.
Analysis: The output power of the motor is 15 hp; that is,

The electric power supplied to the machine is

As discussed in Chapter 6, the resulting line current is
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Because of the delta connection, the armature current is



The emf may be found from the equivalent circuit and KVL:

The power angle is

CHECK YOUR UNDERSTANDING
Find an expression for the maximum pull-out torque of the synchronous motor.

Synchronous motors are not very commonly used in practice, for various
reasons, among which are that they are essentially required to operate at constant
speed (unless a variable-frequency AC supply is available) and that they are not
self-starting. Further, separate AC and DC supplies are required. It will be seen
shortly that the induction motor overcomes most of these drawbacks.

13.8 THE INDUCTION MOTOR
The induction motor is the most widely used electric machine, because of its
relative simplicity of construction. The stator winding of an induction machine is
similar to that of a synchronous machine; thus, the description of the three-phase
winding of Figure 13.23 also applies to induction machines. The primary
advantage of the induction machine, which is almost exclusively used as a motor
(its performance as a generator is not very good), is that no separate excitation is
required for the rotor. The rotor typically consists of one of two arrangements: a
squirrel cage or a wound rotor. The former contains conducting bars short-
circuited at the end and embedded within it; the latter consists of a multiphase
winding similar to that used for the stator, but electrically short-circuited.

Answer: 



In either case, the induction motor operates by virtue of currents induced from
the stator field in the rotor. In this respect, its operation is similar to that of a
transformer, in that currents in the stator (which acts as a primary coil) induce
currents in the rotor (acting as a secondary coil). In most induction motors, no
external electrical connection is required for the rotor, thus permitting a simple,
rugged construction without the need for slip rings or brushes. Unlike the
synchronous motor, the induction motor operates not at synchronous speed, but at
a somewhat lower speed, which is dependent on the load. Figure 13.35 illustrates
the appearance of a squirrel cage induction motor. The following discussion
focuses mainly on this very common configuration.
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Figure 13.15 (a) Squirrel cage induction motor; (b) conductors in rotor;
(c) photograph of squirrel cage induction motor; (d) views of Smokin'
Buckeye motor: rotor, stator, and cross section of stator ((c) Normal
Life/Shutterstock; (d) Courtesy: David H. Koether Photography)



(13.59)

(13.60)

By now you are acquainted with the notion of a rotating stator magnetic field.
Imagine now that a squirrel cage rotor is inserted in a stator in which such a
rotating magnetic field is present. The stator field will induce voltages in the cage
conductors, and if the stator field is generated by a three-phase source, the
resulting rotor currents—which circulate in the bars of the squirrel cage, with the
conducting path completed by the shorting rings at the end of the cage—are also
three-phase and are determined by the magnitude of the induced voltages and by
the impedance of the rotor. Since the rotor currents are induced by the stator field,
the number of poles and the speed of rotation of the induced magnetic field are
the same as those of the stator field, if the rotor is at rest. Thus, when a stator
field is initially applied, the rotor field is synchronous with it, and the fields are
stationary with respect to one another. Thus, according to the earlier discussion, a
starting torque is generated.

If the starting torque is sufficient to cause the rotor to start spinning, the rotor
will accelerate up to its operating speed. However, an induction motor can never
reach synchronous speed; if it did, the rotor would appear to be stationary with
respect to the rotating stator field, since it would be rotating at the same speed.
But in the absence of relative motion between the stator and rotor fields, no
voltage would be induced in the rotor. Thus, an induction motor is limited to
speeds somewhere below the synchronous speed ns. Let the speed of rotation of
the rotor be n; then the rotor is losing ground with respect to the rotation of the
stator field at a Page 733speed ns − n. In effect, this is equivalent to backward
motion of the rotor at the slip speed, defined by ns − n. The slip s is usually
defined as a fraction of ns:

which leads to the following expression for the rotor speed:

The slip s is a function of the load, and the amount of slip in a given motor is
dependent on its construction and rotor type (squirrel cage or wound rotor). Since
there is a relative motion between the stator and rotor fields, voltages will be
induced in the rotor at a frequency called the slip frequency, fR = sf, where f is
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the frequency of the sinusoidal excitation related to the relative speed of the two
fields. This gives rise to an interesting phenomenon: The rotor field travels
relative to the rotor at the slip speed sns, but the rotor is mechanically traveling at
the speed (1 − s)ns , so that the net effect is that the rotor field travels at the speed:

that is, at synchronous speed. The fact that the rotor field rotates at synchronous
speed—although the rotor itself does not—is extremely important because it
means that the stator and rotor fields will continue to be stationary with respect to
each other, and therefore a net torque can be produced.

As in the case of DC and synchronous motors, important characteristics of
induction motors are the starting torque, the maximum torque, and the torque–
speed curve. These will be discussed shortly, after some analysis of the induction
motor is performed.

EXAMPLE 13.12 Induction Motor Analysis
Problem

Find the full-load rotor slip and frequency of the induced voltage at rated speed in
a four-pole induction motor.

Solution
Known Quantities: Motor ratings.
Find: s; fR.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 230 V; 60 Hz;
full-load speed: 1,725 r/min.
Analysis: The synchronous speed of the motor is



The slip is
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The rotor frequency fR is

CHECK YOUR UNDERSTANDING
A three-phase induction motor has six poles. (a) If the line frequency is 60 Hz,
calculate the speed of the magnetic field in revolutions per minute. (b) Repeat the
calculation if the frequency is changed to 50 Hz.

The induction motor can be described by means of an equivalent circuit,
which is essentially that of a rotating transformer. (See Chapter 6 for a circuit
model of the transformer.) Figure 13.36 depicts such a circuit model, where:

RS = stator resistance per phase

XS = stator reactance per phase

Xm = magnetizing (mutual) reactance

RC = equivalent core-loss resistance

ES = per-phase induced voltage in stator windings

ER = per-phase induced voltage in rotor windings

RR = rotor resistance per phase

XR = rotor reactance per phase

Answer: (a) n = 1,200 r/min; (b) n = 1,000 r/min
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The primary internal stator voltage ES is coupled to the secondary rotor voltage
ER by an ideal transformer with an effective turns ratio of α. For the rotor circuit,
the induced voltage at any slip will be

where ER0 is the induced rotor voltage at the condition in which the rotor is
stationary. Also, , where  is the reactance
when the rotor is stationary. The rotor current is given by

The resulting rotor equivalent circuit is shown in Figure 13.37.

Figure 13.36 Circuit model for induction machine

Figure 13.37 Rotor circuit
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The voltages, currents, and impedances on the secondary (rotor) side can be
reflected to the primary (stator) by means of the effective turns ratio. When this
transformation is effected, the transformed rotor voltage is given by
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1.
2.

The transformed (reflected) rotor current is

The transformed rotor resistance can be defined as

and the transformed rotor reactance can be defined by

The final per-phase equivalent circuit of the induction motor is shown in Figure
13.38.

Figure 13.38 Equivalent circuit of an induction machine

Examples 13.13 and 13.14 illustrate the use of the circuit model in
determining the performance of the induction motor.

EXAMPLE 13.13 Induction Motor Analysis
Problem

Determine the following quantities for an induction motor, using the circuit
model of Figures 13.36 to 13.38.

Speed
Stator current



3.
4.

1.

2.

Power factor
Output torque

Solution
Known Quantities: Motor ratings; circuit parameters.
Find: n; ωm; IS; power factor (pf); T.
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Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 460 V; 60 Hz;
four poles; s = 0.022; Pout = 14 hp; RS = 0.641 Ω; R2 = 0.332 Ω; XS = 1.106 Ω; X2
= 0.464 Ω; Xm = 26.3 Ω

Assumptions: Use per-phase analysis. Neglect core losses (RC = 0).

Analysis:
The per-phase equivalent circuit is shown in Figure 13.38. The synchronous
speed is found to be

or

The rotor mechanical speed is

or

The reflected rotor impedance is found from the parameters of the per-phase
circuit to be

The combined magnetization plus rotor impedance is therefore equal to



3.

4.

and the total impedance is

Finally, the stator current is given by

The power factor is

The output power Pout is

and the output torque is
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CHECK YOUR UNDERSTANDING
A four-pole induction motor operating at a frequency of 60 Hz has a full-load slip
of 4 percent. Find the frequency of the voltage induced in the rotor (a) at the
instant of starting and (b) at full load.

Answer: (a) fR = 60 Hz; (b) fR = 2.4 Hz



1.
2.
3.

EXAMPLE 13.14 Induction Motor Analysis
Problem

Determine the following quantities for a three-phase induction motor, using the
circuit model of Figure 13.38.

Stator current
Power factor
Full-load electromagnetic torque

Solution
Known Quantities: Motor ratings; circuit parameters.
Find: IS; pf; T.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 500 V; three-
phase; 50 Hz; p = 8; s = 0.05; P = 14 hp.

Circuit parameters: ; Ym = GC + jBm =
magnetic branch admittance describing core loss and mutual inductance = 0.004
− j0.05 Ω−1; stator/rotor turns ratio = 1: α = 1:1.57.

Assumptions: Use per-phase analysis. Neglect mechanical losses.
Analysis: The approximate equivalent circuit of the three-phase induction motor
on a per-phase basis is shown in Figure 13.39. The parameters of the model are
calculated as follows:

Figure 13.39 Per-phase equivalent circuit of induction motor
2
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Using the approximate circuit, we have

CHECK YOUR UNDERSTANDING
A four-pole, 1,746 r/min, 220-V, three-phase, 60-Hz, 10-hp, Y-connected
induction machine has the following parameters: RS = 0.4 Ω, R2 = 0.14 Ω, Xm =
16 Ω, XS = 0.35 Ω, X2 = 0.35 Ω, RC = ∞. Using Figure 13.38 find (a) the stator
current, (b) the rotor current, (c) the motor power factor, and (d) the total stator
power input.

Performance of Induction Motors

Answer: (a) 25.92∠−∠22.43° A; (b) 24.35∠−6.51° A; (c) 0.9243; (d)
9,129 W
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The performance of induction motors can be described by torque–speed curves
similar to those already used for DC motors. Figure 13.40 depicts an induction
motor torque–speed curve, with five torque ratings marked a through e. Point a is
the starting torque, also called breakaway torque, and is the torque available
with the rotor “locked,” that is, in a stationary position. At this condition, the
frequency of the voltage induced in the rotor is highest, since it is equal to the
frequency of rotation of the stator field; consequently, the inductive reactance of
the rotor is greatest. As the rotor accelerates, the torque drops off, reaching a
minimum value called the pull-up torque (point b); this typically occurs
somewhere between 25 and 40 percent of synchronous speed. As the rotor speed
continues to increase, the rotor reactance decreases further (since the frequency of
the induced voltage is determined by the relative speed of rotation of the rotor
with respect to the stator field). The torque becomes a maximum when the rotor
Page 739inductive reactance is equal to the rotor resistance; maximum torque is
also called breakdown torque (point c). Beyond this point, the torque drops off
until it is zero at synchronous speed, as discussed earlier. Also marked on the
curve are the 150 percent torque (point d) and the rated torque (point e).

Figure 13.40 Performance curve for induction motor

A general formula for the computation of the induction motor steady-state
torque–speed characteristic is



where m is the number of phases.

Different construction arrangements permit the design of induction motors
with different torque–speed curves, thus permitting the user to select the motor
that best suits a given application. Figure 13.41 depicts the four basic
classifications—classes A, B, C, and D—as defined by NEMA. The determining
features in the classification are the locked-rotor torque and current, the
breakdown torque, the pull-up torque, and the percentage of slip. Class A motors
have a higher breakdown torque than class B motors, and a slip of 5 percent or
less. Motors in this class are often designed for a specific application. Class B
motors are general-purpose motors; this is the most commonly used type of
induction motor, with typical values of slip of 3 to 5 percent. Class C motors have
a high starting torque for a given starting current, and a low slip. These motors
are typically used in applications demanding high starting torque but having
relatively normal running loads, once the running speed has been reached. Class
D motors are characterized by high starting torque, high slip, low starting current,
and low full-load speed. A typical value of slip is around 13 percent.

Figure 13.41 Induction motor classification

Factors that should be considered in the selection of an AC motor for a given
application are the speed range, both minimum and maximum, and the speed
variation. For example, it is important to determine whether constant speed is
required; what variation might be allowed, either in speed or in torque; or whether
variable-speed operation is required, in which case a variable-speed drive will be
needed. Page 740The torque requirements are obviously important as well. The
starting and running torque should be considered; they depend on the type of
load. Starting torque can vary from a small percentage of full-load torque to
several times full-load torque. Furthermore, the excess torque available at start-up
determines the acceleration characteristics of the motor. Similarly, deceleration



characteristics should be considered, to determine whether external braking
might be required.

Another factor to be considered is the duty cycle of the motor. The duty cycle,
which depends on the nature of the application, is an important consideration
when the motor is used in repetitive, noncontinuous operation, such as is
encountered in some types of machine tools. If the motor operates at zero or
reduced load for periods of time, the duty cycle—that is, the percentage of the
time the motor is loaded—is an important selection criterion. Last, but by no
means least, are the thermal properties of a motor. Motor temperature is
determined by internal losses and by ventilation; motors operating at a reduced
speed may not generate sufficient cooling, and forced ventilation may be
required.

Thus far, we have not considered the dynamic characteristics of induction
motors. Among the integral-horsepower induction motors (i.e., motors with
horsepower rating greater than 1), the most common dynamic problems are
associated with starting and stopping and with the ability of the motor to continue
operation during supply system transient disturbances. Dynamic analysis methods
for induction motors depend to a considerable extent on the nature and
complexity of the problem and the associated precision requirements. When the
electric transients in the motor are to be included as well as the motion transients,
and especially when the motor is an important element in a large network, the
simple transient equivalent circuit of Figure 13.42 provides a good starting
approximation. There, X′S is called the transient reactance. The voltage E′S is
called the voltage behind the transient reactance and is assumed to be equal to
the initial value of the induced voltage, at the start of the transient. The stator
resistance is RS. The dynamic analysis problem consists of selecting a sufficiently
simple but reasonably realistic representation that will not unduly complicate the
dynamic analysis, particularly through the introduction of non-linearities.

Figure 13.42 Simplified induction motor dynamic model

It should be remarked that the basic equations of the induction machine, as
derived from first principles, are quite nonlinear. Thus, an accurate dynamic



analysis of the induction motor, without any linearizing approximations, requires
the use of computer simulation.

AC Motor Speed and Torque Control
As explained in an earlier section, AC machines are constrained to fixed-speed or
near fixed-speed operation when supplied by a constant-frequency source.
Several simple methods exist to provide limited speed control in AC induction
machines; more complex methods, involving the use of advanced power
electronics circuits, can be used if the intended application requires wide-
bandwidth control of motor speed or torque. In this subsection we provide a
general overview of available solutions.

Pole Number Control

The (conceptually) easiest method to implement speed control in an induction
machine is by varying the number of poles. Equation 13.41 explains the
dependence Page 741of synchronous speed in an AC machine on the supply
frequency and on the number of poles. For machines operated at 60 Hz, the
following speeds can be achieved by varying the number of magnetic poles in the
stator winding:

While for machines operating at 50 Hz, the speeds are

Motor stators can be wound so that the number of pole pairs in the stators can be
varied by switching between possible winding connections. Such switching
requires that care be taken in timing it to avoid damage to the machine.

Slip Control

Since the rotor speed is inherently dependent on the slip, slip control is a valid
means of achieving some speed variation in an induction machine. Since motor
torque falls with the square of the voltage (see equation 13.68), it is possible to
change the slip by changing the motor torque through a change in motor voltage.
This procedure allows for speed control over the range of speeds that allow for



stable motor operation. With reference to Figure 13.40, this is possible only above
point c, that is, above the breakdown torque.

Rotor Control

For motors with wound rotors, it is possible to connect the rotor slip rings to
resistors; adding resistance to the rotor increases the losses in the rotor and
therefore causes the rotor speed to decrease. This method is also limited to
operation above the breakdown torque although it should be noted that the shape
of the motor torque–speed characteristic changes when the rotor resistance is
changed.

Frequency Regulation

The last two methods cause additional losses to be introduced in the machine. If a
variable-frequency supply is used, motor speed can be controlled without any
additional losses. As seen in equation 13.41, the motor speed is directly
dependent on the supply frequency, as the supply frequency determines the speed
of the rotating magnetic field. However, to maintain the same motor torque
characteristics over a range of speeds, the motor voltage must change with
frequency, to maintain a constant torque. Thus, generally, the volts/hertz ratio
should be held constant. This condition is difficult to achieve at start-up and at
very low frequencies, in which cases the voltage must be raised above the
constant volts/hertz ratio that will be appropriate at higher frequency.
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Variable-Frequency Drives
AC machines are capable of variable-speed operation if equipped with a
variable-frequency drive. Variable-frequency drives are capable of producing a
variable-frequency sinusoidal output starting from a fixed-frequency AC input, in
which case they are called AC-AC converters, or from a DC input, in which case
they are called DC-AC converters, or inverters. Figure 13.43 depicts the general
configuration of a variable-speed drive for an AC machine. The top half of the
figure illustrates the case of a three-phase AC source, wherein a three-phase
rectifier provides a DC output, which is conditioned by a DC link circuit (often, a
capacitor) to smooth any ripple that may be present in the rectified AC output; the
output of the DC link is a conditioned DC input that is appropriate for DC-AC
conversion, through an inverter, capable of generating a three-phase sinusoidal
output of variable output frequency and voltage; the controller provides the



necessary control functions, for example, speed or torque control, for the electric
machine that is connected to the output of the inverter. In the bottom half of the
figure a similar diagram is shown, but in this case the input is a DC source, for
example a solar array or a battery. We focus the remainder of this section on DC-
AC conversion, that is, on the inverter.

Figure 13.43 Variable-speed drive for AC machine

The basic topology of the inverter is shown in Figure 13.44. The inverter
consists of an array of power switches (IGBTs shown in the figure), that are
switched on and off so as to produce a pulse-width-modulated (PWM) waveform
that, when filtered by the inductance of the electric machine, has nearly sinusoidal
behavior. This technique is called sinusoidal PWM. The switching frequency for
the power switches (the IGBTs in Figure 13.44) determines the frequency of the
three-phase sinusoidal output. A microcontroller receives information from the
electric machine (speed of rotation, current, voltage) and computes the
appropriate switching pattern to obtain the desired motor speed and torque. The
process by which a train of pulses is converted into a sinusoidal waveform
(sinusoidal PWM) Page 743is conceptually depicted in Figure 13.45: if one were
able to perfectly filter an appropriately generated pulse train, the resulting
waveform would be a sinusoidal waveform. In fact, the electric machine, through
its inductance, provides the needed filtering. In practice, an actual sinusoidal
PWM waveform is more complicated than what is shown in the figure.



Figure 13.44 Inverter connected to an electric machine

Figure 13.45 Conceptual sketch of sinusoidal PWM waveform
generation

Another modulation technique that is gaining in popularity is the so-called
space vector PWM, summarized in Figure 13.46, where six power switches are
shown in the form of ideal switches, and the three-phase voltages are shown. The
table that accompanies the figure illustrates the switching law that would result in
a three-phase quasi-sinusoidal output.



Figure 13.46 Space vector PWM

In many applications, for example, electric traction drives in electric and
hybrid vehicles, one is often interested in controlling the torque output of the
machine. The most common method employed to achieve torque control is based
on vector control. One type of vector control is called field-oriented control and
is applicable to both synchronous and induction machines, and it uses PWM to
Page 744control the motor voltage magnitude and phase angle, and frequency. A
second vector control method is called direct torque control. These methods are
beyond the scope of this book and are usually the subject of a graduate course in
electric drive control.

Conclusion
This chapter introduces the most common classes of rotating electric machines.
These machines, which can range in power from the milliwatt to the megawatt
range, find common application in virtually every field of engineering, from
consumer products to heavy-duty industrial applications. The principles
introduced in this chapter can give you a solid basis from which to build upon.



1.

2.

3.

4.

5.

Upon completing this chapter, you should have mastered the following
learning objectives:

Understand the basic principles of operation of rotating electric machines,
their classification, and basic efficiency and performance characteristics.
Electric machines are defined in terms of their mechanical characteristics
(torque–speed curves, inertia, friction and windage losses) and their electrical
characteristics (current and voltage requirements). Losses and efficiency are
an important part of the operation of electric machines, and it should be
recognized that machines will suffer from electrical, mechanical, and
magnetic core losses. All machines are based on the principle of establishing
a magnetic field in the stationary part of the machine (stator) and a magnetic
field in the moving part of the machine (rotor); electric machines can then be
classified according to how the stator and rotor fields are established.
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Understand the operation and basic configurations of separately excited,
permanent-magnet, shunt and series DC machines. Direct-current machines,
operated from a DC supply, are among the most common electric machines.
The rotor (armature) circuit is connected to an external DC supply via a
commutator. The stator electric field can be established by an external circuit
(separately excited machines), by a permanent magnet (PM machines), or by
the same supply used for the armature (self-excited machines).
Analyze DC motors under steady-state and dynamic operation. DC motors
are commonly used in a variety of variable-speed applications (e.g., electric
vehicles, servos) which require speed control; thus, their dynamics are also of
interest.
Analyze DC generators at steady state. DC generators can be used to supply
a variable direct current and voltage when propelled by a prime mover
(engine, or other thermal or hydraulic machine).
Understand the operation and basic configuration of AC machines, including
the synchronous motor and generator and the induction machine. AC
machines require an alternating-current supply. The two principal classes of
AC machines are the synchronous and induction types. Synchronous
machines rotate at a predetermined speed, which is equal to the speed of a
rotating magnetic field present in the stator, called the synchronous speed.
Induction machines also operate based on a rotating magnetic field in the
stator; however, the speed of the rotor is dependent on the operating
conditions of the machine and is always less than the synchronous speed.



13.1

a.

b.

13.2

a.

b.

Variable-speed AC machines require more sophisticated electric power
supplies that can provide variable voltage/current and variable frequency. As
the cost of power electronics is steadily decreasing, variable-speed AC drives
are becoming increasingly common.

HOMEWORK PROBLEMS
Section 13.1: Rotating Electric Machines

The power rating of a motor can be modified to account for different
ambient temperature, according to the following table:

A motor with Pe = 10 kW is rated up to 85°C. Find the actual power for
each of the following conditions:

Ambient temperature is 50°C.

Ambient temperature is 30°C.

The speed–torque characteristic of an induction motor has been empirically
determined as follows:

The motor will drive a load requiring a starting torque of 4 N-m and
increase linearly with speed to 8 N-m at 1,500 r/min.

Find the steady-state operating point of the motor.

Equation 13.68 predicts that the motor speed can be regulated in the
face of changes in load torque by adjusting the stator voltage. Find the
change in voltage required to maintain the speed at the operating point
of part a if the load torque increases to 10 N-m.



13.3

13.4

13.5

a.

b.

13.6

13.7

a.

b.

c.

d.

13.8

Section 13.2: Direct-Current Machines
Calculate the force exerted by each conductor, 6 in long, on the armature of
a DC motor when it carries a current of 90 A and lies in a field the density
of which is 5.2 × 10−4 Wb/in2.
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In a DC machine, the air gap flux density is 4 Wb/m2. The area of the pole
face is 2 cm × 4 cm. Find the flux per pole in the machine.

Section 13.3: Direct-Current Motors
A 220-V shunt motor has an armature resistance of 0.32 Ω and a field
resistance of 110 Ω. At no load the armature current is 6 A and the speed is
1,800 r/min. Assume that the flux does not vary with load, and calculate

The speed of the motor when the line current is 62 A (assume a 2-V
brush drop).

The speed regulation of the motor.

A 50-hp, 550-V shunt motor has an armature resistance, including brushes,
of 0.36 Ω. When operating at rated load and speed, the armature takes 75
A. What resistance should be inserted in the armature circuit to obtain a 20
percent speed reduction when the motor is developing 70 percent of rated
torque? Assume that there is no flux change.

A shunt DC motor has a shunt field resistance of 400 Ω and an armature
resistance of 0.2 Ω. The motor nameplate rating values are 440 V, 1,200
r/min, 100 hp, and full-load efficiency of 90 percent. Find

The motor line current.

The field and armature currents.

The counter-emf at rated speed.

The output torque.

A 240-V series motor has an armature resistance of 0.42 Ω and a series-
field resistance of 0.18 Ω. If the speed is 500 r/min when the current is 36
A, what will be the motor speed when the load reduces the line current to
21 A? (Assume a 3-V brush drop and that the flux is proportional to the
current.)



13.9

a.

b.

13.10

13.11

13.12

a.

b.

13.13

13.14

a.

A 220-V DC shunt motor [see Figure 13.14(b)] has an armature resistance
of 0.2 Ω and a rated armature current of 50 A. Find

The voltage generated in the armature.

The power developed.

A 550-V series motor takes 112 A and operates at 820 r/min when the
load is 75 hp. If the effective armature-circuit resistance is 0.15 Ω,
calculate the horsepower output of the motor when the current drops to 84
A, assuming that the flux is reduced by 15 percent.

A 200-V DC shunt motor has the following parameters:

When running at 1,100 r/min with no load connected to the shaft, the
motor draws 4 A from the line. Find E and the rotational losses at 1,100
r/min (assuming that the stray-load losses can be neglected).

A 230-V DC shunt motor has the following parameters:

When loaded, the motor draws 46 A from the line. Find

The speed, Pdev, and Tsh.

If Lf = 25 H, La = 0.008 H, and the terminal voltage has a 115-V
change, find ia (t) and ωm(t).

A 200-VDC shunt motor with an armature resistance of 0.1 Ω and a field
resistance of 100 Ω draws a line current of 5 A when running with no load
at 955 r/min. Determine the motor speed, the motor efficiency, the total
losses (i.e., rotational and I2R losses), and the load torque Tsh that will
result when the motor draws 40 A from the line. Assume rotational power
losses are proportional to the square of shaft speed.

A 50-hp, 230-V shunt motor has a field resistance of 17.7 Ω and operates
at full load when the line current is 181 A at 1,350 r/min. To increase the
speed of the motor to 1,600 r/min, a resistance of 5.3 Ω is “cut in” via the
field rheostat; the line current then increases to 190 A. Calculate

The power loss in the field and its percentage of the total power input
for the 1,350 r/min speed.



b.

c.

13.15

13.16

a.

b.

c.

The power losses in the field and the field rheostat for the 1,600 r/min
speed.

The percent losses in the field and in the field rheostat at 1,600 r/min.

A 10-hp, 230-V shunt-wound motor has a rated speed of 1,000 r/min and
full-load efficiency of 86 percent. Armature circuit resistance is 0.26 Ω;
field-circuit resistance is 225 Ω. If this motor is operating under rated load
and the field flux is very quickly reduced to 50 percent of its normal
value, what will be the effect upon counter-emf, armature current, and
torque? What effect will this change have upon the operation of the motor,
and what will be its speed when stable operating conditions have been
regained?

Page 747

The machine of Example 13.5 is to be used in a series connection. That is,
the field coil is connected in series with the armature, as shown in Figure
P13.16. The machine is to be operated under the same conditions as in
Example 13.5, that is, n = 120 r/min and Ia = 8 A. In the operating region,
ϕ = kIf and k = 200. The armature resistance is 0.2Ω, and the resistance of
the field winding is negligible.

Find the number of field winding turns necessary for full-load
operation.

Find the torque output for the following speeds:

1. n′ = 2n
2. n′ = 3n
3. n′ = n/2

4. n′ = n/4

Plot the speed–torque characteristic for the conditions of part b.

Figure P13.16



13.17

13.18

13.19

13.20

a.

b.

13.21

With reference to Example 13.7, assume that the load torque applied to
the PM DC motor is zero. Determine the speed response of the motor
speed to a step change in input voltage. Derive expressions for the natural
frequency and damping ratio of the second-order system. What determines
whether the system is over- or underdamped?

A motor with polar moment of inertia J develops torque according to the
relationship T = aω + b. The motor drives a load defined by the torque–
speed relationship TL = cω2 + d. If the four coefficients are all positive
constants, determine the equilibrium speeds of the motor-load pair, and
whether these speeds are stable.

Assume that a motor has known friction and windage losses described by
the equation TFW = bω. Sketch the T-ω characteristic of the motor if the
load torque TL is constant, and the TL-ω characteristic if the motor torque
is constant. Assume that TFW at full speed is equal to 30 percent of the
load torque.

A PM DC motor is rated at 6 V, 3,350 r/min and has the following
parameters: ra = 7 Ω, La = 120 mH, kT = 7 × 10−3 N-m/A, J = 1 × 10−6 kg-
m2. The no-load armature current is 0.15 A.

In the steady-state no-load condition, the magnetic torque must be
balanced by an internal damping torque; find the damping coefficient
b. Now sketch a model of the motor, write the dynamic equations, and
determine the transfer function from armature voltage to motor speed.
What is the approximate 3-dB bandwidth of the motor?

Now let the motor be connected to a pump with inertia JL = 1 × 10−4

kg-m2, damping coefficient bL = 5 × 10−3 N-m-s, and load torque TL =
3.5 × 10−3 N-m. Sketch the model describing the motor-load
configuration, and write the dynamic equations for this system;
determine the new transfer function from armature voltage to motor
speed. What is the approximate 3-dB bandwidth of the motor/pump
system?

A PM DC motor with torque constant kPM is used to power a hydraulic
pump; the pump is a positive displacement type and generates a flow
proportional to the pump velocity: qp = kpω. The fluid travels through a
conduit of negligible resistance; an accumulator is included to smooth out
the pulsations of the pump. A hydraulic load (modeled by a fluid



13.22

a.

b.

13.23

13.24

resistance R) is connected between the pipe and a reservoir (assumed at
zero pressure). Sketch the motor-pump circuit. Derive the dynamic
equations for the system, and determine the transfer function between
motor voltage and the pressure across the load.

The shunt motor in Figure P13.22 is characterized by a field coefficient kf
= 0.12 V-s/A-rad, such that the back emf is given by the expression Eb = kf
Ifω and the motor torque by the expression T = kf If Ia. The motor drives
an inertia/viscous friction load with parameters J = 0.8 kg-m2 and b = 0.6
N-m-s/rad. The field equation may be approximated by VS = Rf If. The
armature resistance is Ra = 0.75 Ω, and the field resistance is Rf = 60 Ω.
The system is perturbed around the nominal operating point VS0 = 150 V,
ω0 = 200 rad/s, and Ia0 = 186.67 A.

Derive the dynamic system equations in symbolic form.

Linearize the equations you obtained in part a.

Figure P13.22
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A PM DC motor is rigidly coupled to a fan; the fan load torque is
described by the expression TL = 5 + 0.05ω + 0.001 ω2, where torque is in
newton-meters and speed in radians per second. The motor has ka ϕ = kT
ϕ = 2.42; Ra = 0.2 Ω, and the inductance is negligible. If the motor
voltage is 50 V, what is the speed of rotation of the motor and fan?

A separately excited DC motor has the following parameters:

An inertial load has J = 0.5 kg-m2 and b = 2 N-m-s/rad. No external load
torque is applied.



a.

b.

c.

d.

 

 

13.25

13.26

a.

b.

Sketch a diagram of the system and derive the (three) differential
equations.

Sketch a simulation block diagram of the system (you should have
three integrators).

Code the diagram, using Simulink.

Run the following simulations:

Armature control. Assume a constant field with Vf = 100 V; now
simulate the response of the system when the armature voltage changes
in step fashion from 50 to 75 V. Save and plot the current and angular
speed responses.

Field control. Assume a constant armature voltage with Va = 100 V;
now simulate the response of the system when the field voltage
changes in step fashion from 75 to 50 V. This procedure is called field
weakening. Save and plot the current and angular speed responses.

Determine the transfer functions from input voltage toangular velocity
and from load torque to angular velocity for a PM DC motor rigidly
connected to an inertial load. Assume resistance and inductance
parameters Ra, La let the armature constant be ka. Assume ideal energy
conversion, so that ka = kT. The motor has inertia Jm and damping
coefficient bm, and it is rigidly connected to an inertial load with inertia J
and damping coefficient b. The load torque TL acts on the load to oppose
the magnetic torque.

Assume that the coupling between the motor and the inertial load of
Problem 13.25 is flexible (e.g., a long shaft). This can be modeled by
adding a torsional spring between the motor inertia and the load inertia.
Now we can no longer lump together the two inertias and damping
coefficients as if they were one; we need to write separate equations for
the two inertias. In total, there will be three equations in this system: the
motor electrical equation, the motor mechanical equation (Jm and Bm), and
the load mechanical equation (J and B).

Sketch a diagram of the system.

Use free-body diagrams to write each of the two mechanical equations.
Set up the equations in matrix form.



c.

13.27

a.

b.

c.

d.

13.28

13.29

Compute the transfer function from input voltage to load speed, using
the method of determinants.

A wound DC motor is connected in both a shunt and a series
configuration. Assume generic resistance and inductance parameters Ra,
Rf, La, Lf; let the field magnetization constant be kf and the armature
constant be ka. Assume ideal energy conversion, so that ka = kT. The
motor has inertia Jm and damping coefficient bm, and it is rigidly
connected to an inertial load with inertia J and damping coefficient b.

Sketch a system-level diagram of the two configurations that illustrates
both the mechanical and electrical systems.

Write an expression for the torque–speed curve of the motor in each
configuration.

Write the differential equations of the motor-load system in each
configuration.

Determine whether the differential equations of each system are linear;
if one (or both) is (are) nonlinear, could they be made linear with some
simple assumption? Explain clearly under what conditions this would
be the case.

Derive the differential equations describing the electrical and mechanical
dynamics of a shunt-connected DC motor, shown in Figure P13.28, and
draw a simulation block diagram of the system. The motor constants are
ka, kT = armature and torque reluctance and kf = field flux.

Figure P13.28
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Derive the differential equations describing the electrical and mechanical
dynamics of a series-connected DC motor, shown in Figure P13.29, and



13.30

13.31

13.32

13.33

a.

b.

13.34

draw a simulation block diagram of the system. The motor constants are
ka, kT = armature and torque reluctance and kf = field flux.

Figure P13.29

Develop a Simulink simulator for the shunt-connected DC motor of
Problem 13.28. Assume the following parameter values: La = 0.15 H; Lf =
0.05 H; Ra = 1.8 Ω; Rf = 0.2 Ω; ka = 0.8 V-s/rad; kT = 20 N-m/A; kf = 0.20
Wb/A; b = 0.1 N-m-s/rad; J = 1 kg-m2.

Develop a Simulink simulator for the series-connected DC motor of
Problem 13.29. Assume the following parameter values: L = La + Lf = 0.2
H; R = Ra + Rf = 2 Ω; ka = 0.8 V-s/rad; kT = 20 N-m/A; kf = 0.20 Wb/A; b
= 0.1 N-m-s/rad; J = 1 kg-m2.

Section 13.4: Direct-Current Generators
A 120-V. 10-A shunt generator has an armature resistance of 0.6 Ω. The
shunt field current is 2 A. Determine the voltage regulation of the
generator.

A 20-kW. 230-V separately excited generator has an armature resistance
of 0.2 Ω and a load current of 100 A. Find

The generated voltage when the terminal voltage is 230 V.

The output power.

A 10-kW, 120-VDC series generator has an armature resistance of 0.1 Ω
and a series field resistance of 0.05 Ω. Assuming that it is delivering rated
current at rated power, find (a) the armature current and (b) the generated
voltage.



13.35

a.

b.

c.

13.36

13.37

13.38

13.39

The armature resistance of a 30-kW, 440-V shunt generator is 0.1 Ω. Its
shunt field resistance is 200 Ω. Find

The power developed at rated load.

The load, field, and armature currents.

The electric power loss.

A four-pole, 450-kW, 4.6-kV shunt generator has armature and field
resistances of 2 and 333 Ω. The generator is operating at the rated speed
of 3.600 r/min. Find the no-load voltage of the generator and terminal
voltage at half load.

A 30-kW, 240-V generator is running at half load at 1,800 r/min with an
efficiency of 85 percent. Find the total losses and input power.

A self-excited DC shunt generator is delivering 20 A to a 100-V line when
it is driven at 200 rad/s. The magnetization characteristic is shown in
Figure P13.38. It is known that Ra = 1.0 Ω and Rf = 100 Ω. When the
generator is disconnected from the line, the drive motor speeds up to 220
rad/s. What is the terminal voltage?

Figure P13.38

A high-pressure supply and a hydraulic motor are used as a prime mover
to generate electricity through a DC generator. The system diagram is
sketched in Figure P13.39. Assume that an ideal pressure source PS is
available and that a hydraulic motor is connected to it through a linear
“fluid resistor,” used to regulate the average flow rate. An accumulator is
inserted just upstream of the hydraulic motor to smooth pressure
pulsations. The combined inertia of the hydraulic motor and of the DC
generator is represented by the parameter J. The DC generator is of the
permanent-magnet type and has armature constants ka = kT. The
permanent magnet flux is ϕ. Assume a resistive load for the generator RL.



a.

b.

13.40

13.41

13.42

Derive the system differential equations.

Compute the transfer function of the system from supply pressure PS to
load voltage VL.
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Figure P13.39

Section 13.6: The Alternator (Synchronous Generator)
An automotive alternator is rated 500-kVA and 20 V. It delivers its rated
voltamperes at a power factor of 0.85. The resistance per phase is 0.05 Ω,
and the field takes 2 A at 12 V. If the friction and windage loss is 25 W
and the core loss is 30 W, calculate the percent efficiency under rated
conditions.

It has been determined by test that the synchronous reactance Xs and
armature resistance ra of a 2,300-V, 500-kVA, three-phase synchronous
generator are 8.0 and 0.1 Ω, respectively. If the machine is operating at
rated load and voltage at a power factor of 0.867 lagging, find the
generated voltage per phase and the torque angle.

The circuit of Figure P13.42 represents a voltage regulator for a car
alternator. Unlike other alternators, a car alternator is not driven at
constant speed. Briefly, explain the function of Q, D, Z, and SCR.



13.43

13.44

13.45

13.46

Figure P13.42

Section 13.7: The Synchronous Motor
A non–salient pole, Y-connected, three-phase, two-pole synchronous
machine has a synchronous reactance of 7 Ω and negligible resistance and
rotational losses. One point on the open-circuit characteristic is given by
Vo = 400 V (phase voltage) for a field current of 3.32 A. The machine is to
be operated as a motor, with a terminal voltage of 400 V (phase voltage).
The armature current is 50 A, with power factor 0.85, leading. Determine
Eb, field current, torque developed, and power angle δ.

A factory load of 900 kW at 0.6 power factor lagging is to be increased by
the addition of a synchronous motor that takes 450 kW. At what power
factor must this motor operate, and what must be its kilovoltampere input
if the overall power factor is to be 0.9 lagging?

A non–salient pole, Y-connected, three-phase, two-pole synchronous
generator is connected to a 400-V (line to line), 60-Hz, three-phase line.
The stator impedance is 0.5 + j1.6 Ω (per phase). The generator is
delivering rated current (36 A) at unity power factor to the line. Determine
the power angle for this load and the value of Eb for this condition. Sketch
the phasor diagram, showing Eb, IS, and VS.

A non–salient pole, three-phase, two-pole synchronous motor is connected
in parallel with a three-phase, Y-connected load so that the per-phase
equivalent circuit is as shown in Figure P13.46. The parallel combination
is connected to a 220-V (line to line), 60-Hz, three-phase line. The load



13.47

13.48

a.

b.

c.

13.49

13.50

current IL is 25 A at a power factor of 0.866 inductive. The motor has XS
= 2 Ω and is operating with If = 1 A and T = 50 N-m at a power angle of
−30°. (Neglect all losses for the motor.) Find IS, Pin (to the motor), the
overall power factor (i.e., angle between I1 and VS), and the total power
drawn from the line.

Figure P13.46

A four-pole, three-phase, Y-connected, non–salient pole synchronous
motor has a synchronous reactance of 10 Ω. This motor is connected to a 

 (line to line), 60-Hz, three-phase line and is driving a load such
Page 751that Tshaft = 30 N-m. The line current is 15 A, leading the phase
voltage. Assuming that all losses can be neglected, determine the power
angle δ and E for this condition. If the load is removed, what is the line
current, and is it leading or lagging the voltage?

A 10-hp, 230-V, 60 Hz, three-phase, Y-connected synchronous motor
delivers full load at a power factor of 0.8 leading. The synchronous
reactance is 6 Ω, the rotational loss is 230 W, and the field loss is 50 W.
Find

The armature current.

The motor efficiency.

The power angle.

Neglect the stator winding resistance.

A 2,000-hp, unity power factor, three-phase, Y-connected, 2,300-V, 30-
pole, 60-Hz synchronous motor has a synchronous reactance of 1.95 Ω per
phase. Neglect all losses. Find the maximum power and torque.

A 1,200-V, three-phase, Y-connected synchronous motor takes 110 kW
(exclusive of field winding loss) when operated under a certain load at
1,200 r/min. The back emf of the motor is 2,000 V. The synchronous
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13.52

13.53

13.54

a.

b.

c.

d.

reactance is 10 Ω per phase, with negligible winding resistance. Find the
line current and the torque developed by the motor.

The per-phase impedance of a 600-V, three-phase, Y-connected
synchronous motor is 5 + j50 Ω. The motor takes 24 kW at a leading
power factor of 0.707. Determine the induced voltage and the power angle
of the motor.

Section 13.8: The Induction Motor
A 74.6-kW, three-phase, 440-V (line to line), four-pole, 60-Hz induction
motor has the following (per-phase) parameters referred to the stator
circuit (see Figure 13.36):

The no-load power input is 3,240 W at a current of 45 A. Determine the
line current, input power, developed torque, shaft torque, and efficiency at
s = 0.02.

A 60-Hz, four-pole, Y-connected induction motor is connected to a 400-V
(line to line), three-phase, 60-Hz line. The equivalent circuit parameters
are

When the machine is running at 1,755 r/min, the total rotational and stray-
load losses are 800 W. Determine the slip, input current, total input power,
mechanical power developed, shaft torque, and efficiency.

A three-phase, 60-Hz induction motor has eight poles and operates with a
slip of 0.05 for a certain load. Determine

The speed of the rotor with respect to the stator.

The speed of the rotor with respect to the stator magnetic field.

The speed of the rotor magnetic field with respect to the rotor.

The speed of the rotor magnetic field with respect to the stator
magnetic field.
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a.

b.

13.56

a.

b.

13.57

a.

b.

c.

d.

e.

13.58

A three-phase, two-pole, 400-V (per phase), 60-Hz induction motor
develops 37 kW (total) of mechanical power Pm at a certain speed. The
rotational loss at this speed is 800 W (total). (Stray-load loss is
negligible.)

If the total power transferred to the rotor is 40 kW, determine the slip
and the output torque.

If the total power into the motor Pin is 45 kW and RS is 0.5 Ω, find IS
and the power factor.

The nameplate speed of a 25-Hz induction motor is 720 r/min. If the speed
at no load is 745 r/min, find

The slip.

The percent regulation.

The nameplate of a squirrel cage four-pole induction motor has the
following information: 25 hp, 220 V, three-phase, 60 Hz, 830 r/min, 64-A
line current. If the motor draws 20,800 W when operating at full load,
calculate

Slip.

Percent regulation if the no-load speed is 895 r/min.

Power factor.

Torque.

Efficiency.

A 60-Hz, four-pole, Y-connected induction motor is connected to a 200-V
(line to line), three-phase, 60-Hz line. The equivalent circuit parameters
are

The motor is operating at slip s = 0.04. Determine the input current, input
power, mechanical power, and shaft torque (assuming that stray-load
losses are negligible).
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a.

b.

13.60

13.61

a.

b.

13.62

a.

b.

c.

13.63

a.

b.

13.59 A three-phase, 220-V, 60-Hz induction motor runs at 1,140 r/min.
Determine the number of poles (for minimum slip), the slip, and the
frequency of the rotor currents.

To reduce the starting current, a three-phase squirrel cage induction
motor is started by reducing the line voltage to Vs/2. By what factor are
the starting torque and the starting current reduced?

A six-pole induction motor for vehicle traction has a 50-kW input electric
power rating and is 85 percent efficient. If the supply is 220 V at 60 Hz,
compute the motor speed and torque at a slip of 0.04.

An AC induction machine has six poles and is designed for 60-Hz, 240-V
(rms) operation. When the machine operates with 10 percent slip, it
produces 60 N-m of torque.

The machine is now used in conjunction with a friction load that
opposes a torque of 50 N-m. Determine the speed and slip of the
machine when used with the above-mentioned load.

If the machine has an efficiency of 92 percent, what minimum rms
current is required for operation with the load of part a?

(Hint: You may assume that the speed–torque curve is approximately
linear in the region of interest.)

A blocked-rotor test was performed on a 5-hp, 220-V, four-pole, 60-Hz,
three-phase induction motor. The following data were obtained: V = 48 V,
I = 18 A, P = 610 W. Calculate

The equivalent stator resistance per phase RS.

The equivalent rotor resistance per phase RR.

The equivalent blocked-rotor reactance per phase XR.

Calculate the starting torque of the motor of Problem 13.62 when it is
started at

220 V

110 V

The starting torque equation is



13.64

13.65

a.

b.

c.

d.

13.66

13.67

13.68

13.69

A four-pole, three-phase induction motor drives a turbine load. At a
certain operating point the machine has 4 percent slip and 87 percent
efficiency. The motor drives a turbine with torque–speed characteristic
given by TL = 20 + 0.006ω2. Determine the torque at the motor-turbine
shaft and the total power delivered to the turbine. What is the total power
consumed by the motor?

A four-pole, three-phase induction motor rotates at 1,700 r/min when the
load is 100 N-m. The motor is 88 percent efficient.

Determine the slip at this operating condition.

For a constant-power, 10-kW load, determine the operating speed of
the machine.

Sketch the motor and load torque–speed curves on the same graph.
Show numerical values.

What is the total power consumed by the motor?

Find the speed of the rotating field of a six-pole, three-phase motor
connected to (a) a 60-Hz line and (b) a 50-Hz line, in revolutions per
minute and radians per second.

A six-pole, three-phase, 440-V, 60-Hz induction motor has the following
model impedances:

Calculate the input current and power factor of the motor for a speed of
1,200 r/min.

An eight-pole, three-phase, 220-V, 60-Hz induction motor has the
following model impedances:

Find the input current and power factor of this motor for s = 0.02.

A nameplate is given in Example 13.2. Find the rated torque, rated
voltamperes, and maximum continuous output power for this motor.



13.70

a.

b.

c.

13.71

13.72

a.

b.

c.

13.73

a.

b.

A three-phase induction motor, at rated voltage and frequency, has a
starting torque of 140 percent and a maximum torque of 210 percent of
full-load torque. Neglect stator resistance and rotational losses and assume
constant rotor resistance. Determine

The slip at full load.

The slip at maximum torque.

The rotor current at starting as a percentage of full-load rotor current.
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A 60-Hz, four-pole, three-phase induction motor delivers 35 kW of
mechanical (output) power. At a certain operating point the machine has 4
percent slip and 87 percent efficiency. Determine the torque delivered to
the load and the total electric (input) power consumed by the motor.

A four-pole, three-phase induction motor rotates at 1,680 rev/min when
the load is 140 N-m. The motor is 85 percent efficient.

Determine the slip at this operating condition.

For a constant-power, 20-kW load, determine the operating speed of
the machine.

Sketch the motor and load torque–speed curves for the load of part b.
on the same graph. Show numerical values.

An AC induction machine has six poles and is designed for 60-Hz, 240-V
(rms) operation. When the machine operates with 10 percent slip, it
produces 60 N-m of torque.

The machine is now used in conjunction with an 800-W constant
power load. Determine the speed and slip of the machine when used
with the above-mentioned load.

If the machine has an efficiency of 89 percent, what minimum rms
current is required for operation with the load of part a?

(Hint: You may assume that the speed–torque curve is approximately
linear in the region of interest.)

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.



1Note that the abbreviation rpm although certainly familiar to the reader, is not a
standard unit, and its use should be discouraged.
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A P P E N D I X
A

LINEAR ALGEBRA
ANDCOMPLEX NUMBERS

A.1 SOLVING SIMULTANEOUS LINEAR
EQUATIONS, CRAMER’S RULE, AND
MATRIX EQUATION
The solution of simultaneous equations, such as those that are often seen in
circuit theory, may be obtained relatively easily by using Cramer’s rule.
This method applies to 2 × 2 or larger systems of equations. Cramer’s rule
requires the use of the concept of determinant. Linear, or matrix, algebra is
valuable because it is systematic, general, and useful in solving complicated
problems. A determinant is a scalar defined on a square array of numbers,
or matrix, such as



(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

In this case the matrix is a 2 × 2 array with two rows and two columns, and
its determinant is defined as
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A third-order, or 3 × 3, determinant such as

is given by

For higher-order determinants, you may refer to a linear algebra book.
To illustrate Cramer’s method, a set of two equations in general form will
be solved here. A set of two linear simultaneous algebraic equations in two
unknowns can be written in the form:

where x1 and x2 are the two unknowns. The coefficients a11, a12, a21, and
a22 are known quantities. The two quantities on the right-hand sides, b1 and
b2, are also known (these are typically the source currents and voltages in a
circuit problem). The set of equations can be arranged in matrix form, as
shown in equation A.6.

In equation A.6, a coefficient matrix multiplied by a vector of unknown
variables is equated to a right-hand-side vector. Cramer’s rule can then be
applied to find x1 and x2, using the following formulas:



(A.7)

A.1

A.2

A.3

Thus, the solution is given by the ratio of two determinants: the
denominator is the determinant of the coefficient matrix, while the
numerator is the determinant of the same matrix with the right-hand-side
vector ([b1 b2]T in this case) substituted in place of the column of the
coefficient matrix corresponding to the desired variable (i.e., first column
for x1, second column for x2, etc.). In a circuit analysis problem, the
coefficient matrix is formed by the resistance (or conductance) values, the
vector of unknowns is composed of the mesh currents (or node voltages),
and the right-hand-side vector contains the source currents or voltages.

In practice, many calculations involve solving higher-order systems of
linear equations. Therefore, a variety of computer software packages are
often used to solve higher-order systems of linear equations.

CHECK YOUR UNDERSTANDING
Use Cramer’s rule to solve the system
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Use Cramer’s rule to solve the system

Convert the following system of linear equations into a matrix
equation as shown in equation A.6, and find matrices A and b.



(A.8)

(A.9)

A.2 INTRODUCTION TO COMPLEX
ALGEBRA
From your earliest training in arithmetic, you have dealt with real numbers
such as  π, e, etc., which may be used to measure distances in one
direction or another from a fixed point. However, a number that satisfies the
equation:

is not a real number. Imaginary numbers were introduced to solve equations
such as equation A.8. Imaginary numbers add a new dimension to our
number system. To deal with imaginary numbers, a new element, j, is added
to the number system having the property:

Thus, we have j3 = − j, j4 = 1, j5 = j, etc. Using equation A.9, you can see
that the solutions to equation A.8 are ±j3. In mathematics, the symbol i is
used for the imaginary unit, but this might be confused with current in
electrical engineering. Therefore, the symbol j is used in this book.

A complex number (indicated in boldface notation) is an expression of
the form:



(A.10)

(A.11)

(A.12)

(A.13)

where a and b are real numbers. The complex number A has a real part a
and an imaginary part b, which can be expressed as

It is important to note that a and b are both real numbers. The complex
number a + jb can be represented on a rectangular coordinate plane, called
the complex plane, by interpreting it as a point (a, b). That is, the horizontal
coordinate is a on the real axis, and the vertical coordinate is b on the
imaginary axis, as shown in Figure A.l. The complex number A = a + jb
can also Page 758be uniquely located in the complex plane by specifying
the distance r along a straight line from the origin and the angle θ, which
this line makes with the real axis, as shown in Figure A.1. From the right
triangle of Figure A.1, we can see that:

Figure A.1 Polar form representation of complex numbers

Then we can represent a complex number by the expression:

which is called the polar form of the complex number. The number r is
called the magnitude (or amplitude), and the number θ is called the angle



(A.14)

(or argument). The two numbers are usually denoted by r = ∣A∣ and θ =
arg A = ∠A.

Given a complex number A = a + jb, the complex conjugate of A,
denoted by the symbol A*, is defined by the following equalities:

That is, the sign of the imaginary part is reversed in the complex conjugate.

Finally, two complex numbers are equal if and only if the real parts are
equal and the imaginary parts are equal, which is equivalent to stating that
two complex numbers are equal only if their magnitudes are equal and their
arguments are equal.

The following examples and exercises should help clarify these
explanations.

EXAMPLE A.1

Convert the complex number A = 3 + j4 to its polar form.

Solution:

EXAMPLE A.2

Convert the number A = 4∠(−60°) to its complex form.

Solution:



(A.15)

(A.16)

(A.17)

(A.18)

Thus, 
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Addition and subtraction of complex numbers are governed by the
following rules:

Multiplication of complex numbers in polar form follows the law of
exponents. That is, the magnitude of the product is the product of the
individual magnitudes, and the angle of the product is the sum of the
individual angles, as shown below.

If the numbers are given in rectangular form and the product is desired in
rectangular form, it may be more convenient to perform the multiplication
directly, using the rule that j2 = −1, as illustrated in equation A.17.

Division of complex numbers in polar form follows the law of
exponents. That is, the magnitude of the quotient is the quotient of the
magnitudes, and the angle of the quotient is the difference of the angles, as
shown in equation A.18.

Division in the rectangular form can be accomplished by multiplying the
numerator and denominator by the complex conjugate of the denominator.



(A.19)

(A.20)

Multiplying the denominator by its complex conjugate converts the
denominator to a real number and simplifies division. This is shown in
Example A.4. Powers and roots of a complex number in polar form follow
the laws of exponents, as shown in equations A.19 and A.20.

EXAMPLE A.3

Perform the following operations, given that A = 2 + j3 and B = 5 − j4.

(a) A + B (b) A − B (c) 2A + 3B

Solution:

For part c, 2A = 4 + j6 and 3B = 15 − j12. Thus, 2A + 3B = (4 + 15) +j[6 +
(−12)] = 19 − j6

Page 760

EXAMPLE A.4

Perform the following operations in both rectangular and polar form, given
that A = 3 + j3 and 

(a) AB (b) A ÷ B



(A.21)

Solution:

(a) In rectangular form:

To obtain the answer in polar form, we need to convert A and B to their
polar forms:

Then

(b) To find A ÷ B in rectangular form, we can multiply A and B by B*.

Then

In polar form, the same operation may be performed as follows:

Euler’s Identity
Euler’s formula extends the usual definition of the exponential function to
allow for complex numbers as arguments.



(A.22)

A.4

All the standard trigonometry formulas in the complex plane are direct
consequences of Euler’s formula. The two important formulas are
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EXAMPLE A.5

Using Euler’s formula, show that

Solution:

Using Euler’s formula gives

Extending the above formula, we can obtain

Thus,

CHECK YOUR UNDERSTANDING
In a certain AC circuit, V = IZ, where Z = 7.75∠90° and I =
2∠−45°. Find V.



A.5

A.6

A.7

A.8

In a certain AC circuit, V = IZ, where Z = 5∠82° and V = 30∠45°.
Find I.
Show that the polar form of AB in Example A.4 is equivalent to its
rectangular form.

Show that the polar form of A ÷ B in Example A.4 is equivalent to
its rectangular form.

Using Euler’s formula, show that sin θ = (ejθ − e−jθ)⁄2j.
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Answers: A4: V = 15.5∠45°; A5: I = 6∠(−37°)



T

(B.1)
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A P P E N D I X
B

THE LAPLACE TRANSFORM

he transient analysis methods illustrated in Chapter 4 for first- and
second-order circuits can become rather cumbersome when applied to
higher-order circuits. Moreover, solving the differential equations
directly does not reveal the strong connection that exists between the

transient response and the frequency response of a circuit. The aim of this
appendix is to introduce an alternate solution method based on the concepts of
complex frequency and of the Laplace transform. The concepts presented
will demonstrate that the frequency response of linear circuits is but a special
case of the general transient response of the circuit, when analyzed by means
of Laplace methods. In addition, the use of the Laplace transform method
reveals systems concepts, such as poles, zeros, and transfer functions.

B.1 COMPLEX FREQUENCY
In Chapter 3, we considered circuits with sinusoidal excitations such as
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(B.2)

(B.3)

(B.4)

(B.5)

which we also wrote in the equivalent phasor form:

The two expressions just given are related by

As was shown in Chapter 3, phasor notation is extremely useful in solving AC
steady-state circuits, in which the voltages and currents are steady-state
sinusoids. We now consider a different class of waveforms, useful in the
transient analysis of circuits, namely, damped sinusoids. The most general
form of a damped sinusoid is

As one can see, a damped sinusoid is a sinusoid multiplied by a real
exponential eσt. The constant σ is real and is usually zero or negative in most
practical circuits. Figure B.1(a) and (b) depict the case of a damped sinusoid
with negative σ and with positive σ, respectively. Note that the case of σ = 0
corresponds exactly to a sinusoidal waveform. The definition of phasor
voltages and currents given in Chapter 3 can easily be extended to account for
the case of damped sinusoidal waveforms by defining a new variable s, called
the complex frequency:

Figure B.1 Damped sinusoid: (a) exponential decay, negative σ; (b)
exponential growth, positive σ



B.1

B.2

B.3

(B.6)

Note that the special case of σ = 0 corresponds to s = jω, that is, the familiar
steady-state sinusoidal (phasor) case. We shall now refer to the complex
variable V(s) as the complex frequency domain representation of υ(t). It
should be observed that from the viewpoint of circuit analysis, the use of the
Laplace transform is analogous to phasor analysis; that is, substituting the
variable s wherever jω was used is the only step required to describe a circuit
using the new notation.

CHECK YOUR UNDERSTANDING
Find the complex frequencies that are associated with

a. 5e−4t b. cos 2ωt c. sin(ωt + 2θ) d. 4e−2t sin(3t−50°) e. e−3t(2 + cos 4t)
Find s and V(s) if υ(t) is given by

a. 5e−2t b. 5e−2t cos(4t + 10°) c. 4 cos(2t − 20°)
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Find υ(t) if

a. s = −2, V = 2∠0° b. s = j2, V = 12∠−30° c. s = −4 + j3, V = 6∠10°

All the concepts and rules used in AC network analysis (see Chapter 3),
such as impedance, admittance, KVL, KCL, and Thévenin’s and Norton’s
theorems, carry over to the damped sinusoid case exactly. In the complex
frequency domain, the current I(s) and voltage V(s) are related by the
expression:

Answers: B.1: a. −4; b. ± j2ω; c. ± jω; d. −2 ± j3; e. −3 and −3 ± j4.
B.2: a. −2,5∠0°; b. −2 + j4, 5∠10°; c. j2, 4∠−20°. B.3: a. 2e−2t; b.
12cos(2t − 30°);c. 6e−4t cos(3t + 10°)



(B.7)

(B.8)

(B.9)

where Z(s) is the familiar impedance, with s replacing jω. We may obtain Z(s)
from Z( jω) by simply replacing jω by s. For a resistance R, the impedance is

For an inductance L, the impedance is

For a capacitance C, it is

Impedances in series or parallel are combined in exactly the same way as in
the AC steady-state case, since we only replace jω by s.

EXAMPLE B.1 Complex Frequency Notation

Problem:

Use complex impedance ideas to determine the response of a series RL circuit
to a damped exponential voltage.

Solution:

Known Quantities: Source voltage, resistor, inductor values.

Find: The time-domain expression for the series current iL(t).

Schematics, Diagrams, Circuits, and Given Data: υs(t) = 10e−2t cos(5t) V; R =
4 Ω; L = 2 H.

Assumptions: None.

Analysis: The input voltage phasor can be represented by the expression



(B.10)

(B.11)

The impedance seen by the voltage source is

Page 766

Thus, the series current is

Finally, the time-domain expression for the current is

Comments: The phasor analysis method illustrated here is completely
analogous to the method introduced in Chapter 3, with the complex frequency
jω (steady-state sinusoidal frequency) replaced by s (damped sinusoidal
frequency).

Transfer functions H(s) can be defined as a ratio of a voltage to a current,
a ratio of a voltage to a voltage, a ratio of a current to a current, or a ratio of a
current to a voltage. The transfer function H(s) is a function of network
elements and their interconnections. Using the transfer function and knowing
the input (voltage or current) to a circuit, we can find an expression for the
output either in the complex frequency domain or in the time domain. As an
example, suppose Vi(s) and Vo(s) are the input and output voltages to a circuit,
respectively, in complex frequency notation. Then

from which we can obtain the output in the complex frequency domain by
computing

If Vi(s) is a known damped sinusoid, we can then proceed to determine υo(t) by
means of the method illustrated earlier in this section.



B.4

B.5

(B.12)

(B.13)

CHECK YOUR UNDERSTANDING
Given the transfer function H(s) = 3(s + 2)⁄(s2 + 2s + 3) and the input
Vi(s) = 4∠0°, find the forced response υo(t) if

a. s = −1 b. s = −1 + j1 c. s = −2 + j1

Given the transfer function H(s) = 2(s + 4)⁄(s2 + 4s + 5) and the
input Vi(s) = 6∠30°, find the forced response υo(t) if

a. s = −4 + j1 b. s = −2 + j2

B.2 THE LAPLACE TRANSFORM
The Laplace transform, named after the French mathematician and astronomer
Pierre Simon de Laplace, is defined by
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The function F(s) is the Laplace transform of f (t) and is a function of the
complex frequency s = σ + jω, considered earlier in this section. Note that the
function f (t) is defined only for t ≥ 0. This definition of the Laplace transform
applies to what is known as the one-sided or unilateral Laplace transform,
since f (t) is evaluated only for positive t. To conveniently express arbitrary
functions only for positive time, we introduce a special function called the
unit-step function u (t), defined by the expression:

Answers: B.4: 



EXAMPLE B.2 Computing a Laplace Transform

Problem:

Find the Laplace transform of f (t) = e−at u(t).

Solution:

Known Quantities: Function to be Laplace-transformed.

Find: 

Schematics, Diagrams, Circuits, and Given Data: f (t) = e−at u(t).

Assumptions: None.

Analysis: From equation B.12,

Comments: Table B.1 contains a list of common Laplace transform pairs.

Table B.1 Laplace transform pairs



B.6

B.7

EXAMPLE B.3 Computing a Laplace Transform

Problem:

Find the Laplace transform of f (t) = cos (ωt) u(t).

Solution:

Known Quantities: Function to be Laplace-transformed.

Find: 

Schematics, Diagrams, Circuits, and Given Data: f (t) = cos (ωt) u(t).

Assumptions: None.
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Analysis: Using equation B.12 and applying Euler’s identity to cos (ωt) give:

Comments: Table B.1 contains a list of common Laplace transform pairs.

CHECK YOUR UNDERSTANDING
Find the Laplace transform of the following functions:

a. u(t) b. sin(ωt) u(t) c. tu(t)
Find the Laplace transform of the following functions:

a. e−at sin ωt u(t) b. e−at cos ωt u(t)



From what has been said so far about the Laplace transform, it is obvious
that we may compile a lengthy table of functions and their Laplace transforms
by repeated application of equation B.12 for various functions of time f (t).
Then we could obtain a wide variety of inverse transforms by matching entries
in the table. Table B.1 lists some of the more common Laplace transform
pairs. The computation of the inverse Laplace transform is in general rather
complex if one wishes to consider arbitrary functions of s. In many practical
cases, however, it is possible to use combinations of known transform pairs to
obtain the desired result.

EXAMPLE B.4 Computing an Inverse Laplace Transform

Problem:

Find the inverse Laplace transform of

Solution:

Known Quantities: Function to be inverse Laplace-transformed.

Find: 
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Schematics, Diagrams, Circuits, and Given Data:

Assumptions: None.

Answers: B.6: 



Analysis: Using Table B.1, we can individually inverse-transform each of the
elements of F(s):

Thus

EXAMPLE B.5 Computing an Inverse Laplace Transform

Problem:

Find the inverse Laplace transform of

Solution:

Known Quantities: Function to be inverse Laplace–transformed.

Find: 

Assumptions: None.

Analysis: A direct entry for the function cannot be found in Table B.1. In such
cases, one must compute a partial fraction expansion of the function F(s) and
then individually transform each term in the expansion. A partial fraction
expansion is the inverse operation of obtaining a common denominator and is
illustrated below.



B.8
a.

b.
c.

d.

To obtain the constants A and B, we multiply the above expression by each of
the denominator terms:
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From the above two expressions, we can compute A and B as follows:

Finally,

and using Table B.1, we compute

CHECK YOUR UNDERSTANDING
Find the inverse Laplace transform of each of the following functions:



(B.14)

B.3 TRANSFER FUNCTIONS, POLES,AND
ZEROS
It should be clear that the Laplace transform is a convenient tool for analyzing
the transient response of a circuit. The Laplace variable s is an extension of the
steady-state frequency response variable jω already encountered in this
appendix. Thus, it is possible to describe the input-output behavior of a circuit
by using Laplace transform ideas in the same way in which we used frequency
response ideas earlier. Now we can define voltages and currents in the
complex frequency domain as V(s) and I(s), and we denote impedances by the
notation Z(s), where s replaces the familiar jω. We define an extension of the
frequency response of a circuit, called the transfer function, as the ratio of any
output variable to any input variable, i.e.,

As an example, consider the circuit of Figure B.2. We can analyze it by using a
method analogous to phasor analysis by defining impedances:

Answer: 



(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

Figure B.2 A circuit and its Laplace transform domain equivalent
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Then we can use mesh analysis to determine

or, upon simplifying and substituting the relationships of equation B.15,

If we were interested in the relationship between the input voltages and, say,
the capacitor voltage, we could similarly calculate

Note that a transfer function consists of a ratio of polynomials; this ratio can
also be expressed in factored form, leading to the discovery of additional
important properties of the circuit. Let us, for the sake of simplicity, choose
numerical values for the components of the circuit of Figure B.2. For example,
let  and R2 = 2 Ω. Then we can substitute these values
into equation B.18 to obtain

Equation B.19 can be factored into products of first-order terms as follows:

where it is apparent that the response of the circuit has very special
characteristics for three values of s: s = −4; s = +3.0000 − j5.5678; and s =
+3.0000 + j5.5678. In the first case, at the complex frequency s = −4, the
numerator of the transfer function becomes zero, and the response of the



circuit is zero, regardless of how large the input voltage is. We call this
particular value of s a zero of the transfer function. In the latter two cases, for s
= +3.0000 ± j5.5678, the response of the circuit becomes infinite, and we refer
to these values of s as poles of the transfer function.

It is customary to represent the response of electric circuits in terms of
poles and zeros, since knowledge of the location of these poles and zeros is
equivalent to knowing the transfer function and provides complete information
regarding the response of the circuit. Further, if the poles and zeros of the
transfer function of a circuit are plotted in the complex plane, it is possible to
visualize the response of the circuit very effectively. Figure B.3 depicts the
pole-zero plot of the circuit of Figure B.2; in plots of this type it is customary
to denote zeros by a small circle and poles by an “×.”

Figure B.3 Zero−pole plot for the circuit of Figure B.2
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The poles of a transfer function have a special significance, in that they are
equal to the roots of the natural response of the system. They are also called
the natural frequencies of the circuit. Example B.6 illustrates this point.

EXAMPLE B.6 Poles of a Second-Order Circuit

Problem:



Determine the poles of a parallel RLC circuit. Express the homogeneous
equation using iL as the independent variable.

Solution:

Known Quantities: Values of resistor, inductor, and capacitor.

Find: Poles of the circuit.

Assumptions: None.

Analysis: The differential equation describing the natural response of the
parallel RLC circuit is

with the characteristic equation given by

Now, let us determine the transfer function of the circuit, say, VL(s)⁄VS(s).
Applying the voltage divider rule, we can write

The denominator of this function, which determines the poles of the circuit, is
identical to the characteristic equation of the circuit: The poles of the transfer
function are identical to the roots of the characteristic equation!

Comments: Describing a circuit by means of its transfer function is completely
equivalent to representing it by means of its differential equation. However, it
is often much easier to derive a transfer function by basic circuit analysis than
it is to obtain the differential equation of a circuit.
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A P P E N D I X
C

FUNDAMENTALS OF
ENGINEERING (FE)

EXAMINATION

C.1 INTRODUCTION

The Fundamentals of Engineering (FE) examination1 is one of four steps to
be completed toward registering as a Professional Engineer (PE). Each of
the 50 states in the United States has laws that regulate the practice of
engineering; these laws are designed to ensure that registered professional
engineers have demonstrated sufficient competence and experience. Each
state’s Board of Registration administers the exam and supplies information
and registration forms.

The FE exam is offered throughout the year, except during the months
of March, June, September, and December.



1.

2.

3.

4.

1.
2.
3.
4.
5.

An examinee handbook is freely available through the NCEES website.
The handbook contains information about eligibility, registration, fees,
accommodations, what to bring to the exam, the calculator policy, and
answers to other questions and issues that are likely to occur. Additional
information is available on the NCEES website.

Four steps are required to become a Professional Engineer:
Education. Usually this requirement is satisfied by completing a B.S.
degree in  engineering from an accredited college or university.

Page 774

Fundamentals of Engineering examination. One must pass a discipline-
specific examination described in Section C.2.
Experience. Following successful completion of the Fundamentals of
Engineering examination, several years of engineering experience are
required.
Principles and practices of engineering examination. One must pass a
second examination, also known as the Professional Engineer (PE)
examination, which requires  in-depth knowledge of one particular
branch of engineering.

This appendix provides a review of the background material in electrical
engineering required in three of the discipline-specific FE exams. Those
exams are prepared by the National Council of Examiners for Engineering
and Surveying2 (NCEES).

C.2 EXAM FORMAT AND CONTENT
The FE exam is offered in six specific engineering disciplines:

Chemical
Civil
Electrical and Computer
Environmental
Industrial and Systems



6.

•

•

•

•

•

Mechanical

A seventh Other Disciplines exam is also offered. The 6-h, 110-question
exam is offered year-round at NCEES-approved test centers. Detailed
specifications of each exam can be found online at
http://ncees.org/engineering/fe/.

The passing score on the FE exam is not published by NCEES because
it varies slightly across the discipline-specific exams and over time.
However, data on passing rates is published and available on the NCEES
website.

Of the seven exams, only three cover material presented in this book.
Naturally, the Electrical and Computer Engineering exam covers nearly all
the material. The Mechanical Engineering exam covers five areas of
Electricity and Magnetism, namely:

Charge, current, voltage, power, and energy

Ohm’s law and Kirchhoff’s current and voltage laws

Equivalent circuits (series and parallel)

AC circuits

Motors and generators

The Other Disciplines exam covers a similar set of topics as well as
additional material on measuring devices, sensors, data acquisition, and
data processing.

C.3 PRACTICE QUESTIONS ON
ELECTRICITY AND MAGNETISM
What follows is a series of typical and relevant practice questions on FE
exam material related to Electricity and Magnetism, including extensions of
the theory to circuits, electronics, logic, instrumentation, communications,
and electromechanics. The questions are ordered as they would be
encountered in a typical engineering curriculum. Answers to the questions
are provided at the end of this appendix.



C.1

C.2

C.3
C.4

C.5
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Students preparing for the FE exam should keep in mind that the actual
exam time is 5 hours and 20 minutes, or 320 minutes. With 110 questions
on the exam the average time per question is slightly less than 3 minutes.
Therefore, it is important to develop techniques for quickly arriving at
correct answers or likely correct answers. In other words, it is not advisable
to approach the FE exam as one would a typical undergraduate engineering
exam. Rather it is worthwhile to develop skill at eliminating answers that
are unreasonable or unlikely to be correct. For example, one can often
eliminate answers due to the unreasonable scale of the answer or due to a
units mismatch. It is also worthwhile to develop skill at approximating
solutions. Remember, the average time per question is less than 3 minutes.
The exam questions are designed with this limitation in mind. What does
that tell you about the nature of many of the exam questions? When solving
the practice questions below, look for ways in which you could have found
the correct answer more quickly, more approximately, and/or with greater
probability of correctness. And limit yourself to 3 minutes each!

Finally, the exam score is based solely on the number of correct
answers. There are no deductions for wrong answers, so when in doubt,
guess!

CHECK YOUR UNDERSTANDING
Determine the total charge entering a circuit element between t = 1 s
and t = 2 s if the current passing through the element is i = 5t.
A lightbulb sees a 3-A current for 15 s. The lightbulb generates 3 kJ
of energy in the form of light and heat. What is the voltage drop
across the lightbulb?

How much energy does a 75-W electric bulb consume in 6 hours?

Find the voltage drop υab required to move a charge q from point a
to point b if q = –6 C and it takes 30 J of energy to move the charge.

Two 2-C charges are separated by a dielectric with a thickness of 4
mm and with a dielectric constant ε = 10–12 F/m. What is the force
exerted by each charge on the other?



C.6

C.7

C.8

C.9

The magnitude of the force on a particle of charge q placed in the
empty space between two infinite parallel plates with a spacing d
and a potential difference V is proportional to:

a. qV⁄d2 b. qV⁄d c. qV2⁄d d. q2V⁄d e. q2V2⁄d
Assuming the connecting wires and the battery have negligible
resistance, the voltage across the 25-Ω resistance in Figure C.7 is

Figure C.7

a. 25 V b. 60 V c. 50 V d. 15 V e. 12.5 V

Assuming the connecting wires and the battery have negligible
resistance, the voltage across the 6-Ω resistor in Figure C.8 is

Figure C.8

a. 6 V b. 3.5 V c. 12 V d. 8 V e. 3 V

A 125-V battery charger is used to charge a 75-V battery with
internal resistance of 1.5 Ω, as shown in Figure C.9. If the charging
current is not to exceed 5 A, the minimum resistance in series with
the charger must be



C.10

C.11

C.12

Figure C.9

a. 10 Ω b. 5 Ω c. 38.5 Ω d. 41.5 Ω e. 8.5 Ω

A coil with an inductance of 1 H and negligible resistance carries the
current shown in Figure C.10. The maximum energy stored in the
inductor is

Figure C.10

a. 2 J b. 0.5 J c. 0.25 J d. 1 J e. 0.2 J
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The maximum voltage that will appear across the coil is
a. 5 V b. 100 V c. 250 V d. 500 V e. 5,000 V

A voltage sine wave of peak value 100 V is in phase with a current
sine wave of peak value 4 A. When the phase angle is 60° later than
a time at which the voltage and the current are both zero, the
instantaneous power is most nearly

a. 300 W b. 200 W c. 400 W d. 150 W e. 100 W

C.13 A sinusoidal voltage whose amplitude is  is applied to a 5-Ω
resistor. The root-mean-square value of the current is

a. 5.66 A b. 4 A c. 7.07 A d. 8 A e. 10 A



C.14

C.15

The magnitude of the steady-state root-mean-square voltage across
the capacitor in the circuit of Figure C.14 is

Figure C.14

a. 30 V b. 15 V c. 10 V d. 45 V e. 60 V

The next set of questions (Exercises C.15 to C.19) pertain to single-phase
AC power calculations and refer to the single-phase electrical network
shown in Figure C.15. In this figure, ES = 480∠0° V; IS = 100∠−15° A; ω
= 120π rad/s. Further, load A is a bank of single-phase induction machines.
The bank has an efficiency η of 80 percent, a power factor of 0.70 lagging,
and a load of 20 hp. Load B is a bank of overexcited single-phase
synchronous machines. The machines draw 15 kVA, and the load current
leads the line voltage by 30°. Load C is a lighting (resistive) load and
absorbs 10 kW. Load D is a proposed single-phase capacitor that will
correct the source power factor to unity. This material is covered in  
Sections 13.1 and 13.2.

Figure C.15

The root-mean-square magnitude of load A current, denoted by IA, is
most nearly

a. 44.4 A b. 31.08 A c. 60 A d. 38.85 A e. 55.5 A



C.16

C.17

C.18

C.19

The phase angle of IA with respect to the line voltage ES is most
nearly

a. 36.87° b. 60° c. 45.6° d. 30° e. 48°

The power absorbed by synchronous machines is most nearly
a. 20,000 W b. 7,500 W c. 13,000 W d. 12,990 W e. 15,000 W

The power factor of the system before load D is installed is most
nearly

a. 0.70 lagging b. 0.866 leading c. 0.866 lagging
d. 0.966 leading e. 0.966 lagging

The capacitance of the capacitor that will give a unity power factor
of the system is most nearly

a. 219 μF b. 187 μF c. 132.7 μF d. 240 μF e. 132.7 pF
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Answers: C.1: 

C.2: The total charge is Δq = iΔt = 3 × 15 = 45 C. The voltage
drop is

C.3: The energy used is

w = pt = 75 [W] × 6 [h] = 75 [W] × 6 × 3,600 [s] (450) = 1.62 MJ

C.4: The voltage drop is 

C.5: 



C.6: Answer is a, since this is the only term that has a distance
squared term in the denominator.

C.7: This problem calls for application of the voltage divider rule,
discussed in Sections 2.6. Applying the voltage divider rule to the
circuit of Figure C.7, we have

Thus, the answer is c.

C.8: This problem can be solved most readily by applying nodal
analysis (Sections 3.1), since one of the node voltages is already
known. Applying KCL at the node υ, we obtain

This equation can be solved to show that υ = 8 V. Note that it is
also possible to solve this problem by mesh analysis (Sections
3.2). You are encouraged to try this method as well.

C.9: The circuit of Figure C.9 describes the charging
arrangement. Applying KVL to the circuit of Figure C.9, we
obtain

and using i = imax = 5 A, we can find R from the following
equation:

Thus, e is the correct answer.

4.1). Since the maximum current is 1 A, the maximum energy
will be  Thus, b is the correct answer.



C.10: The energy stored in an inductor is  (see Sections

C.11: Since the voltage across an inductor is given by υ = L(di⁄dt),
we need to find the maximum (positive) value of di⁄dt. This will
occur anywhere between t = 0 and t = 2 ms. The corresponding
slope is

Therefore υmax = 1 × 500 = 500 V, and the correct answer is d.

C.12: As discussed in Sections 7.1, the instantaneous AC power
p(t) is

In this problem, when the phase angle is 60° later than a “zero
crossing,” we have  Thus, we can
compute the power at this instant as

The correct answer is a.

Answers: C.13: From Sections 4.2, we know that

Thus, Irms = 20⁄5 = 4 A. Therefore, b is the correct answer.

C.14: This problem requires the use of impedances (Sections
4.4). Using the voltage divider rule for impedances, we write the
voltage across the capacitor as
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Thus, the rms amplitude of the voltage across the capacitor is 30
V, and a is the correct answer. Note the importance of the phase
angle in this kind of problem.

C.15: The output power Po of the single-phase induction motor is
Po = 20 × 746 = 14.920 W. The input electric power Pin is

Pin can be expressed as

Therefore, the rms magnitude of the current IA is found as

Thus, the correct answer is e.

C.16: The phase angle between IA and ES is

The correct answer is c.

C.17: The apparent power S is known to be 15 kVA, and θ is 30°.
From the power triangle, we have

Therefore, the power drawn by the bank of synchronous motors is



The answer is d.

C.18: From the expression for the current IS, we have

The correct answer is e.

C.19: The reactive power QA in load A is

Therefore,

The total reactive power QB in load B is

The total reactive power Q is

To cancel this reactive power, we set

and

Therefore, the capacitance required to obtain a power factor of
unity is



1This exam used to be called Engineer in Training (EIT).

2P.O. Box 1686 (1826 Seneca Road), Clemson, SC 29633-1686.

The correct answer is c.



I
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A P P E N D I X
D

ASCII CHARACTER CODE

n addition to the codes described elsewhere in the book (binary, octal,
hexadecimal, binary-coded decimal), a character encoding convention
adopted by all computer manufacturers is ASCII,1 which maps a unique
numeric value to each of 128 graphic or control characters commonly

used in the display of text. The complete code is shown in Table D.1.
Notice that the numeric values are shown in hexadecimal. An additional
128 nonstandard characters are often defined for any particular font
implemented using the ASCII code, for a total of 256 characters in a typical
font. It is no accident that 256 characters are often defined since that is the
number of items that can be uniquely mapped by 8 bits or 1 byte of
memory.

Page 780

Table D.1 ASCII
Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

NUL 00 + 2B V 56



Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

SOH 01 , 2C W 57
STX 02 − 2D X 58
ETX 03 . 2E Y 59
EOT 04 / 2F Z 5A
ENQ 05 0 30 [ 5B
ACK 06 1 31 \ 5C
BEL 07 2 32 ] 5D
BS 08 3 33 ↑ 5E
HT 09 4 34 ← 5F
LF 0A 5 35 ‵ 60
VT 0B 6 36 a 61
FF 0C 7 37 b 62
CR 0D 8 38 c 63
SO 0E 9 39 d 64
SI 0F : 3A e 65
DLE 10 ; 3B f 66
DC1 11 < 3C g 67
DC2 12 = 3D h 68
DC3 13 > 3E i 69
DC4 14 ? 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 l 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 o 6F
SUB 1A E 45 p 70
ESC 1B F 46 q 71
FS 1C G 47 r 72
GS 1D H 48 s 73
RS 1E I 49 t 74
US 1F J 4A u 75
SP 20 K 4B v 76



Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

Graphic or
control

ASCII
(hex)

! 21 L 4C w 77
” 22 M 4D x 78
# 23 N 4E y 79
$ 24 O 4F z 7A
% 25 P 50 { 7B
& 26 Q 51 ∣ 7C
’ 27 R 52 } 7D
( 28 S 53 ∼ 7E
) 29 T 54 DEL 7F
* 2A U 55

1American Standard Code for Information Interchange.
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Index

3-dB frequency, 285, 398
150 percent torque, 739

A
Acceptors, 441
AC circuit analysis, 140
AC machines, 723–725

variable-frequency drives for, 742–744
AC motors

frequency regulation, 741
pole number control, 740–741
rotor control, 741
slip control, 741
speed and torque control, 740–741

AC network analysis, 139–140
capacitors, 140–149. See also Capacitors
energy storage, 163–165. See also Capacitance
impedance. See Impedance
inductors, 139, 140, 150–156



phasor solution, 166–169
time-dependent sources, 157–162

AC power
average, 304–311

computation of, 308–311
complex power, 311–317

apparent power, 312
computation of, 313–314
facts related to, 319
and power triangle, 312, 316–317
reactive power, 312, 314–315
real power, 312, 314–316

generation and distribution, 348–349
impedance triangle, 307
instantaneous, 304–309

computation of, 308–309
power factor, 307–308, 328–329

correction, 318–325
residential wiring, 345–348
rms/effective values, 306–307
single-phase, 339
three-phase power, 339–345

balanced delta loads, 341–343
balanced wye loads, 341
balanced wye-wye circuit, 343
parallel wye-delta load circuit, 343–345

transformer. See Transformers
AC signals, superposition of, 168–169
AC superposition, 177–178
Active filters, 397–402
Active mode, BJT operating mode, 478–480, 482
Actual capacitors, 143
Actuator, 658
Address lines, multiplexers, 587
Admittance, 173–174, 181



Air gaps, 642
magnetic structure with, 643–645
multiple, equivalent circuit of magnetic structure with, 646–647
reluctance of, 643

Air-to-fuel (A/F) ratio, 592
Algebra, of complex numbers, 757–760
Alternator (synchronous generator), 725–727
Ammeter, 53
Ampere, 10
Ampère, André Marie, 626
Ampère’s law, 626, 634–637
Amplification, 474

small-signal of BJT and, 495–501
Amplifiers

BJT, 496–498
operating point for, 493–494

cascaded, and simulation of differential equation, 409–410
charge, 404–405
difference/differential, 380–382
electrocardiogram, 384–385
ideal, 366–371

characteristics of, 366–367
feedback, 368–371
input/output impedance, 368

input offset current on, effect of, 419–420
input offset voltage on, effect of, 419
instrumentation, 388–390
inverting, 374–375

circuit, 387–388
voltage supply limits in, 416

large-signal, for diode thermometer, 487–488
linear, model of, 476
MOSFET

analysis of, 526–527
large-signal, 528–533

noninverting, 375–376



operational. See Operational amplifier (op-amp)
short-circuit current limit on, effect of, 421
signal-flow diagram of, 369
slew rate limit on, effect of, 420–421
summing, 379–380
transistors and, 474–475
voltage gain of, 366, 367

Amplitude-modulated (AM) signal, 634
Analog gate, 502

bidirectional, 536–537
Analog signal, 550
Analog switches, 535–536
Analog transmission gate, 536–537
AND function

NAND gates, realizing with, 568–569
NOR gates, realizing with, 569

AND gate, 561–563
Angular frequency, 158–159
Anode, 444
Apparent power, 312
Armature constant, 706
ASCII character code, 556, 779–780
Asynchronous feature, 595
Automatic control system, 393
Automotive electrical harness, Kirchhoff’s current law applied to, 13–14
Automotive resistive throttle position sensor, 46–47
Automotive suspension, 227–228, 230–231
Avalanche breakdown, 444
Average AC power, 304–311

computation of, 308–311
Average value, 159

of sinusoidal waveform, 161



B
Back emf, 648, 706
Balanced delta loads, 341–343
Balanced voltages, 339
Bandpass filters

frequency response of, 276–282
resonance and bandwidth, 277–280

Bandwidth, 277, 280
half-power, 280
resonance and, 277–280

Base 2 number, 552. See also Binary number system
Base 10 number, 552
Base current, 480
Base region, BJT, 477
Base-width modulation, 481
Batteries

electric vehicle battery pack, 18–19
MOSFET battery charging, 530–531

BCD representation. See Binary-coded decimal (BCD) representation
B-H curves, 652–654
Bias currents, 413
Biased BJT, 486
Binary-coded decimal (BCD) representation, 556
Binary codes, 556–557. See also specific codes
Binary number system, 552

addition in, 553
binary codes, 556–557
complements in, 554–555
conversion from decimal number system to, 552, 553–554
conversion to hexadecimal number system, 559
division in, 553
multiplication in, 553
negative numbers in, 554–555
sign-magnitude convention in, 555



subtraction in, 553
Binary signals, 502, 551–552. See also Digital signal
Binary up counter, 601
Bipolar junction transistor (BJT), 474, 477–484

amplifiers, operating point for, 493–494
battery charger, 490–491
characteristics of, 481–482
construction of, 478
gates. See Gates
large-signal model, 485–494

npn, 485, 486
motor drive circuit, 492–493
operating modes, 477

active mode, 478–480, 482
cutoff mode, 478, 482, 503
determination of, 482–484
saturation mode, 480–481, 482

operating point, selection of, 485–487
pn junction, 477–478
self-bias circuit, 496–498, 500–501
small-signal model, 485, 495–501
switches, 501–505

Bistable device, flip-flop as, 594
Bits, 552
BJT. See Bipolar junction transistor (BJT)
Bli law, 671, 672, 673
Blu law, 672, 673
Bode plots, 283–291

approximation, 288–291
high-pass filters, 285–288
RC low-pass filter, 283–285

Boolean algebra, 561
De Morgan’s laws, 563–564
AND gate, 561–563
NAND gate. See NAND gate



NOR gate. See NOR gate
NOT gate, 562
OR gate, 561–563
rules of, 563
XOR (exclusive OR) gate, 565

Branch, circuit, 7–8
Branch current, 8, 71, 74–75
Breakaway torque, 738
Breakdown torque, 739, 741
Bridge rectifier, 460–461, 464
Bulk, 516
Bytes, 552

C
Capacitance. See also Capacitors

electrical, 141
equivalent, 142–143
fluid, 141
thermal, 200, 393

Capacitive displacement transducers, 144–145, 174–175
Capacitors, 140–149

actual, 143
current from voltage, calculation of, 147–148
defined, 142
discharging, 199
discrete, 141, 143
duality, 153
energy, 207–208
energy storage in, 141, 143–144
hydraulic, 200
hydraulic analog of, 141
ideal, 141–142
impedance of, 172–173
practical, impedance of, 178–179



properties of, 141
voltage

continuity of, 203
from current, calculation of, 148–149

Carbon composites resistors, 32
Carbon film resistors, 32
Carrier wave, 282
Cascaded amplifiers, and simulation of differential equation, 409–410
Cathode, 444
CBJ. See Collector-base junction (CBJ)
Cells, Karnaugh maps, 573
Center frequency, 282
Center-tapped transformer, 334–335
Channel pinch-off, 519
Channels

MOSFETs
n-channel, 518
p-channel, 518

Characteristic roots, 229
Charge, 10

amplifiers, 404–405
in conductor, 12

char type variable, 556
Circuits

analogy between magnetic circuits and, 638, 639
biasing MOSFETs, 523–527
branches, 7–8
defined, 4
divider, 607
elements. See also specific elements

energy storage, 163–165
i-v characteristics, 26–29
in parallel, 39–44
in series, 37–39



equivalents, 97–98
features of, 4–8
first-order transient analysis, 210–224
fluid, 154
full adder, 571
ground node, 17
half adder, 570
ideal voltage source, 27–28
ideal wire, 5
inverting amplifier, 374, 387–388
LC

parallel, 225–227
series, 227–229

loop, 8
magnetic, 637–643
mesh, 8
nodes in, 5–7
open-circuit, 31–32
principal quantities within, 4
RC, 205
rectifier. See Rectifier circuits
RL, 206–207
safety, for stamping press operation, 577–579
second-order, poles of, 772
second-order transient analysis, 224–245
sensor calibration, 385–386
short-circuit, 31
simplification, frequency response function and, 259–260
simplification of, 210–211
with sinusoidal sources

phasor solution of, 166–169
transient problems solutions, elements of, 197–208
tuning, 282

Clear feature, RS flip-flop, 595
Closed-loop mode, amplifier, 368
CM. See Common mode (CM)



CMRR. See Common-mode rejection ratio (CMRR)
Co-energy, 630, 631

calculation for inductor, 631–632
Collector-base junction (CBJ), 477

forward-biased, 480–481
reverse-biased, 478–480

Collector current, 480, 481
Collector region, BJT, 477
Color code, resistors, 33
Combinational logic modules

decoders, 589
gate arrays, 590–592
multiplexers, 587–588
programmable logic devices, 590–592
read-only memory, 589
SRAM (static random-access memory), 589–590

Common-base current gain, 480
Common-emitter current gain, 480
Common mode (CM), 383, 387
Common-mode rejection ratio (CMRR), 383, 415
Common-source MOSFET amplifier, 528–529
Commutator, 703–713
Complementary MOS (CMOS) technology

gate, 538–540
inverters, 534, 535
and MOSFET switches, 534–540

analog, 535–536
digital, 534–535

Complements, in binary number system, 554–555
Complete response, 201, 212

of critically damped second-order circuit, 238–240
of first-order system, 213
of overdamped second-order circuit, 235–237
of second-order system, 231–232



of underdamped second-order circuit, 240–242
Complex conjugate roots, 234
Complex exponential, 166, 167
Complex frequency, 763–766

domain, 764
notation, 765–766

Complex plane, 757
Complex power, 311–317

apparent power, 312
computation of, 313–314
defined, 312
facts related to, 319
and power triangle, 312, 316–317
reactive power, 312

computation of, 314–315
real power, 312

computation of, 314–315
transfer for complex loads, 315–316

Condenser microphone, 144
Conductance, 30
Conductance parameter, 519–521
Conductivity, 30
Configuration, DC electric machines, 705
Constant horsepower, 719
Constant-torque loads, 719
Constitutive relation, for diode, 451
Contact potential, 443
Controlled sources, 29
Coulomb (C), 10
Coulomb, Charles, 10
Counter-emf, 700
Counter-mmf, 655
Counters, 601

binary up, 601



decade, 601–602
ring, 603

timing diagram for, 607–608
ripple, 602
synchronous, 603
up-down, 603

Covalent bonds, 440
Cramer’s rule, 755–757

to solve linear equations, 76–77
Critically damped transient response, 196, 201, 230, 234
Current, 4

base, 480
branch, 8, 71, 74–75
channel, 519–521
in closed path, 11
collector, 480, 481
in conductor, 12
defined, 10
division, parallel resistors and, 39–44
eddy, 653
emitter, 480
holding, 667
inductor, from voltage, calculation of, 155–156
measurement devices, 52–54
Norton, 110–114
pull-in, 667
quiescent/idle, 486
rated, 696
saturation, 480
scale, 480
semiconductor diode

diffusion current, 442
drift current, 443
reverse saturation current, 443

unit of, 10
from voltage, capacitor, calculation of, 147–148



Current sources
hydraulic analog of, 29
ideal, 4–5, 28–29
mesh analysis with, 89–92
practical, 50–52
zeroing voltage and, 93

Current/transconductance amplifier, 372
Cutoff frequency, 266, 268
Cutoff mode, BJT operating mode, 478, 482, 503
Cutoff region, 518, 519

D
Damped sinusoid, 764
Data latch, 596
Data lines, multiplexers, 587
Data select, 587
Data selectors, 587–588
DC bias circuit, 486
DC drives, and DC motor speed control, 719
DC electric machines, 692, 703–709. See also DC generators; DC motors

configuration of, 705
models, 705–708
physical structure of, 703–705
steady-state equations, 708–709

DC gain, 212, 225
DC generators, 720. See also DC electric machines

separately excited, 720–723
DC motor drive circuit, 531–533
DC motors, 710–720. See also DC electric machines

permanent-magnet, 712–713
series motors, 711–712, 716–717
shunt motor, 710–711, 714–716
speed control systems for, 719



starting transient of, 216–218
turnoff transient of, 218–219

DC power supply, 461–462
DC steady-state, 197

long-term, 204, 212
DC value, 159, 480
Decade counter, 601–602
Decade slope, 284
Decaying exponential waveform, 196
Deceleration characteristics, 740
Decibels (dB), 283

3-dB frequency, 285, 398
Decimal number system

conversion to binary number system, 552, 553–554
Decoders, 589
de Laplace, Pierre Simon, 766
Delays, 596

propagation, 602
Delta (Δ) configuration, 341
De Morgan’s laws, 563–564

and product-of-sums expressions, 567–568
significance of, 565–566

Department of Energy’s Energy Policy Act, 2005 (EPACT), 695
Dependent/controlled sources, 29
Depletion region, 442–443
D flip-flop, 597

truth table and excitation table for, 610
Dielectric material, 141

permittivity of, 144
Dielectric strength, 32
Differential amplifier, 372, 380–382
Differential equation

first-order, 211–212



of RC circuit, 205
of RL circuit, 206–207
simulation, cascaded amplifiers to, 409–410

Differential mode (DM), 383, 387
Differentiators, ideal, 403
Digital counters, 601–603. See also Counters
Digital gate, 502
Digital position encoders, 557–558
Digital signal, 550–551

binary signal, 551–552
Digital switches, 534–535
Dimensionless damping ratio, 196, 201, 225, 226
Diodes

gates, 502
light-emitting. See Light-emitting diodes (LEDs)
semiconductor. See Semiconductor diodes

Diode thermometer
large-signal amplifier for, 487–488

Direct-current machines. See DC electric machines; DC generators; DC
motors

Directed edge, 609
Direct torque control, 744
Discrete capacitors, 141, 143
Discrete resistors, 32–34
Distinct roots, 234
Divider circuit, 607
DM. See Differential mode (DM)
Donors, 441
Don’t-care conditions, 577, 584–585
Drain, 516
Drift current, 443
Duality, 153, 227, 563
Duty cycle, 740



Dynamic response, of permanent-magnet DC motors, 717–718

E
Early effect, 481, 520
Early voltage, 520
EBJ. See Emitter-base junction (EBJ)
Eddy current losses, 659
Eddy currents, 653

losses, 694
Edges, 552

directed, 609
Effective values, 159–160

AC power source, 306–307
Efficiency

energy conversion, 693
power, 656

Efficiency map, 694
Electrical capacitance, 141
Electrical conduction, in semiconductors, 440–442
Electric circuit. See Circuits
Electric current. See Current
Electric machines, 689–744

AC machines, 723–725
alternator (synchronous generator), 725–727
classification of, 690–693
configurations of, 691
direct current, 692, 703–709. See also DC electric machines; DC

generators; DC motors
induction motor, 731–740
magnetic poles in, 701–703
performance characteristics of, 693–699
rotating. See Rotating electric machines

Electric motor, 690, 691



AC, 740–741
circuits

MOSFET DC motor drive circuit, 531–533
direct-current. See DC motors
efficiency map of, 694
induction, 731–740
losses in, 693
magnetic structure of, 645–646
steady-state equations, 709
synchronous, 727–731
torque-speed characteristic of, 694

Electrocardiogram (EKG) amplifier, 384–385
Electromagnet, 662–663
Electromechanical energy conversion, 658–574

forces in magnetic structures, 659
moving-iron transducers, 659–668

Electromotive force (emf), 627
back, 648, 706

Electronic gate, 502. See also Gates
Electrons, 10
Electrostriction, 658
Elementary charges, 10
Emitter-base junction (EBJ), 477

forward-biased, 478, 480–481
i-v characteristics of, 478, 479
reverse-biased, 478

Emitter current, 480
Emitter region, BJT, 477
Enable input, 587
Encoder pad, 557
Encoders

digital position, 557–558
slotted, 604–605

Energy



capacitor, 207–208
storage. See Energy storage
and transient response, 198–200

Energy conversion devices, 693. See also Electric machines
Energy storage

in capacitors, 141, 143–144
circuits elements, 163–165
in ignition coil, 156
in inductors, 153
in ultracapacitors, 145–146, 149

Energy transducers, 658
Enhancement-mode MOSFET, 516–523

channel current, 519–521
conductance parameter, 519–521
devices, 517
n-channel, 516, 517
operating regions, 518–519
p-channel, 521
threshold voltage, 518–519

EPROM. See Erasable programmable read-only memory (EPROM)
Equivalent capacitance, 142–143
Equivalent circuits

magnetic, 640–642
of magnetic structure with multiple air gaps, 646–647

Equivalent inductance, 152–153
Equivalent networks, 97–120

maximum power transfer, 123–126
Norton current, computation of, 110–114
Norton equivalent, 97–98

experimental determination of, 117–118
source transformations, 114–117
Thévenin equivalent, 97–98

experimental determination of, 117–120
Thévenin voltage, computation of, 105–110

Equivalent resistance, 38, 40



Erasable programmable read-only memory (EPROM), 589
lookup table for automotive fuel-injection system control, 592–593

Euler’s formula, 166–167, 760–761
Excitation table, 610
Exciter, 727
Exclusive OR (XOR) gate, 565
Exhaust emission control system, 592
Externally applied force, 672

F
Fail-safe autopilot logic, 565–566
Falling exponential waveform, 196
Faraday’s law, 626–629
Feedback, amplifier, 368–371

negative, 368, 370–371, 374
positive, 368

Feedback factor, 369
FE examination. See Fundamentals of Engineering (FE) examination
Ferrites, 636
Field-effect transistors (FETs), 515

classes, 516
junction, 515
MOSFETs. See MOSFET (metal-oxide semiconducting field-effect

transistor)
Field-oriented control, 743
Field winding, 690
Filters

active, 397–402
bandpass. See Bandpass filters
high-pass, 267–268

Bode plots, 285–288
low-pass, 265–267, 269–272

Bode plots, 283–285



Wheatstone bridge, 275–276
First-order differential equation, 211–212
First-order transient analysis, 210–224

circuit simplification, 210–211
first-order differential equation, 211–212

First-order transient circuit, 215–216
First-order transient response, due to pulsed source, 220–221
Flapper check valve, 446
Flip-flops

D, 597
truth table and excitation table for, 610

defined, 594
JK, 598

timing diagram, 600
truth table and excitation table for, 610

outputs, 594
RS, 594–596

clear feature, 595
preset feature, 595
timing diagram, 594, 595, 599
truth table and excitation table for, 610

T, 599–600
Fluid capacitance, 141
Fluid circuits, 154
Fluid inertance, 153
Flux linkage, 629
Forced response, 201, 212

first-order, 222–223
Force measurements, Wheatstone bridge and, 49–50
Frame, electric machine, 698
Free electrons, 440–441
Frequency regulation, 741
Frequency response

of bandpass filters, 276–282



circuit simplification, 259–260
computation, 264

using Thévenin’s theorem, 263–264
defined, 258, 268
first-order archetypes, 260–262
functions, 258–259
high-pass filters, 267–268, 273
limits, 411–412
low-pass filters, 265–267, 269–272
second-order archetypes, 260–262
zeros/poles, 262–263

Friction, and mechanical losses, 694
Friction losses, 659
Fringing, 643
Full adder circuit, 571
Full-wave rectifier, 458–459
Fundamentals of Engineering (FE) examination, 773–778

content of, 774
Electricity and Magnetism, material related to, 774–775
format of, 774

G
Gain-bandwidth product, 412

increasing, 418
limit in op-amp, 417

Gate arrays, 590–592
Gates, 516. See also Logic gates

analog, 502
bipolar junction transistor, 501–505
CMOS, 538–540
digital, 502
digital switches and, 534–535
diodes, 502

Generators, 690, 691



direct-current, 720–723. See also DC generators
losses in, 693
steady-state equations, 709
synchronous, 725–727

Generic array logic (GAL), 590, 591
GFCI. See Ground fault circuit interrupter (GFCI)
Governing equation, 451
Gray code, 556–557
Ground, reference node and, 17–18
Ground fault circuit interrupter (GFCI), 347, 348

H
Half adder circuit, 570
Half-power bandwidth, 280
Half-power frequencies, 280, 282
Half-wave rectifier, 457–458, 463–464

offset diode model in, 462–463
Hardware description languages (HDLs), 590
Henrys (H), 151
Hexadecimal system, 556

conversion from binary number system to, 559
High-frequency asymptote, 284
High-pass filters, 267–268, 273

Bode plots, 285–288
Holding current, 667
Hold-in resistors, 667
Holes, 441
Hydraulic analog

of capacitors, 141
of current source, 29
of electrical resistance, 31
of inductors, 153



of voltage sources, 28
Hydraulic capacitor, 200
Hydraulic check valves, 445–446
Hydraulic tank, 212–213
Hysteresis, 653

losses in, 659
and open-circuit core losses, 694

I
I2R loss, 345
IA. See Instrumentation amplifier (IA)
IC. See Integrated circuit (IC)
Ideal amplifiers, 366–371

characteristics of, 366–367
current, 368
feedback, 368–371

negative, 368, 370–371
positive, 368

input/output impedance, 368
power, 368

Ideal capacitor, 141–142
Ideal diodes, 445–447

conduction state of, determination of, 447–449
half-wave rectifier, 457–458

Ideal inductors, 150–152
Ideal operational amplifier, 373

golden rules of, 373
Ideal resistor, 30
Ideal sources, 4–5

current, 28–29
voltage, 26–27

Ideal transformers, 329–330
conserve power, 330



turns ratio, 333–334
Ideal wire, 5
Identical roots, 234
Ignition coil, energy storage in, 156
Impact ionization, 444
Impedance, 169

of capacitor, 172–173
defined, 170
generalized, 173
of inductor, 170–171
input/output, 366, 368
Ohm’s law, 169–170
of practical capacitor, 178–179
of practical inductor, 179–180
of resistor, 170
of series-parallel network, 180

Impedance matching, 332
Impedance reflection, 331–332
Impedance transformer, 657–658
Impedance triangle, 307, 312
Independent linear equations, 71
Inductance. See also Inductors

and energy stored in magnetic structure, 648
equivalent, 152–153

Induction machines, 692
Induction motors, 731–740

AC motor speed and torque control, 740–741
performance of, 738–740

Inductors, 139, 140
calculating co-energy for, 631–632
current

continuity of, 203–204
from voltage, calculation of, 155–156

duality, 153
energy storage in, 153



hydraulic analog of, 153
ideal, 150–152
impedance of, 170–171
practical, 151

impedance of, 179–180
properties of, 141
voltage, from current, calculation of, 154–155

Initial steady state, 197
Input bias currents, 413
Input offset current, 413

effect on amplifier, 419–420
Input side, of transformers, 329
Input winding, 690
Instantaneous AC power, 304–309

computation of, 308–309
Instrumentation amplifier (IA), 388–390
Integrated circuit (IC), 371
Integrators

ideal, 403
voltage supply limits in, 416–417

Internal resistance, 50
Intrinsic concentration, 441
Inverse Laplace transform, computation of, 768–770
Inverters, 503, 742

CMOS, 534, 535
Inverting amplifier, 374–375

circuit, 387–388
voltage supply limits in, 416

Isolation buffer, 376–377
Isolation transformer, 330
i-v characteristics

of circuit elements, 26–29
diode, 445
of emitter-base junction, 478, 479



J
JFETs. See Junction field-effect transistors (JFETs)
JK flip-flop, 598

timing diagram, 600
truth table and excitation table for, 610

Junction, 5
Junction field-effect transistors (JFETs), 515

K
Karnaugh maps, 573–585

don’t-care conditions, 577, 584–585
and logic circuit

design, 579–580
simplification, 582

simplifying expressions by using, 581–582
sum of products/product of sums realizations, 576–577

KCL. See Kirchhoff’s current law (KCL)
Kirchhoff, Gustav Robert, 11, 16
Kirchhoff’s current law (KCL), 11

application, 14–15
to automotive electrical harness, 13–14

Kirchhoff’s voltage law (KVL), 16, 94
application of, 19–20
electric vehicle battery pack, 18–19
in mesh current analysis method, 83–92

KVL. See Kirchhoff’s voltage law (KVL)

L
Laplace transform, 763, 766–770

computation of, 767–768
inverse, 768–770
one-sided/unilateral, 767



pairs, 768
Large-signal current gain, 480
Large-signal model, BJT, 485–494

npn, 485, 486
LC circuits

parallel, 225–227
series, 227–229

Leading edge-triggered, 597
Leakage flux, 639
Least significant bit (LSB), 552
LEDs. See Light-emitting diodes (LEDs)
Lego® 9V Technic motor, model 43362, 531–532
Lenz’s law, 628
Level-sensitive, RS flip-flop, 594
Level shifter, 390–391
Light-emitting diodes (LEDs)

driver, 489–490
Linear amplifier, model of, 476
Linear equations

Cramer’s rule to solve, 76–77
independent, 71
MATLAB® to solve, 77–79

Linear magnetic structure, 660
Linear variable differential transformer (LVDT), 633–634
Lines of force, 627
Line voltages, 340
Linking, magnetic flux, 629
Loading effects, 52, 368, 369
Load-line equation, 451
Logical addition. See OR gate
Logical expression, simplification of, 566
Logical multiplication. See AND gate



Logic circuits
deriving sum-of-products expression from, 580
designing using Karnaugh maps, 579–580

Logic functions, 561. See also Product of sums (POS); Sum of products
(SOP)

De Morgan’s laws, 563–564
realizing from truth tables, 567

Logic gates. See also Gates
AND, 561–563
defined, 561
NAND. See NAND gate
NOR. See NOR gate
NOT, 562
OR, 502, 561–563
sequential. See Sequential logic gates
XOR/exclusive OR, 565

Logic modules
combinational

decoders, 589
gate arrays, 590–592
multiplexers, 587–588
programmable logic devices, 590–592
read-only memory, 589
SRAM (static random-access memory), 589–590

Long-term steady state, 201
DC, 204, 212, 232
response

of first-order system, 213
of second-order system, 231

Loop, 8
Loop gain, 369

open. See Open-loop gain
Loudspeaker, 674–677
Low-frequency asymptote, 284
Low-pass filters, 265–267, 269–270

active filters, 397–400



application of, 270–271
attenuation, 271–272
Bode plots, 283–285
second-order, 401–402

LSB. See Least significant bit (LSB)
LVDT. See Linear variable differential transformer (LVDT)

M
Machines. See Electric machines
Magnetic circuits, 637–643

analogy between electric and, 638, 639
equivalent, magnetic structure and, 640–642

Magnetic coupling, 629
Magnetic domains, 652–653
Magnetic fields

and Faraday’s law, 626–629
intensity, 626

Magnetic flux, 626, 701–702
B-H curves, 652–654
density of, 626
lines, 628
linking, 629
mean path for, 637

Magnetic materials, 652–654
Magnetic poles, in electric machines, 701–703
Magnetic reluctance position sensor, 649–652

voltage calculation in, 650–652
Magnetic structures

with air gaps, 643–645
of electric motor, 645–646
equivalent circuit, with multiple air gaps, 646–647
and equivalent magnetic circuit, 640–642
forces in, 659
linear, 660



Magnetism
Ampère’s law, 634–637
electricity and, 626–637
mutual inductance, 630–631
self-inductance, 629, 630–631

Magnetizing current, 690
Magnetomotive force (mmf), 636

counter-mmf, 655
excess, 653

Magnetostriction, 658
Majority carriers, 441
MATLAB®

to solve for mesh currents, 87–88
to solve linear equations, 77–79

Matrix equation, 755–757
Maximum power transfer, 123–126
Mean path, for magnetic flux, 637
Mean value, 159
Measurements/measurement system

devices, 52–54. See also specific devices
force

Wheatstone bridge and, 49–50
Mechanical loads, 690
Memory

random-access
static, 589–590

read-only, 589
Memory element, flip-flop as, 594
Mesh, 8
Mesh analysis, 84, 85–88

with current sources, 89–92
Mesh current method, 83–92

details and examples, 84–85
Microphone, 144–145



Minority carriers, 441, 479
Minterm, 573
Mobility, 441
Modulo-4 binary up-down counter

flip-flop inputs in, Karnaugh maps for, 612
implementation of, 612
state diagram of, 610
state transition table for, 611

MOSFET (metal-oxide semiconducting field-effect transistor), 515
amplifier

analysis of, 526–527
large-signal, 528–533

bidirectional analog gate, 536–537
circuits

biasing, 523–527
DC motor drive circuit, 531–533

as current source, for battery charging, 530–531
enhancement-mode, 516–523

channel current, 519–521
conductance parameter, 519–521
devices, 517
n-channel, 516
operating regions, 518–519
p-channel, 521
threshold voltage, 518–519

operating state of, 521–522
Q point

calculation, 524–525
graphical determination, 523–524

self-bias circuit, 525–526
switches, CMOS technology and, 534–540

analog, 535–536
digital, 534–535

Most significant bit (MSB), 552
Motion control, 557
Motion voltages, 629



Motor vehicles
automotive fuel-injection system control, EPROM-based lookup table

for, 592–593
automotive suspension, 227–228
resistive throttle position sensor, 46–47

Moving-coil transducers, 670–677
generator action, 671–674
motor action, 671

Moving-iron transducers, 659–668
MSB. See Most significant bit (MSB)
Multiplexers (MUX), 587–588
Mutual inductance, 630–631
Mutual induction, 330
MUX. See Multiplexers (MUX)

N
Nameplates, 695, 697–699

transformer, 656–657
NAND gate, 503–505, 564–565

function realization with, 569–570
AND function realization with, 568–569
RS flip-flop implementation, 594–595
sum of products realization using, 581

Natural frequency, 225, 226, 772
damped, 231

Natural response, 201, 212
first-order, 222–223

n-channel MOSFETs (NMOS), 518
gate-to-source voltage for, 534
switch, 537–538

Negative feedback, of amplifier, 368, 374
benefits of, 370–371

Negative logic convention, 561



Negative power, 21
Network analysis, 70–71
Networks

AC, analysis of. See AC network analysis
counting nodes in, 9
defined, 4
features of, 4–8
ideal wire, 5
nodes in, 5–7

Neutral node, 340
Neutrons, 10
Nibble, 552
NMOS (n-channel MOSFETs), 518

gate-to-source voltage for, 534
switch, 537–538

Node analysis, 72–73
branch currents, solution for, 74–75
node voltages, solution for, 75–76
with voltage sources, 79–82

Nodes, 5–7
reference. See Reference node
in state diagram, 609

Node voltage, 5
Node voltage method, 71–82

details and examples, 73–74
No-load rotational loss, 694
Noninverting amplifier, 375–376
Nonparallel RLC circuit, analysis of, 243–245
Nonseries RLC circuit, analysis of, 243–245
NOR gate, 564–565

function realization with, 569–570
AND function realization with, 569

Norton equivalents, 97–98
experimental determination of, 117–118



resistance
computation with dependent sources, 100–101
computation without dependent sources, 100

Norton model, 51
Norton’s theorem, 99
NOT gate, 562
n-type semiconductors, 441
Null position, 633
Number systems

binary. See Binary number system
decimal, 552, 553–554
hexadecimal system, 556

O
Oersted, H. C., 626
Offset diode model, 447, 449

of half-wave rectifier, 462–463
Offset voltage, 412–413

diodes, 451
Ohmic region, 519, 520
Ohmmeter, 52
Ohms (Ω), 30
Ohm’s law, 30, 94, 169–170, 261, 375
One-port network, 97. See also Equivalent networks
Ones complement, binary number system, 554
One-sided Laplace transform, 767
Op-amp. See Operational amplifier (op-amp)
Op-amp summer. See Summing amplifier
Open-circuit, 31–32
Open-circuit core losses, 694
Open-circuit voltage, 105, 124. See also Thévenin voltage
Open-loop gain, 367



operational amplifier, 372
Open-loop mode, amplifier, 368
Operational amplifier (op-amp), 365–423

active filters, 397–402
archetypes, 374–377
charge amplifiers, 404–405
circuit component values, criteria for selecting, 415
common mode, 383, 387
common-mode rejection ratio, 415
difference/differential amplifier, 380–382
differential mode, 383, 387
differentiators, 403
frequency response limits, 411–412
gain-bandwidth product limit in, 417
ideal, 373

golden rules of, 373
input bias currents, 413
instrumentation amplifier, 388–390
integrated circuit, 371
integrators

ideal, 403
voltage supply limits in, 416–417

inverting amplifier, 374–375
circuit, 387–388
voltage supply limits in, 416

isolation buffer/voltage follower, 376–377
level shifter, 390–391
multiple input source, 378–382
noninverting amplifier, 375–376
offset voltage, 412–413
open-loop gain of, 372
output offset adjustment, 413
physical limitations of, 411–415
proportional-integral control with, 406–409
short-circuit output current, 414–415
small-signal, low-frequency model, 372
summing amplifier, 379–380



superposition, principle of, 378–382
temperature control using, 390–395
Thévenin’s theorem, application of, 377–378
voltage supply limits, 411

OR gate, 502, 561–563
Output winding, 690
Overdamped transient response, 196, 201, 229–230, 234
Overdrive voltage, 518

P
PAL. See Programmable array logic (PAL)
Parallel LC circuits, 225–227
Parallel-plate capacitor, 141, 142
Parallel resistors, and current division, 39–44
Passband, of filter, 277
Passive sign convention, 20–24, 36
p-channel MOSFETs (PMOS), 518

enhancement-mode transistor, 521
gate-to-source voltage for, 534

Pentavalent impurities, semiconductor, 441
Periodic waveforms, time-dependent, 157–162
Period measurement with additional transition detection (PMA), 605
Period measurement with missing transition detection (PMM), 605
Permanent-magnet (PM) DC motors, 712–713

dynamic response of, 717–718
Permanent-magnet machine, 709
Permeability, 634
Permittivity, of dielectric material, 144
Phase angle (ϕ), 160
Phase voltages, 340
Phasors, 166–169

AC circuit analysis, 140



defined, 166
Euler’s formula, 166–167
notation, addition of two sinusoidal sources using, 176–177
polar and rectangular forms of, 167

Photoresistor, 34
Physical structure, DC electric machines, 703–705
Piecewise linear diode model, 451–452, 455–456
Piezoelectric effect, 658
Piezoelectric transducers, 404
PLA. See Programmable logic array (PLA)
PLC. See Programmable logic controller (PLC)
PLDs. See Programmable logic devices (PLDs)
PMA. See Period measurement with additional transition detection (PMA)
PMM. See Period measurement with missing transition detection (PMM)
PMOS (p-channel MOSFETs), 518

enhancement-mode transistor, 521
gate-to-source voltage for, 534

pn junction
in bipolar junction transistor, 477–478
semiconductor diodes, 442–445

Pole number control, 740–741
Poles

frequency response function, 262–263
of second-order circuit, 772

Position encoders, 557–558
Positive abc sequence, 340
Positive feedback, 368
Positive logic convention, 561
Positive power, 21, 36
Potential barrier, 443
Potential difference, 16
Potentiometer, 34–35
Power



calculations, 24–25
dissipation, in resistors, 35–36
measurement devices, 52–54
negative, 21
and passive sign convention, 20–24
positive, 21, 36
resistors. See Resistors

Power amplifier, 368
Power angle, 729
Power efficiency, of transformer, 656
Power factor (pf), 307–308, 328–329

correction, 318–325
series capacitor and, 321–322

Power grid, 349
Power triangle, 307

complex, 312, 316–317
Practical inductors, 151

impedance of, 179–180
Preset feature, RS flip-flop, 595
Primary input side, transformer, 329
Primary winding, 690
Prime mover, 690
Principle of superposition, 92–96
Principles of electromagnetics, 625–678
Principles of electromechanics

electricity and magnetism, 626–637
electromechanical energy conversion. See Electromechanical energy

conversion
magnetic circuits, 637–643
magnetic materials and B-H curves, 652–654
transformers, 654–658

Product of sums (POS), 563–564
design, 583–584
expressions, De Morgan’s laws and, 567–568



realizations, 576–577
Programmable array logic (PAL), 590
Programmable logic array (PLA), 590
Programmable logic controller (PLC), 611
Programmable logic devices (PLDs), 590–592
Proof by perfect induction, 562
Propagation delays, 602
Proportional gain, 393
Proportional-integral control with op-amp, 406–409
Protons, 10
p-type semiconductors, 441
Pull-in current, 667
Pull-out torque, 729
Pull-up torque, 738
Pulse-width modulation (PWM)

sinusoidal, 742–743
space vector, 743, 744

Q
Quality factor, 279, 281
Quantization, 551
Quiescent/idle currents, 486
Quiescent (operating)/Q point, 451

MOSFET
calculation, 524–525
graphical determination, 523–524

R
Random-access memory (RAM)

static, 589–590
Rated current, 696



Rated torque, 739
Rated voltage, 695
Rated voltamperes, 696
RC circuit, differential equation of, 205
RC filter

high-pass, 267–268, 273
Bode plots, 285–288

low-pass, 265–267, 269–272
Bode plots, 283–285

Reactance, 173
synchronous, 728
transient, 740

Reactive power, 312
computation of, 314–315

Real power, 312
computation of, 314–315
transfer for complex loads, 315–316

Real roots, 234
Recombination, 441
Rectifier circuits

bridge rectifier, 460–461, 464
DC power supply, 461–462
full-wave, 458–459
half-wave, 457–458, 463–464

offset diode model in, 462–463
Reference node, 6–7, 71

and ground, 17–18
Registers, 605–606

shift, 606
Regulation, 696–697
Relay, 667–669
Reluctance, 638

of air gap, 643
magnetic reluctance position sensor, 649–652



Remanent/residual magnetization, 653
Residential wiring, 345–348
Resistance, 29–30, 173

equivalent. See Equivalent resistance
hydraulic analog of, 31
internal, 50
matched, 123
measurement devices, 52–54
Norton equivalents

computation with dependent sources, 100–101
computation without dependent sources, 100

small-signal, 451, 454–455
strain gauge, 48
thermal, 393
Thévenin equivalents, 101

computation with dependent sources, 100–101, 103–105
computation without dependent sources, 100, 102–103

Resistive network analysis, 69–126
equivalent networks. See Equivalent networks
mesh current method, 83–92
network analysis, 70–71
node voltage method, 71–82
principle of superposition, 92–96

Resistive throttle position sensor, 46–47
Resistivity, 30
Resistors

carbon composites, 32
carbon film, 32
color code, 33
discrete, 32–34
in parallel, 39–44
power dissipation in, 35–36
power ratings, 36
in series, 37–39, 43–44
variable, 34

Resistors, impedance of, 170



Resonance, and bandwidth, 277–280
Resonant frequency, 279, 281
Reverse-biased direction, 443, 444
Reverse breakdown, 444
Reverse saturation current, 443
Right-hand rule, 628, 701
Ring counter, 603

timing diagram for, 607–608
Ripple counter, 602
Rising exponential waveform, 196
RLC circuit, nonseries/nonparallel, analysis of, 243–245
RL circuit, differential equation of, 206–207
rms (root-mean-square) value, 159–160

of AC power source, 306–307
ratio of, 160
of sinusoidal waveform, 161–162

Root-mean-square (rms) value, 159–160
of AC power source, 306–307
ratio of, 160
of sinusoidal waveform, 161–162

Rotating electric machines, 690–703
basic operation of, 700–701

Rotating magnetic field, 703, 723–725
Rotor, 690, 691–692

squirrel cage, 731
wound, 731

Rotor control, 741
RS flip-flop, 594–596

clear feature, 595
preset feature, 595
timing diagram, 594, 595, 599
truth table and excitation table for, 610



S
Safety circuit, for stamping press operation, 577–579
Salient poles, 701
Saturation, 652
Saturation current, 480
Saturation mode, BJT operating mode, 480–481, 482
Saturation region, 519, 520
Scalar field, 627
Scale current, 480
Secondary input side, transformer, 329
Secondary winding, 690
Second-order transient analysis, 224–245

characteristics of, 224–225
parallel LC circuits, 225–227
series LC circuits, 227–229
transient response, 229–231, 233

Seismic transducer, 677–678
Self-excited machines, 705
Self-inductance, 629, 630–631
Self-induction, 330
Semiconductor, 440

diodes. See Semiconductor diodes
electrical conduction in, 440–442
n-type, 441
p-type, 441

Semiconductor diodes, 442
diffusion current, 442
drift current, 443
large-signal models for, 445–449

ideal diode model, 445–447
offset diode model, 447, 449

operating point, determination of, 452–454
pn junction and, 442–445
rectifier circuits



bridge rectifier, 460–461, 464
DC power supply, 461–462
full-wave, 458–459
half-wave, 457–458, 462–464

reverse saturation current, 443
small-signal models for, 450–456

piecewise linear diode model, 451–452
Sensor calibration circuit, 385–386
Sensors, 658. See also Transducers

automotive resistive throttle position, 46–47
magnetic reluctance position, 649–652

Separately excited DC generator, 720–723
Separately excited machines, 705, 707–708, 709
Sequential logic gates

design, 609–612
digital counters, 601–603. See also Counters
flip-flops, 594

D, 597, 610
JK, 598, 600, 610
outputs, 594
RS, 594–596, 599, 610
T, 599–600

programmable logic controller, 611
registers, 605–606

Series-connected machine, 705, 709
Series DC motor, 711–712, 716–717
Series LC circuits, 227–229
Series-parallel network, impedance of, 180
Series resistors, and voltage division, 37–39
Seven-segment display, 606
Shift register, 606
Short-circuit, 31
Short-circuit current, 110, 124

limit, effect on amplifier, 421



Short-circuit output current limit, 414–415
Shunt-connected machine, 705, 709
Shunt DC motor, 710–711, 714–716
Signals

analog, 550
digital, 550–551

binary signal, 502, 551–552
sinusoidal. See Sinusoidal signals
time-dependent sources, 157–162

Sign convention, 20–24
Sign-magnitude convention, 555
Simultaneous equations, 755–757
Single-phase AC power, 339
Sinusoidal frequency response. See Frequency response
Sinusoidal PWM, 742–743
Sinusoidal signals, 139–140, 158

characteristics of, 140
sources

addition, using phasor notation, 176–177
circuits with, phasor solution of, 166–169

waveforms
average value of, 161
rms value of, 161–162

Slew rate limitation
effect on amplifier, 420–421
in op-amp, 413–414

Slip, 733
Slip control, 741
Slip frequency, 733
Slip speed, 733
Slotted encoder, 604–605
Small-signal current gain, 480
Small-signal model, BJT, 485, 495–501
Small-signal resistance, 451, 454–455



Solenoids, 663–665
facts about, 666–667
transient response of, 665–666

Solid state electronics, 439
SOP. See Sum of products (SOP)
Source, 516
Source-follower MOSFET amplifier, 529–530
Source loading, 124
Source transformation, 98
Source transformations, 114–117
Space vector PWM, 743, 744
Speed range, 739
Square wave, integrating, 405–406
Squirrel cage rotor, 731
SRAM. See Static random-access memory (SRAM)
Stamping press, safety circuit for operation of, 577–579
Starting torque, 695, 732, 738, 740
State, of machine, 609
State diagram, 609

of modulo-4 binary up-down counter, 611
State transition diagrams, 602
State transition table, 609

for 3-bit binary counter, 609
State variables, 163–164, 194, 197
Static random-access memory (SRAM), 589–590
Stator, 690, 691–692
Steady-state equations, 708

DC generator, 709
DC motor, 709

Steady-state solution, 165
Step-down transformer, 330
Step-up transformer, 330
Strain gauge, resistance, 48



Stray-load losses, 694
Subcube, 575
Substations, 349
Summing amplifier, 379–380
Sum of products (SOP), 563–564

design, 583
expression, deriving from logic circuit, 580
realizations, 576–577

using NAND gates, 581
Supernode, 6
Superposition, principle of, 92–96, 378–382
Swing check valve, 445–446
Switches

bipolar junction transistor, 501–505
MOSFET, CMOS technology and, 534–540

analog, 535–536
digital, 534–535

NMOS, 537–538
transistors and, 474–475

Synchronous counter, 603
Synchronous generator, 725–727
Synchronous machines, 692
Synchronous motors, 727–731

torque, 727–728
Synchronous reactance, 728
Synchronous speed, 724

T
Temperature

control, using op-amp, 390–395
Teslas (T), 626
T flip-flop, 599–600
Thermal capacitance, 200, 393



Thermal properties, 740
Thermal resistance, 393
Thermal runaway, 497
Thermal systems

dynamics of, 201
first-order, 210–211

Thermal voltage, 443
Thermistors, 32, 34. See also Discrete resistors
Thévenin equivalents, 97–98

experimental determination of, 117–120
resistance, 101

computation with dependent sources, 100–101, 103–105
computation without dependent sources, 100, 102–103

Thévenin model, 51
Thévenin’s theorem, 99

and circuit simplification, 259–260
frequency response computation using, 263–264
and operational amplifier, 377–378

Thévenin voltage, 105–110
Three-phase AC power, 339–345

balanced delta loads, 341–343
balanced wye loads, 341
balanced wye-wye circuit, 343
parallel wye-delta load circuit, 343–345

Time constant, 212
Time constants, 197, 199, 200–201, 207–208
Time-dependent signal sources, 157–162
Timing diagram

JK flip-flop, 600
for ring counter, 607–608
RS flip-flop, 594, 595, 599

Torque-speed characteristic, 694–695, 699–700
Trailing edge-triggered, 598
Transcendental equation, 451



Transconductance amplifier, 372
Transducers. See also Sensors

capacitive displacement, 144–145, 174–175
energy, 658
moving-coil. See Moving-coil transducers
moving-iron, 659–668
piezoelectric, 404
seismic, 677–678

Transfer functions, 766, 770–772
Transformers, 329, 654–656

center-tapped, 330, 334–335
ideal, 329–330

conserve power, 330
impedance, 657–658
impedance reflection, 331–332
input side of, 329
isolation, 330
linear variable differential, 633–634
and maximum power transfer, 332–333, 337–338
nameplate, 656–657
output side of, 329
power efficiency, 656
and power line efficiency, 335–337
step-down, 330
step-up, 330
voltages, 629

Transient analysis, 195–196
first-order, 210–224

circuit simplification, 210–211
first-order differential equation, 211–212

objectives of, 194
second-order, 224–245

characteristics of, 224–225
parallel LC circuits, 225–227
series LC circuits, 227–229
transient response, 229–231



Transient event, defined, 197
Transient problems solutions, elements of, 197–208
Transient reactance, 740
Transient response, 196

critically damped, 196, 201, 230
energy and, 198–200
first-order, 212–213

due to pulsed source, 220–221
initial conditions on, 197–198, 202
overdamped, 196, 201, 229–230
second-order, 229–231
of second-order circuit, 234–235
underdamped, 196, 201, 230–231

Transient solution, 165
Transistors

amplifiers and, 474–475
bipolar junction. See Bipolar junction transistor (BJT)
field-effect. See Field-effect transistors (FETs)
switches and, 474–475

Transmission lines, 349
Triode region, 519
Trivalent impurities, semiconductor, 441
Truth tables, 561–562

realizing logic functions from, 567
TTL (transistor-transistor logic), 503

NAND gate, 503–505
Tuning circuits, 282
Turns ratio, 329

ideal transformer, 333–334
Twos complement, binary number system, 554

operations of, 558

U



Ultracapacitors, energy storage in, 145–146, 149
Underdamped transient response, 196, 230–231, 234
Unilateral Laplace transform, 767
Unit-step function, 767
Unit-step response, 232
Unity gain frequency, 400
Universal flip-flop. See JK flip-flop
Up-down counter, 603

V
VA. See Volt-amperes (VA)
VAR. See Volt-amperes reactive (VAR)
Variable-reluctance position sensor, 649–650
Variable resistors, 34
Variable-torque loads, 719
VCCS. See Voltage-controlled current source (VCCS)
Vector control, 743
Volt, 15
Volta, Alessandro, 10, 15
Voltage, 4, 15–16, 486, 695–696

balanced, 339
calculation, in magnetic reluctance position sensor, 650–652
capacitor, from current and initial condition, 148–149
defined, 15
early, 520
enhancement-mode MOSFET, 518–519
induced, 648
inductors, from current, calculation of, 154–155
line, 340
measurement devices, 52–54
motion, 629
node, 5
offset, 412–413



open-circuit, 105, 124
overdrive, 518
phase, 340
rated, 695
supply limits, 411

in inverting amplifier, 416
in op-amp integrator, 416–417

thermal, 443
Thévenin, 105–110
transformer, 629
units of, 21
Zener, 445

Voltage amplifier, 372
Voltage-controlled current source (VCCS), 392, 520, 529
Voltage division, 37, 38

series resistors and, 37–39
Voltage follower, 376–377
Voltage gain, of amplifier, 366, 367

determination of, 476
Voltage sources

hydraulic analog, 28
ideal, 4–5, 27–28
practical, 50–52

Volt-ampere characteristic. See i-v characteristics
Volt-amperes (VA), 312

rated, 696
Volt-amperes reactive (VAR), 312
Voltmeter, 53–54, 55–56

W
Wattmeter, 54, 326–328
Waveforms

parts of, 195
periodic, time-dependent, 157–162



sinusoidal signals
average value of, 161
rms value of, 161–162

Webers (Wb), 626
Wheatstone bridge, 44–45

and force measurements, 49–50
Wheatstone bridge filter, 275–276
Windage, and mechanical losses, 694
Wiring, residential, 345–348
Word, 552
Wound-field DC motors, 713
Wound rotor, 731
Wye (Y) configuration, 339–340

balanced wye loads, 341

X
XOR (exclusive OR) gate, 565

Z
Zener breakdown, 444–445
Zener effect, 444
Zener voltage, 445
Zeros, frequency response function, 262–263
Zero-speed torque, 695
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